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Discretization to Prove the Nonexistence of
“Small” Common Unfoldings Between Polyhedra
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Abstract

We show that no < 300-gon is a common unfolding be-
tween any two doubly covered triangles whose angles are
rationally independent algebraic numbers. Here an un-
folding of a polyhedron is a polygon obtained by cutting
anywhere on the polyhedron’s surface and unfolding it.

1 Introduction

An unfolding of a polyhedron Q is a simple polygon
obtained fromQ by cutting anywhere on the surface and
unfolding it flat. A common unfolding between two
polyhedra Q0 and Q1 is a polygon that is an unfolding
of Q0 and of Q1. It is open whether any pair of Pla-
tonic solids have a common unfolding [4] (though O(1)
“refoldings” suffice [3]). For other classes of polyhedra,
there are some positive results showing common unfold-
ings [1, 2, 4, 5, 6]. However, there are no results proving
nonexistence of common unfoldings. In other words, it
is not known whether there is a pair of polyhedra having
no common unfolding.

One difficulty in proving the nonexistence of common
unfoldings is that we cannot check by a simple exhaus-
tive search whether two polyhedra have a common un-
folding. When we unfold a convex polyhedron Q to a
simple polygon P, the cutting lines on the surface form a
tree structure spanning all vertices of Q, called the cut-
ting tree . A cutting tree can have vertices and edges
anywhere on the surface of Q. Thus there are uncount-
ably many cutting trees, and the number of obtained
unfoldings is also uncountable.

We develop a new algorithmic method to prove the
nonexistence of common unfoldings, when we bound the
number of vertices in the unfolding, between two polyhe-
dra in the class of doubly covered triangles whose angles
are rationally independent algebraic numbers.

In Section 2, we define unfolding and the class of poly-
hedral which we handle in this paper.

In Section 3.1, we show necessary properties of any
common unfolding P between polyhedra Q0 and Q1.
First, we consider a correspondence between the bound-
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ary of P on Q when a polyhedron Q is unfolded to a
polygon P. Next, we define automorphism maps on the
boundary, which are called gluing maps, induced by
two ways of gluing when P is folded into Q0 and Q1. Fi-
nally, we focus on sequences of points on the boundary
of the polygon, which are called spreading sequences
and have an essential role in common unfoldings.

In Section 3.2, we introduce a form form of common
unfoldings. First, we define the standard-form com-
mon unfolding using the notion ad sequence. Next, we
show that it is sufficient to consider only standard-form
common unfoldings for checking the existence of com-
mon unfolding. Finally, we show that the number of
standard-form common unfoldings is finite for a given
number of vertices in the unfolding. Moreover, we give
an algorithm to enumerate the candidates of standard-
form common unfoldings.

In Section 3.3, we give a necessary condition and an
algorithm to decide whether a candidate standard-form
common unfolding represented by a sequence of angles
is feasible.

We implement these algorithms and show that, for
n < 300, there is no n-gon that is a common unfolding
between any two doubly covered triangles whose angles
are algebraic and rationally independent.

2 Preliminaries

We consider the common unfolding between two doubly
covered triangles (DCT). DCT is a class of polyhedra
made by gluing the corresponding edges of two copies
of a triangle; see Figure 1. It can be regarded as a kind

Figure 1: Doubly covered triangle.

of polyhedron whose volume is zero. Let Q0 and Q1 be
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a pair of DCTs and vertices of Qi be vi0, v
i
1, and v

i
2. We

define the sum of angles gathering at vij by θ
i
j . In other

words, the angle on a face of Qi is
θij
2 ; see Figure 2. We

assume that edge lengths of Q0 and Q1 are adjusted so
that the surface areas are the same because it is trivially
necessary.
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 12 θ10  12 θ11
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Figure 2: The interior angles of Q0 and Q1.

Moreover, we impose the following restrictions on the
angles of Q0 and Q1.

1. A DCT Qi is algebraic if θi0 and θ
i
1 ∈ Q∗ where Q∗

is the algebraic closure on Q. (Here we note that
θi2 = 2π − (θi0 + θi1), and θ

i
2 /∈ Q∗ if θi0, θ

i
1 ∈ Q∗.)

