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Abstract We consider staged self-assembly systems, in which square-
shaped Wang tiles can be added to bins in several stages. Within these
bins, the tiles may connect to each other, depending on the glue types
of their edges. Previous work by Demaine et al. showed that a relatively
small number of tile types suffices to produce arbitrary shapes in this
model. However, these constructions were only based on a spanning tree
of the geometric shape, so they did not produce full connectivity of the
underlying grid graph in the case of shapes with holes; designing fully
connected assemblies with a polylogarithmic number of stages was left
as a major open problem. We resolve this challenge by presenting new
systems for staged assembly that produce fully connected polyominoes
in O(log2 n) stages, for various scale factors and temperature τ = 2 as
well as τ = 1. Our constructions work even for shapes with holes and
uses only a constant number of glues and tiles. Moreover, the underlying
approach is more geometric in nature, implying that it promised to be
more feasible for shapes with compact geometric description.

1 Introduction

In self-assembly, a set of simple tiles form complex structures without any active
or deliberate handling of individual components. Instead, the overall construc-
tion is governed by a simple set of rules, which describe how mixing the tiles
leads to bonding between them and eventually a geometric shape.

The classic theoretical model for self-assembly is the abstract tile-assembly
model (aTAM). It was first introduced by Winfree [14,11]. The tiles used in this
model are building blocks called Wang tiles [13], which are unrotatable squares
with a specific glue on each side. Equal glues have a connection strength and
may stick together. The glue complexity is the number of different glues, while
the tile complexity is the number of tile types. If an additional tile wants to
attach to the existing assembly by making use of matching glues, the sum of
corresponding glue strengths needs to be at least some minimum value τ , which
is called the temperature.

A generalization of the aTAM called the two-handed assembly model (2HAM)
was introduced by Demaine et al. [4]. While in the aTAM, only individual tiles



can be attached to an existing intermediate assembly, the 2HAM allows at-
taching other partial assemblies. If two partial assemblies (“supertiles”) want to
assemble, then the sum of the glue strength along the whole common boundary
needs to be at least τ .

In this paper we consider the staged tile assembly model introduced in [4],
which is based on the 2HAM. In this model the assembly process is split into
sequential stages that are kept in separate bins, with supertiles from earlier
stages mixed together consecutively to gain some new supertiles. We can either
add a new tile to an existing bin, or we pour one bin into another bin, such that
the content of both get mixed. Hence, there are bins at each stage. Unassembled
parts get removed. The overall number of necessary stages and bins are the
stage complexity and the bin complexity. Demaine et al. [4] achieved several
results summarized in Table 1. Most notably, they presented a system (based on
a spanning tree) that can produce arbitrary polyomino shapes P in O(diameter)
many stages, O(logN) = O(log n) bins and a constant number of glues, where N
is the number of tiles of P , n is the size of a smallest square containing P , and the
diameter is measured by a shortest path within P , so it can be as big as N . The
downside is that the resulting shapes are not fully connected. For achieving full
connectivity, only the special case of monotone shapes was resolved by a system
with O(log n) stages; for hole-free shapes, they were able to give a system with
full connectivity, scale factor 2, but O(n) stages. This left a major open problem:
designing a staged assembly system with full connectivity, polylogarithmic stage
complexity and constant scale factor for general shapes.

Our results. We show that for any polyomino, even with holes, there is a
staged assembly system with the following properties, both for τ = 2 and τ = 1.

1. polylogarithmic stage complexity,
2. constant glue and tile complexity,
3. constant scale factor,
4. full connectivity.

See Table 1 for an overview. The main novelty of our method is to focus on the
underlying geometry of a constructed shape P , instead of just its connectivity
graph. This results in bin numbers that are a function of k, the number of
vertices of P : while k can be as big as Θ(n2), n can be arbitrarily large for fixed
k, implying that our approach promises to be more suitable for constructing
natural shapes with a clear geometric structure.

Related work. As mentioned above, our work is based on the 2HAM. There
is a variety of other models, e.g., see [2]. A variation of the staged 2HAM is the
Staged Replication Assembly Model by Abel et al. [1], which aims at reproducing
supertiles by using enzyme self assembly. Another variant is the Signal Tile
Assembly Model introduced by Keenan et al. [8].

Other related geometric work by Cannon et al. [3] and Demaine et al. [5]
considers reductions between different systems, often based on geometric prop-
erties. Fu et al. [7] use geometric tiles in a generalized tile assembly model to
assemble shapes [7]. Fekete et al. [6] study the power of using more complicated
polyominoes as tiles.



