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Abstract

We prove that the edges of every graph of bounded (Euler)

genus can be partitioned into any prescribed number k of

pieces such that contracting any piece results in a graph

of bounded treewidth (where the bound depends on k).

This decomposition result parallels an analogous, simpler

result for edge deletions instead of contractions, obtained

in [Bak94, Epp00, DDO+04, DHK05], and it generalizes a

similar result for “compression” (a variant of contraction) in

planar graphs [Kle05]. Our decomposition result is a pow-

erful tool for obtaining PTASs for contraction-closed prob-

lems (whose optimal solution only improves under contrac-

tion), a much more general class than minor-closed prob-

lems. We prove that any contraction-closed problem satis-

fying just a few simple conditions has a PTAS in bounded-

genus graphs. In particular, our framework yields PTASs for

the weighted Traveling Salesman Problem and for minimum-

weight c-edge-connected submultigraph on bounded-genus

graphs, improving and generalizing previous algorithms of

[GKP95, AGK+98, Kle05, Gri00, CGSZ04, BCGZ05]. We

also highlight the only main difficulty in extending our re-

sults to general H-minor-free graphs.

1 Introduction

A fundamental way to design graph algorithms is
decomposition or partitioning of graphs into smaller
pieces. Lipton and Tarjan’s divide-and-conquer separa-
tor decomposition for planar graphs [LT80] (generalized
to arbitrary graphs via sparsest cut [ARV04, LR99])
is one of the most famous such decompositions. The
main technique in these decompositions is to find rel-
atively small cuts in the graph that minimize the in-
teraction between the pieces. To make the pieces rel-
atively small, the decompositions cut the graph into
many pieces. An alternative approach of recent study
is to partition the graph into a small number of com-
putationally simpler (but not necessarily small) pieces,
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allowing large interaction between the pieces. For in-
stance, we can solve many optimization problems ef-
ficiently on graphs of bounded treewidth. If a graph
can be partitioned into a small number s of bounded-
treewidth pieces, then in many cases, each piece gives a
lower/upper bound on the optimal solution for the en-
tire graph, so solving the problem exactly in each piece
gives an s-approximation to the problem. Many NP-
hard optimization problems are now solved in practice
using dynamic programming on low-treewidth graphs—
see, e.g., [Bod05, Ami01, Tho98]—so such a partition
into bounded-treewidth graphs may also be practical.
Recently, this decomposition approach has been suc-
cessfully used to obtain constant-factor approximations
for many graph problems, including a 2-approximation
for graph coloring in any H-minor-free graph family
[DHK05] (a problem which on general graphs is inap-
proximable within n1−ε for any ε > 0 unless ZPP = NP
[FK98]).

A generalization of this decomposition approach
leads to PTASs for many minimization and maximiza-
tion problems, such as vertex cover, minimum color
sum, and hereditary problems such as independent set
and max-clique [Bak94, Epp00, DHK05]. The idea is
to partition the vertices or edges of the graph into
a small number k of pieces such that deleting any
one of the pieces results in a bounded-treewidth graph
(where the bound depends on k). Such a decomposi-
tion is known for planar graphs [Bak94], bounded-genus
graphs [Epp00] (conjectured by Thomas [Tho95]), apex-
minor-free graphs [Epp00], and H-minor-free graphs
[DDO+04, DHK05].

This decomposition approach is effectively limited
to problems whose optimal solution only improves when
deleting edges or vertices from the graph. The bidimen-
sionality theory introduced by Demaine, Fomin, Haji-
aghayi, and Thilikos (see, e.g., [DFHT05a, DFHT05b,
DFHT04]) highlights contracted-closed problems, whose
optimal solution only improves when contracting edges,
including classic problems such as dominating set (and
its variations), minimum chordal completion, and the
Traveling Salesman Problem (TSP). Indeed, these re-
sults are motivated by deletions and contractions being
the basic operations of graph minors and thus algorith-
mic graph minor theory.
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Motivated by the applications to approximation
algorithms for contraction-closed problems, as well as
basic questions in structural graph minor theory, we
find a new kind of decomposition problem: can the
edges of a graph be partitioned into a small number
k of pieces such that contracting any one of the pieces
results in a bounded-treewidth graph (where the bound
depends on k)? Recently, Klein [Kle05, Kle06] proved
such a result for planar graphs with a variation of
contraction called compression (deletion in the dual
graph). However, no such decomposition result is known
for more general graphs.