2. A pair of DCTs Q0 and Q1 are (rationally) inde-
pendent if ∀mi(̸= 0) ∈ Q, m0θ

0
0 +m1θ

0
1 +m3θ

1
0 +

m4θ
1
1 ̸= 0.

Hereafter, we assume that Q0 and Q1 are algebraic and
independent. Therefore, each of Q0 and Q1 is not an
isosceles triangle and has no angle that is a rational
multiple of π. Here we note that we introduce these re-
strictions not to avoid a counterexample but to support
the proof technique. We treat θij as symbols and do not
care about the concrete values until Section 3.3. When
we consider an assignment of the values of θij , we use

map λ : {θ00, θ01, θ02, θ10, θ11, θ12} → R>0.

Example 1 If (λ(θ00), λ(θ
0
1), λ(θ

0
2), λ(θ

1
0), λ(θ

1
1), λ(θ

1
2)) =

(
√
2,
√
3, 2π−

√
2−

√
3,
√
5,
√
7, 2π−

√
5−

√
7), Q0 and

Q1 are algebraic and independent.

When we unfold a polyhedronQ to a polygon P, cutting
lines on the surface form a tree structure [4]. We denote
it by T . Conversely, points on the boundary of P are
glued and make a point on T when we fold P to Q.
We call it a folding map and write it by f : ∂P → T
where ∂P is the boundary of P; see Figure 3.

Let P be the unfolding of a DCT Q by T . The topol-
ogy of T can be classified into two cases, as illustrated
in Figure 4: a Y-form is a tree with a single point bi

of degree 3 (and with leaves at the vertices of Q), and
a V-form is just a path (through all vertices of Q).

Unfold

Figure 3: Unfolding a polyhedron.

V-formY-form

 bi

 vi0

 vi2

 vi1 vi0

 vi2

 vi1

Figure 4: Topologies of cutting trees of doubly covered
triangles.

3 Nonexistence of Small Common Unfoldings for
Q0 and Q1

In this section, we assume there is a polygon P that is
a common unfolding of Q0 and Q1 by T 0 and T 1 with
folding maps f0 and f1.

Hereafter, we consider only the case that both T 0

and T 1 are Y-form. It can be shown that in other cases
existence of a common unfolding would contradict our
assumption that Q0 and Q1 are algebraic and indepen-
dent (see the proof in Appendix A).

3.1 Gluing Map

On ∂P, there are three points li0, l
i
1, l

i
2 corresponding

to vi0, v
i
1, v

i
2, such as f i(lij) = vij . Moreover, there are

three pointsmi
0,m

i
1,m

i
2 corresponded to bi, such as bi =

f i(mi
0) = f i(mi

1) = f i(mi
2). We define Li := {li0, li1, li2}

and M i := {mi
0,m

i
1,m

i
2}; see Figure 5. Let Iij be the

intervals on ∂P betweenmi
j ,m

i
j+1. The following holds.

Observation 2 For p ∈ ∂P, let α(p) be the interior
angle at p.

• α(lij) = θij.

• α(mi
0) + α(mi

1) + α(mi
2) = 2π.

Without loss of generality, we can assume that lij andm
i
j

appear in counterclockwise order mi
0, l

i
0,m

i
1, l

i
1,m

i
2, l

i
2

around ∂P for each i = 0, 1.

Definition 3 We define a gluing map gli : ∂P → ∂P
by the map returns the point to which is glued by the
mapping as follows.

• If p ∈ Li ∪M i, then gli(p) := p.
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Figure 5: Li = {li0, li1, li2}, M i = {mi
0,m

i
1,m

i
2}.

• Otherwise, gli(p) := p′ such that f i(p) = f i(p′); p′

is determined uniquely.

Observation 4 Let p ̸∈ Li ∪M i. The following holds:

• p ∈ Iij ⇒ gli(p) ∈ Iij.

• p ∈ Iij ⇒ lij is the midpoint of (p, gli(p)) on ∂P.

• α(p) + α(gli(p)) = 2π where α(p) is the interior
angle of p ∈ ∂P.

Definition 5 (spreading sequence spr(lij))

For each lij ∈ Li, we define the spreading sequence

spr(lij) by the sequence of points obtained by alternative

iterations of gli and gli+1,

(lij , gl
i+1(lij), gl

i(gli+1(glij)), gl
i+1(gli(gli+1(lij)), . . . ),

until same points are repeated.1 In other words, a
spreading sequence ends at a point in

⋃
i,j L

i ∪M i.