Lines and Squares Glues Tiles Bins Stages τ Scale Conn. Planar

Line [4] 3 6 7 O(logn) 1 1 full yes

Square — Jigsaw techn. [4] 9 O(1) O(1) O(logn) 1 1 full yes

Square — τ = 2 (Sect. 2.1) 4 O(1) O(1) O(logn) 2 1 full yes

Arbitrary Shapes Glues Tiles Bins Stages τ Scale Conn. Planar

Spanning Tree Method [4] 2 16 O(logn) O(diameter) 1 1 partial no

Monotone Shapes [4] 9 O(1) O(n) O(logn) 1 1 full yes

Hole-Free Shapes [4] 8 O(1) O(N) O(N) 1 2 full no

Shape with holes (Sect. 2.2) 7 O(1) O(k) O(log2 n) 2 3 full no

Hole-Free Shapes (Sect. 2.2) 7 O(1) O(k) O(logn) 2 3 full no

Hole-Free Shapes (Sect. 3.1) 18 O(1) O(k) O(log2 n) 1 4 full no

Shape with holes (Sect. 3.2) 20 O(1) O(k) O(log2 n) 1 6 full no

Table 1: Overview of results from [4] and this paper. The number of tiles of P is
denoted by N ∈ O(n2), n is the side length of a smallest bounding square, while
k is the number of vertices of the polyomino, with k ∈ Ω(1) and k ∈ O(N).

Using stages has also received attention in DNA self assembly. Reif [10] uses
a step-wise model for parallel computing. Park et al. [9] consider assembly tech-
niques with hierarchies to assemble DNA lattices. Somei et al. [12] use a stepwise
assembly of DNA tiles. None of these works considers complexity aspects.

2 Fully-Connected Constructions for τ = 2

In the following, we consider fully connected assemblies for temperature τ = 2.
We start by an approach for squares (Section 2.1). In Section 2.2 we describe
how to extend this basic idea to assembling general polyominoes.

2.1 n× n Squares, τ = 2

For τ = 2 assembly systems, it is possible to develop more efficient ways for
constructing a square. The construction is based on an idea by Rothemund
and Winfree [11], which we adapt to staged assembly. Basically, it consists of
connecting two strips by a corner tile, before filling up this frame; see Figure 1.

Theorem 1. There exists a τ = 2 assembly system for a fully connected n× n
square with O(log n) stages, 4 glues, 14 tiles and 7 bins.

Proof. First we construct the 1× (n− 1) strips with strength-2 glues. We know
from [4] that a strip can be constructed in O(log n) stages, 3 glues, 6 tiles and
7 bins. Because both strips are perpendicular, they will not connect. Therefore,
we can use all 7 bins to construct both strips in parallel. For each strip we use



Figure 1: Construction of fully connected square using τ = 2 and a frame.

tiles such that the edge toward the interior of the square has a strength-1 glue.
In the next stage we mix the single corner tile with the two strips. Finally, we
add a tile type with strength-1 glues on all sides. When the square is filled, no
further tile can still connect, as τ = 2.

Overall, we need O(log n) stages with 4 glues (3 for the construction, 1 for
filling up the square), 14 tiles (6 for each of the two strips, 1 for the corner tile,
1 for filling up the square) and 7 bins for the parallel construction of the two
strips. ut

2.2 Polygons with or without Holes, τ = 2

Our method for assembling a polyomino P at τ = 2 generalizes the approach for
building a square that is described in Section 2.1. The key idea is to scale P by a
factor of 3, yielding 3P ; for this we first build a frame called the backbone, which
is a spanning tree based on the union of all boundaries of 3P . This backbone is
then filled up in a final stage by applying a more complex version of the flooding
approach of Theorem 1. In particular, there is not only one flooding tile, but a
constant set S of such distinct tiles.

Definition and construction of the backbone. In the following, we consider
a scaled copy 3P of a polyomino P , constructed by replacing each tile by a 3×3
square of tiles. We define the backbone of 3P as follows; see Figure 2 for an
illustration.

Figure 2: (Left) A scaled polyomino 3P with one hole. (Middle) The bound-
ary paths of 3P . (Right) Completed backbone of 3P , obtained by adding the
connector strip for the hole.