In this paper, we prove such a contraction decom-
position result for bounded-genus graphs, paralleling
the edge-deletion decompositions of [Epp00, DDO+04,
DHK05]. Our construction is much more difficult than
what was required for the edge-deletion decomposi-
tion, using advanced techniques from topological graph
theory for graphs on bounded-genus surfaces [BMR96,
MT01, Moh01]. In particular, the type of “surgery”
that we apply to the surface is quite different from the
simpler surgery performed in previous algorithmic pa-
pers on this topic; see, e.g., [DHT06, DFHT05b, FT04].
Indeed, even the planar case requires significant new
insights, and is completely different from the deletion
case.

Our result gives a general approach for developing
approximation algorithms on bounded-genus graphs for
many graph problems that are closed under contrac-
tions. For example, we obtain a PTAS for weighted
TSP in bounded-genus graphs, improving on the quasi-
polynomial-time approximation scheme (QPTAS) for
this problem (and solving an open problem) by Grigni
[Gri00]. Indeed, TSP is a classic problem that has
served as a testbed for almost every new algorithmic
idea over the past 50 years, and it has been con-
sidered extensively in planar graphs and its general-
izations, starting with a PTAS for unweighted planar
graphs [GKP95] and a PTAS for weighted planar graphs
[AGK+98] (recently improved to linear time [Kle05]).
Our result can also be viewed as a generalization of these
results. Furthermore, we obtain a PTAS for minimum-
weight c-edge-connected submultigraph1 in bounded-
genus graphs, for any constant c ≥ 2, which generalizes
and improves previous algorithms for c = 2 on planar
graphs [BCGZ05, CGSZ04]. We also extend our results
in Section 4 toward general H-minor-free graphs, where
significant additional difficulties arise, and we show how
to solve all but one.

1This problem allows using multiple copies of an edge in the

input graph—hence submultigraph—but the solution must pay
for every copy.

Bounded-genus graphs have been studied exten-
sively in the algorithms community; see, e.g., [CM05,
DFHT05b, DHT06, DFT06, FT04, GHT84, Kel06,
Moh99]. One attraction of this graph class is that it
includes every graph, using a sufficiently large bound
on the genus.

1.1 Our Results. First we state our decomposition
result, whose proof is deferred to Section 3. See
Section 2 for relevant definitions.

Theorem 1.1. For a fixed genus g, and any integer
k ≥ 2 and for every graph G of Euler genus at most g,
the edges of G can be partitioned into k sets such that
contracting any one of the sets results in a graph of
treewidth at most O(g2k). Furthermore, such a partition
can be found in O(g5/2n3/2 log n) time.

The following theorem describes a general family
of PTASs for minimization problems on edge-weighted
graphs. We include the proof to illustrate the power
of Theorem 1.1. Define the weight w(G) of a graph G
with given edge weights to be the total weight of the
edges of G. A minimization problem is closed under
contractions if the optimal solution value after any edge
contraction in G is at most the optimum solution value
for G.

Theorem 1.2. Consider a minimization problem P on
weighted graphs that is closed under contractions, solv-
able in polynomial time on graphs of bounded treewidth,
and satisfying the following properties:

1. There is a polynomial-time algorithm that, given
a bounded-genus graph G and constant δ > 0,
computes a bounded-genus graph G′ such that
OPT(G′) ≥ α · w(G′), for some constant α > 0
(possibly depending on δ), and any c-approximate
solution to G′ can be converted into a (1 + δ) c-
approximate solution to G in polynomial time.
(G′ is called a (δ, α)-spanner of G.)

2. There is a polynomial-time algorithm that, given
a subset S of edges of a graph G, and given an
optimal solution for G/S, constructs a solution for
G of value at most OPT(G/S) + β w(S) for some
constant β > 0.

Then, for any fixed genus g and any 0 < ε ≤ 1, there is
a polynomial-time (1 + ε)-approximation algorithm for
problem P in graphs of genus at most g.