 θ2

 l00

 l02

 l01

 m01

 m 02

 m 00

 l10

 l11
 l12

 m11

 gl0(gl1(gl0(gl1(l00 )))) = m 12

 gl1(l00 )

 gl0(gl1(l00 ))

 gl1(gl0(gl1(l00 )))

 m 10

Figure 6: The spreading sequence of l00.

Observation 6 The interior angles of odd-numbered
points of spr(lij) are θij, and even-numbered ones are

θij where θij := 2π − θij.

1The superscript indices are taken modulo 2 in this paper.
Specifically, gli+1 means gl0 for i = 1 because gli defined for
i = 0, 1.

Lemma 7 If i ̸= i′ or j ̸= j′, spr(lij) and spr(l
i′

j′) share
no point.

Proof. If a point appears in both of spr(lij), spr(l
i′

j′), by

Observation 7, θij = θi
′

j′ , θ
i
j = θi

′
j′ , θ

i
j = θi

′

j′ , or θ
i
j = θi

′
j′

holds. In any case, it contradicts the independence of
the angles. □

Lemma 8 For any lij ∈ Li, the length of spr(lij) is fi-
nite.

Proof. Because the angles are algebraic and indepen-
dent, θij ̸= π. It means that all points included in some
spreading sequence are vertices of P. By the definition
of the spreading sequence, a point does not appear twice
or more in a spreading sequence. Therefore if there is a
spreading sequence whose length is infinite, it produces
infinite vertices of P. It is a contradiction. □

Lemma 9 For any lij ∈ Li, there exists unique mi+1
k ∈

M i+1 such that spr(lij) = (lij , . . . ,m
i+1
k ).

Proof. The endpoint of a spreading sequence belongs
to M0 ∪M1 ∪ L0 ∪ L1. If the endpoint belongs to L0

or L1, it contradicts the independence of the angles.
Therefore, the endpoints belong to M0∪M1. Inversely,
each of M0 ∪ M1 is the endpoint of some spreading
sequence because the numbers of L0 ∪L1 and M0 ∪M1

are the same. Let us consider the spreading sequences
that end at m0

0,m
0
1, or m

0
2. The sum of the angles of

m0
0,m

0
1, or m

0
2 must be 2π, and it will be realized by

only θ00+θ
0
1+θ

0
2 and θ10+θ

1
1+θ

1
2 by their independence.

(Note that θi0+θ
i
1+θ

i
2 = 6π−(θi0+θ

i
1+θ

i
2) = 4π ̸= 2π.)

Therefore, the length of each of the spreading sequences
is odd by Observation 6. By considering the parity, we
can see that these spreading sequences must start from
l10, l

1
1, or l

1
2. □

Lemma 10 Let Sij := {p : p ∈ spr(lij)}.
Then

⋃
i,j S

i
j divides into ∂P equilateral intervals.

Proof. Let d+(p) and d−(p) be the distance between
p and its counterclockwise and clockwise nearest point
of

⋃
i,j S

i
j respectively. We prove that d+(p) and d−(p)

are uniform for any p in
⋃
i,j S

i
j . Let s ∈

⋃
i,j S

i
j be the

clockwise nearest point ofm0
0, and c := d−(m

0
0); see Fig-

ure 7. Let take l1j ∈ L1 such that spr(l1j ) = (l1j , . . . ,m
0
0).

If there is a point p′ ∈ S1
j such that d+(p

′) = c′ < c
or d−(p

′) = c′ < c, by using Observation 4 induc-
tively, there is a point p′′ such that the distance between
p′′,m0

1 is c′; see Figure 8. It contradicts that s is the
nearest. Therefore, c = d+(p) = d−(p) for any point
p ∈ S1

j . Especially, d+(m
0
0) = c. Next, we focus on

d+(m
0
1), d−(m

0
1), d+(m

1
2), and d−(m

1
2). It is easy to see

that d+(m
0
0) = d−(m

0
1), d+(m

0
1) = d−(m

0
2), d+(m

0
2) =

d−(m
0
0); see Figure 7. Thus, we can check that c =
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d+(p) = d−(p) for any point p ∈
⋃
j S

0
j by repeat-

ing the same discussion for m0
1 and m0

2. There exist
p ∈

⋃
j S

0
j , p

′ ∈
⋃
j S

1
j such that p and p′ are adjacent,

and they share the distance to the nearest. Therefore,
c = d+(p) = d−(p) for any point p ∈

⋃
j S

1
j . □

 l00

 l01
 l02

 m01

 m 02

 m 00

 s

 l1
j

Figure 7: The nearest distances next to mi
j .

 l00

 m 00

 s

 l1
j

 p′ 

 p′ ′ 

Figure 8: c = d+(p) = d−(p) for any point p ∈ S1
j .