Definition 1. A tile of 3P is a boundary tile of 3P , if one of the tiles in its
eight (axis-parallel or diagonal) neighbor tiles does not belong to 3P . A boundary
strip of 3P is a maximal set of boundary tiles that forms a contiguous (vertical or
horizontal) strip. A boundary component C is a connected component of bound-
ary tiles; because of the scaling, an inside boundary component corresponds to
precisely one inside boundary of 3P (delimiting a hole), while the outside bound-
ary component corresponds to the exterior boundary of 3P . Furthermore, each
boundary component C has a unique decomposition into boundary strips: a cir-
cular sequence of boundary strips that alternate between vertical and horizontal,
with consecutive strips sharing a single (“corner”) tile. For an inside boundary
component C, its cut strip `(C) is the leftmost of its topmost strips; for the
outside boundary component, its cut strip `(C) is the leftmost of its bottommost
strips. A boundary path of the outside boundary component C consists of the
union of all its strips, with the exception of `(C); for an inside boundary compo-
nent C, it consists of C\`(C); see Figure 2 (middle). Furthermore, the connector
strip c(C) for an inside boundary component C is the contiguous horizontal set
of tiles of 3P extending to the left from the leftmost bottommost tile of C and
ending with the first encountered other boundary tile of 3P ; see Figure 2 (right).
Then the backbone of 3P is the union of all boundary paths and the connector
strips of inside boundary components.

By construction, the backbone has a canonical decomposition into boundary
strips and connector strips; furthermore, a tile in the backbone of 3P is part of
three different strips if and only if it is an end tile of a connector strip, h holes,
only 2h tiles in the backbone are part of three different strips.

Overall, this yields a hole-free shape that can be constructed efficiently.

Lemma 1. Let k be the number of vertices of a 3-scaled polyomino 3P . The
corresponding backbone can be assembled in O(log2 n) stages with 4 glues, O(1)
tiles and O(k) bins.

Proof. The main idea is to give a recursive separation of the backbone into trivial
tiles such that its reversed order implies a staged self-assembly which fulfills the
required guarantees. For separating the backbone, we observe that it consists
of two types of components: strips and corner tiles (see Figure 3). The degree
of such a corner tile is two or three, corresponding to the number of adjacent
strips.

The corner tiles will be the splitting points of the separation. The separation
of the backbone can be described by three steps. In a first step, we decompose
the polyomino by recursively removing the corner tiles of degree three, until
only tiles with degree two are left in all components. In the second step, these
components are further decomposed via the corner tiles of degree two, such that
only strips remain. In a third and final step, the straight strips are decomposed,
until just trivial tiles are left.

Because each corner tile has either two or three adjacent strips, the recursive
separations of the backbone have a degree of at most three. The key ingredient for
an efficient separation, i.e., a polylogarithmic recursion depth, for all three steps,



Figure 3: (Left) A backbone of a polyomino. (Right) A backbone decomposed
into strips (green) and corner tiles (yellow).

is that the splitting points are chosen such that the sizes of the split components
are balanced. In particular, for each splitting, we ensure that the size of each
split component is at most the half of the size of the original component. This
can be obtained by picking the respective tree median of a remaining backbone
piece, i.e., at a corner whose removal leaves each connected component with
at most half the number of strips of the original tree. Performing this splitting
operation recursively yields a recursion depth of at most O(log k).

For the overall backbone assembly, we use 4 glues, O(1) tiles and O(k) bins
within O(log n log k) stages, because we split at tree medians O(log k) times,
and use O(log n) stages for each strip. ut

By applying the approach of the backbone, we construct any polyomino by
assembling its backbone and then flooding it by the set of tiles S, which is
illustrated in Figure 4. To guarantee that flooding the backbone does not exceed
beyond the original boundaries, we apply the following property of temperature-
2 assemblies.

Lemma 2. Consider an arbitrary supertile P ′ and an arbitrary set of single tiles
S′ such that all non-bonded glues of P ′ and S′ have strength 1. Each position p
that is bounded (indirectly) by two parallel, non-glued sides of P ′ will not be part
of any supertile that can be assembled by P ′ and S′ at τ = 2.

Proof. Consider a decomposition D of the plane without P ′ into rectangles.
Then, no rectangle R ∈ D is bounded directly by two orthogonal glued sides
of P ′. Hence, there cannot be a position in R connecting to P ′ because every
connection to P ′ would have strength 1. The same argument holds for rectangles
which are indirectly bounded by two parallel non-glued sides of P ′. Thus no
position in any rectangle in D can be part of P ′. ut

On the one hand, Lemma 2 ensures that no position outside of 3P is filled
by flooding the backbone. On the other hand, similar as in Theorem 1, the
following simple observation guarantees that all tiles of 3P that do not belong
to the backbone are filled by a single tile:



Property 1. In the configuration of Lemma 2, p is filled by a tile in a unique
self-assembly, if and only if there are sequences of collinear, adjacent tiles t1 and
t2 that fulfill the following:
– t1 and t2 are constructable from S′ and P ′,
– t1 and t2 meet in p, and
– t1 and t2 start from perpendicular unglued sides f1 and f2 of P ′ which bound
p (indirectly).