3.2 standard

Definition 11 If all vertices of P are included in⋃
i,j S

i
j, we call P is a standard-form common unfold-

ing.

Lemma 12 If Q0 and Q1 have a common unfolding,
Q0 and Q1 have a standard-form common unfolding.

Proof. By Lemma 10, the points of
⋃
j S

0
j and

⋃
j S

1
j

are lined up alternately on ∂P. Let take a pair of ad-
jacent points and m be the interval between them. Let
(p0, p1, p2, . . . , pk) be the vertices of P on m′. Because
m is glued to another interval m′, (p0, p1, p2, . . . , pk)
make vertices (p′0, p

′
1, p

′
2, . . . , p

′
k) such that α(pi) = 2π−

α(p′i). In the same way as the proof of Lemma 10, it
spreads into all intervals. On the boundary of P ex-
cept

⋃
i,j S

i
j , the interior angles are α(p0), . . . , α(pk) and

2π−α(pk), . . . , 2π−α(p0) alternately; see Figure 9. We
focus on the cutting tree T into one side polyhedron.
Let T ′ be the cutting tree replacing each interval of T

with a straight line segment. T ′ is kept the interior an-
gles at

⋃
i,j S

i
j ; see Figure 10. Let P ′ be the unfolding

by T ′. Then P ′ is a standard-form common unfolding
of Q0 and Q1. □

 p0
 p1
 p2

 p′ 0
 p′ 1
 p′ 2

 p′ 0

 p′ 1 p′ 2 p0
 p1

 p2

 m
 m′ 

ざ

Figure 9: (p0, p1, . . . , pm) on the interval m.

 v

 α(v)

 v′ 
 α(v′ ) = α(v)

Figure 10: The reduction of a common unfolding into
a standard-form common unfolding.

By Lemma 12, if there is no standard-form common
unfolding between two polyhedra, there is no common
unfolding.Therefore, we can search the common unfold-
ing in the standard-form common unfoldings, whose
edges are isometric and vertices are included in

⋃
i,j S

i
j .

The standard-form common unfoldings are represented
by a sequence of interior angles. By fixing n, we can
enumerate the sequences of interior angles of length n
to be candidates of standard-form common unfolding.
Details of the algorithm are given in Algorithm 1. Be-
cause the length of each spreading sequence is odd, n
should be an integer that is not a multiple of 4 but even.
First, we prepare a cyclic array of length n to store the
interior angles. Next, we choose six array positions to
store the interior angles of lij . It causes O(n5) combina-
tions. Next, we compute the spreading sequences and
determine the interior angles. If distinct angles are as-
signed to one point, we return to the step of choosing
positions of lij . After the placement of lij is determined,
the construction of the spreading sequences takes O(n)
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time because the length of each spreading sequence is
at most n. If we obtain a feasible array, we output this
one as the candidate of a standard.

Algorithm 1: Enumerating candidate angle
squares for standard-form common unfoldings

input : The number of vertices n
output: Sequences of interior angles

1 Let C be a cyclic array of length n.
2 m0

0 := 0
3 forall m0

1,m
0
2,m

1
0,m

1
1,m

1
2 such that 0 = m0

0 <
m0

1 < m0
2 < n, 0 < m1

0 < m1
1 < m1

2 < n do
4 for i = 0, 1 and j = 0, 1, 2 do
5 if mi

j+1 −mi
j are odd then

6 Return to line 3.
7 end

8 lij := mi
j +

1
2 (m

i
j+1 −mi

j) mod n

9 end
10 Define gl0, gl1 by Definition 3.
11 for i = 0,1 and j = 0, 1, 2 do
12 p := lij
13 k := (j + 1) mod 2
14 C[lij ] := θij .

15 while p ̸= glk(p) do
16 p := glk(p)
17 if C[p] is not yet defined then
18 if k = 1 then
19 C[p] := θij
20 else

21 C[p] := θij
22 end

23 else
24 Return to line 3.
25 end
26 k := (k + 1) mod 2

27 end

28 end

29 if {C[mi
0], C[m

i
1], C[m

i
2]} = {θi+1

0 , θi+1
1 , θi+1

2 }
for each i then

output: C
30 end

31 end

3.3 Checking Polygon Closure

For example, Algorithm 1 outputs the following se-
quence (see Figure 11):

ϕ = (θ12, θ
0
2, θ

1
2, θ

0
2, θ

1
1, θ

0
1, θ

1
0, θ

0
0, θ

1
2, θ

0
2).

It remains to check whether the sequence of interior
angles corresponds to a simple polygon. First, we fix the

 θ00

 θ02

 θ02

 θ01
 θ10

 θ11

 θ12

 θ12

 θ12
 θ02

Figure 11: ϕ = (θ12, θ
0
2, θ

1
2, θ

0
2, θ

1
1, θ

0
1, θ

1
0, θ

0
0, θ

1
2, θ

0
2); solid

lines represent spreading sequences, and dotted lines
connect mi

j

values of θij by λ like Example 1. We view the polygonal
line as lying in the complex plane C. We define an
equilateral polygonal line Polyϕ,λ = (p0, p1, . . . , pn) by
the following:

p0 = 1, p1 = 0 ∈ C,

pi+1 − pi = (pi−1 − pi)e
√
−1ϕi .

Here, we remark that e
√
−1 θ = cos θ +

√
−1 sin θ holds

by Euler’s Formula. In order to be the common unfold-

 θ12

 θ02

 θ12

 θ02
 θ11

 θ01

 θ10
 θ00

 θ12

 p0 p1

 p2

 p3

 p4
 p5

 p6

 p7
 p8

 p9

 p10

Figure 12: Polyϕ,λ where ϕ = (θ12, θ
0
2, θ

1
2, θ

0
2, θ

1
1, θ

0
1, θ

1
0,

θ00, θ
1
2, θ

0
2) and λ{θij} = (

√
2,
√
3, 2π −

√
2−

√
3,
√
5,
√
7,

2π −
√
5−

√
7).

ing, Polyϕ,λ must satisfy closure p0 = pn and not have
self-intersection. We consider only the closure condition
of p0 = pn because it suffices here to prove the nonexis-
tence of common unfoldings. We can check whether the
polygon is closed using the following lemma:

Lemma 13 For a sequence ϕ = (ϕ0, ϕ1, . . . , ϕn−1) of

the angles θij or θij and an angle assignment λ, Polyϕ,λ
satisfies p0 = pn if and only if the following condition
holds:
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(∗) For each 0 ≤ i ≤ n, there exists j uniquely such that
ϕi+ϕi+1+ · · ·+ϕj−1+ϕj is an integer multiple of
2π and j − i is odd.

Proof. Let w⃗i be the vector along the edge (pi, pi+1).
Here, p0 = pn is equivalent to

∑
i w⃗i = 0. The slope of

w⃗i is ϕ0+ϕ1+· · ·+ϕi or ϕ0+ϕ1+· · ·+ϕi−π depending on
whether i is odd or even. Thus, the difference between
the slopes of two vectors w⃗i and w⃗j is ϕi+ϕi+1+· · ·+ϕj+
π or ϕi+ϕi+1 + · · ·+ϕj depending on whether i is odd
or even. By the independence of the angles, w⃗i = −w⃗j
holds if and only if j−i is odd and ϕi+ϕi+1+· · ·+ϕj−1+
ϕj is an integer multiple of 2π. It is easy to see that
p0 = pn if the condition (∗) holds because all vectors
are canceled with these inverses. We show p0 = pn only
if the condition (∗) holds. Let w⃗′

0, w⃗
′
1, . . . , w⃗

′
k be the

subset of w⃗0, w⃗1, . . . , w⃗n−1 choosing without the same
or inverse ones. It is sufficient to show w⃗′

0, w⃗
′
1, . . . , w⃗

′
k

are linearly independent on Z.
We use a classical result on transcendental numbers:

Theorem 14 (Lindemann’s Theorem) For any
distinct algebraic numbers a0, a1, . . . , am, the numbers
ea0 , ea1 , . . . , eam are linearly independent on Q∗, where
Q∗ is the algebraic closure on Q.