The flooding tiles of S are defined such that their combination with the not
bonded glues of the backbone meets the properties of Lemma 2 and Property 1.
Hence, by mixing the backbone and S in a single bin leads finally to a fully
connected version of 3P .

Theorem 2. Let P be an arbitrary polyomino with k vertices. Then there is a
τ = 2 staged assembly system that constructs a fully connected version of P in
O(log2 n) stages, with 7 glues, O(1) tiles, O(k) bins and scale factor 3.

Proof. For the staged self-assembly of P , we still need to give a set of flooding
tiles S and have to define how the sides of the backbone have to be marked by
glues such that the flooding leeds to a fully connected version of P .

By Lemma 2 and Property 1, we know that every position that does not be-
long to the polyomino needs to be bounded by at least two parallel unglued sides
and every tile of the polyomino must be bounded by at least two perpendicular
glued sides. We can construct the backbone while satisfying these properties as
follows: we cover each 3-scaled tile of P according to the glue chart, illustrated
in Figure 4 and mark each side of the backbone’s boundary, except for the poly-
omino’s and holes’ boundaries, by the glue that is induced by the glue chart (see
Figure 5, middle).

Figure 4: Glue chart for 3×3 tiles for filling up the shape. Blue glue
∧
= g1, orange

glue
∧
= g2 and red glue

∧
= g3.



An example for a correct placements of the glues can be found in Figure 5.
Observe that there exist some strips that have a glue type on their end that is
different from the glue type that is used in the strip construction (see the red
circles in Figure 5). For building those strips we have to modify the backbone
assembly. We assemble those strips completely, but without the last tile with
the different glue. Then we add a single tile such that the glue is on the correct
place.

Figure 5: (Left) A scaled polyomino with one hole. (Middle) Construction of the
glues inside the backbone. (Right) Every tile of the backbone is furnished with
glues. A strip may have conflicts with glues while the strip is assembling (red
circle).

Overall, we have four glue types for building the backbone, and three glue
types for the five strip types and the connection tiles if the side points to the
interior of the polyomino. Hence, we use a total of 7 glue types and O(1) tile
types.

To fill up the polyomino, we mix the nine kinds of tiles (see Figure 4) plus
the backbone in one bin. In total, we need O(log2 n) stages, 7 glues, O(1) tiles
and O(k) bins to assemble a fully connected polyomino, scaled by a factor 3
from the target shape. ut

As noted before, the number of degree-3 corner tiles depends on the number
of holes. We can describe the overall complexity in terms of h, the number of
holes. For the special case of hole-free shapes, we can skip some steps, reducing
the necessary number of stages.

Corollary 1. The stage complexity of Theorem 2 can be quantified in the the
number of holes h such we get a stage complexity of O(log2 h + log n). In par-
ticular, Theorem 2 gives a staged self-assembly system for hole-free shapes with
O(log n) stages, 7 glues, O(1) tiles, O(k) bins and a scale factor 3.

3 Fully-Connected Constructions for τ = 1

In this section we describe approaches for assembling polyominoes at tempera-
ture τ = 1.



3.1 Hole-Free Shapes, τ = 1

We present a system for building hole-free polyominoes. The main idea is based
on [4], i.e., splitting the polyomino into strips. Each of these strips gets assembled
piece by piece; if there is a component that can attach to the current strip, we
create it and attach it.

Our geometric approach partitions the polyomino into rectangles and uses
them to assemble the whole polyomino. Even for complicated shapes with many
vertices, this number of rectangles is never worse than quadratic in the size of the
bounding box; in any case we get a large improvement in the stage complexity.

We first consider a building block, see Figure 6.

Lemma 3. A 2n× 2m rectangle (with n ≥ m) with at most two tabs at top and
left side and at most two pockets at each bottom or right side (see Figure 6) can
be assembled with O(log n) stages, 9 glues, O(1) tiles and O(1) bins at τ = 1.

Figure 6: A square (green) with tabs on top and left side (orange) and pockets
on bottom and right side.

Figure 7: (Left) A modified square with tabs and pockets. (Right) A partion into
components.