Let ψi be the slope of w⃗′
i; w⃗′

i is represented by

e
√
−1ψi . Because we choose w⃗′

0, w⃗
′
1, . . . , w⃗

′
k without

the same or inverse ones, ψ0, . . . , ψk are distinct al-
gebraic numbers. Similarly,

√
−1ψ0, . . . ,

√
−1ψk are

distinct algebraic numbers. By Lindemann’s Theorem,
e
√
−1ψ0 , . . . , e

√
−1ψk are linearly independent on Q∗.

On Z, they are also linearly independent. Therefore,
e
√
−1ψ0 + e

√
−1ψ1 + · · · + e

√
−1ψn = 0 only when the

condition (∗) holds. □

Lemma 15 Whether the condition (∗) holds does not
depend on λ.

Proof. From the independence, the sum of angles is an
integer multiple of π only if (θ00+θ

0
1+θ

0
2), (θ

1
0+θ

1
1+θ

1
2),

or (θij+θ
i
j). Therefore, whether ϕi+ϕi+1+ · · ·+ϕj is an

integer multiple of 2π or not depends on only whether
they can be divided into the above pairs or not. □

For a given ϕ, we check that there exists j such that the
condition (∗) is satisfied for each i one by one. It can
be done in O(n2) time.

4 Computational Experiment

By combining Algorithm 1 and the Lemma 15 tech-
nique, we can check that, for given n, there is no n-
gon that is a common unfolding between any two dou-
bly covered triangles whose angles are algebraic and ra-
tionally independent. It requires O(n7) time theoret-
ically. We implemented them and checked that in a

range n < 300. It takes 1.5 hours in a normal lap-
top environment (CPU: 1.4GHz Intel Quad-Core i5, OS:
macOS 12.4, Memory: 16GB, compiler: GCC 11.3.02,
optimize: -O3).

5 Conclusion

In this paper, we proved the nonexistence of common
unfoldings limited in the number of vertices between
two elements in a restricted polyhedral class. The main
next step is to remove the limitation on the number of
vertices. As you can see from the computational exper-
iments, Lemma 13 requires a strong condition to have a
common unfolding. This condition seems not to be sat-
isfied by any sequence obtained by Algorithm 1. If we
can prove this conjecture, then we will obtain nonexis-
tence without the limitation on the number of vertices.
The extension to polyhedra with more than three ver-
tices would also be interesting. In these cases, there are
more possible cutting trees to consider, and we would
have to consider how to relate restrictions of the interior
angles through the spreading sequences.
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A Appendix

Here we consider the case that either or both cutting trees
are V-form. We assume that at least T 0 is V-form, and
that T 0 cuts v00 , v

0
1 by leaves and spans v03 without loss

of generality. There are two points d00, d
0
1 in the bound-

ary of P such that f0(d00) = f0(d01) = v03 . Let L0 :=
{l00, l01},M0 := ∅, D0 := {d00, d01}. If T 1 is also V-form, we
define L1,M1, D1 in the same manner. Otherwise, we let
L1 := {l10, l11, l12},M1 := {m1

0,m
1
1,m

1
2}, D1 := ∅. We modify

the definition of the gluing map.

Definition 16 We define gli : ∂P → ∂P as follows.

• If p ∈ Li ∪M i ∪Di, gli(p) := p

• Otherwise, gli(p) := p′ such that f i(p) = f i(p′); p′ is
determined uniquely.

We consider the spreading sequences of each L0 ∪ L1. The
endpoints belong to M i∪Di by the definition. In both cases,
|L0∪L1| = |M0∪M1∪D0∪D1|. Thus, each ofM0∪M1∪D0∪
D1 is the endpoint of some spreading sequence. Therefore,
v03 is made by gluing two points that are the endpoints of
some spreading sequences. It means that θ03 is represented by

θij +θi
′

j′ , θ
i
j +θi

′
j′ , or θ

i
j +θi

′
j′ . It contradicts the independence

of the angles. Therefore, it is sufficient to consider only the
case that both are Y-form.
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