Proof. (Sketch) We omit full details for lack of space. First consider the 2n×2m
square, which we partition into (vertical) rectangles of width 2. As shown in
Figure 7, these are joined by tabs and pockets in rows n and n+ 1. The glues on
their sides are the same as for recursively cutting a square according to the jigsaw
technique of [4]. Now every component has a maximum width of 3, even with
the tabs. This allows us to use 9 glues to create each component with attached
tabs and pockets, as shown in Figure 7. ut



Theorem 3. Let P be a hole-free polyomino with k vertices. Then there is a
τ = 1 staged assembly system that constructs a fully connected version of P in
O(log2 n) stages, with 18 glues, O(1) tiles, O(k) bins and scale factor 4.

Proof. We cut the polyomino with horizontal lines, such that all cuts go through
reflex vertices, leaving a set of rectangles. If Vr is the set of reflex vertices in the
polyomino, we have at most |Vr| =: kr cuts and therefore O(k) rectangles. Now
we find one rectangle that forms a tree median in the rectangle adjency tree (i.e.,
a rectangle that splits the tree into connected components that have at most half
the number of rectangles). Recursing over this splitting operation, we get a tree
decomposition of depth O(log k). On the pieces, we use a scale factor of 2 for
employing a jigsaw decomposition.

When removing a rectangle R, the remaining polyomino may be split into a
number of components; see Figure 8. To connect all of them to R, we employ
another scale factor of 2, allowing us to split R in half with a horizontal line.
Each half is further subdivided vertically into jigsaw components, such that each
component can connect to a part of R independently from the others, as shown
in the figure. When all components have been attached to some part of R, we
can assemble both halves of R and then assemble these two together. Doing this
for all rectangles produces O(kr) new components. Hence, our decomposition
tree has at most O(kr) = O(k) leafs, where the leafs are rectangles that need
O(log n) for construction. This yields O(log k log n) stages overall; the rectangle
components consume O(k) bins. Similar to assembling a square, we need 9 glues
to uniquely assemble all rectangles to the correct polyomino.

Figure 8: (Left) A chosen rectangle (orange) that splits the polyomino into com-
ponents (green). (Middle) Decomposition of splitting rectangle. (Right) Decom-
position of the components.

By construction, every rectangle component has at most four adjacent rect-
angle components; its size is 2w × 2h for some width w and height h. The four
adjacent components are all connected at different sides, so the left and up-
per side each have two tabs, while the right and lower side have two pockets.
Thus, we can use the approach of Theorem 3 to assemble all rectangles with 9
additional glues and O(1) bins for each rectangle component.

Overall, we have O(log n) stages to assemble the O(k) rectangles with O(1)
bins for each rectangle, plus O(log2 n) stages to assemble the polyomino from
the rectangles, for a total of O(log2 n) stages and O(k) bins. For the rectangles
we need 9 glues and 9 glues for the remaining assembly, for a total of 18 glues,
with O(1) tile types. The overall scale factor is 4. ut



(a) Connections between boundaries. (b) Tunnels inside the connections.

(c) Final shapes S1 (dark) and S2

(light).

Figure 9: Separation of the Polyomino P into the two shapes S1 and S2.

3.2 Polygons with Holes, τ = 1

Theorem 4. Let P be an arbitrary polyomino with k vertices. Then there is a
τ = 1 staged assembly system that constructs a fully connected version of P in
O(log2 n) stages, with 20 glues, O(1) tiles, O(n) bins and scale factor 6.

Proof. (Sketch) Full details are omitted for lack of space; see Figure 9 for the
overall construction. From a high-level point of view, the approach constructs
two supertiles S1 and S2 separately and finally glues them together. The first
supertile S1 consists of the boundaries of all holes, the boundary of the whole
polyomino, and connections between these boundaries. The second supertile S2

is composed of the rest of the polyomino. A scale factor of 6 guarantees that S2

is hole-free, which in turns allows employing the approach of Theorem 3.
ut

4 Future Work

Our new methods have the same stage and bin complexity and use quite a small
number of glues. Because the bin complexity is in O(k) for a polyomino with
k vertices, we may need many bins if the polyomino has many vertices. Hence,
all our methods are excellent for shapes with a compact geometric description.
This still leaves the interesting challenge of designing a staged assembly system



with similar stage, glue and tile complexity, but a better bin complexity for
polyominoes with many vertices, e.g, for k ∈ Ω(n2)?

Another interesting challenge is to develop a more efficient system for an arbi-
trary polyomino. Is there a staged assembly system of stage complexity o(log2 n)
without increasing the other complexities?
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