Proof. We apply Property 1 to obtain a (δ, β)-
spanner G′ of G, which also has bounded genus. Then
we apply Theorem 1.1, with a value of k to be deter-
mined later, to obtain a partition of the edges of G′ into



sets S1, S2, . . . , Sk. For some i, Si has weight w(Si) ≤
1
k w(G′). The contracted graph G′/Si has bounded
treewidth and thus we can compute an optimal solution
OPT(G′/Si) in polynomial time. We apply Property 2
with S = Si to obtain a solution for G′ whose value is at
most OPT(G′/Si)+β w(Si). Because P is closed under
contractions, OPT(G′/Si) ≤ OPT(G′). Also, w(Si) ≤
1
k w(G′) ≤ 1

αk OPT(G′). Hence, our solution for G′ has

value at most
(
1 + β

αk

)
OPT(G′). By the spanner con-

struction, we can convert this solution into a solution for
G with value at most (1+δ)

(
1 + β

αk

)
OPT(G). For any

δ > 0, we can choose k so that 1+ β
αk ≤ 1+ δ, giving us

a solution for G with value at most (1 + δ)2 OPT(G).
Setting δ =

√
1 + ε−1 gives us a (1+ε)-approximation.

2

As a consequence of Theorem 1.2, we obtain the
following particular approximation results:

Corollary 1.1. For any fixed genus g, any constant
c ≥ 2, and any 0 < ε ≤ 1, there is a polynomial-time
(1 + ε)-approximation algorithm for weighted TSP, and
for minimum-weight c-edge-connected submultigraph, in
graphs of genus g.

Proof. TSP can be solved in graphs of bounded
treewidth via dynamic programming; see [DFT06] for
a particularly fast running time on graphs of bounded
genus. Spanners for TSP in bounded-genus graphs are
developed in [Gri00]. Finally, given an optimal solution
to G/S, we can construct a solution of value at most
OPT(G/S) + 3 w(S) as follows. When we expand each
vertex of G/S to the corresponding subgraph of G, we
add an Eulerian tour of that subgraph (with some dou-
bled edges), for a total cost of at most 2w(S). The
resulting structure spans G and is connected, but some
of the vertices of an Eulerian tour may have odd degree
because of TSP edges from the solution for G/S attach-
ing to the corresponding vertex of G/S. We also add a
perfect matching among all odd-degree vertices on each
Eulerian tour, routing the perfect matching along the
Eulerian tour, choosing the perfect matching that has
minimum weight for a cost of at most w(S). Now the
connected spanning structure of G has all vertices of
even degree, so we can take one global Eulerian tour to
obtain the desired TSP tour.

Minimum-weight c-edge-connected submultigraph
can also be solved in graphs of bounded treewidth via
dynamic programming, for any constant c; to simplify
matters, it is helpful to first duplicate each edge in the
input graph c times. The same spanner result of [Gri00]
applies for any c because every edge of that spanner
G′ of weight w has a corresponding path of length

(1 + ε)w in G, so we can convert a minimum-weight
c-edge-connected submultigraph of G′ into a c-edge-
connected submultigraph of G (by duplicating edges in
G according to their use in paths) at a multiplicative
factor of 1 + ε. Finally, given an optimal solution to
G/S, we can construct a solution of value at most
OPT(G/S) + cw(S) by augmenting the tour with c
copies of a spanning tree of the subgraph contracting
to each vertex of G/S. Then c edge-disjoint paths in
G/S can be expanded to c edge-disjoint paths in G by
letting each path follow a different copy of each visited
spanning tree. 2

2 Definitions

First we define the basic notion of a graph minor. Given
an edge e = vw in a graph G, the contraction of e
in G is the result of identifying vertices v and w in G
and removing all loops and duplicate edges. A graph
H obtained by a sequence of such edge contractions
starting from G is said to be a contraction of G. A
graph H is a minor of G if H is a subgraph of some
contraction of G. A graph class C is minor-closed if
any minor of any graph in C is also a member of C.
A minor-closed graph class C is H-minor-free if H /∈ C.
More generally, we use the term “H-minor-free” to refer
to any minor-closed graph class that excludes some fixed
graph H.

Second we define the basic notion of treewidth,
as introduced by Robertson and Seymour [RS86]. To
define this notion, we consider representing a graph by
a tree structure, called a tree decomposition. More
precisely, a tree decomposition of a graph G = (V,E)
is a pair (T, χ) in which T = (I, F ) is a tree and
χ = {χi | i ∈ I} is a family of subsets of V (G) such
that

1.
⋃

i∈I χi = V ;

2. for each edge e = uv ∈ E, there exists an i ∈ I
such that both u and v belong to χi; and

3. for every v ∈ V , the set of nodes {i ∈ I | v ∈ χi}
forms a connected subtree of T .

To distinguish between vertices of the original graph
G and vertices of T in the tree decomposition, we call
vertices of T nodes and their corresponding χi’s bags.
The width of the tree decomposition is the maximum
size of a bag in χ minus 1. The treewidth of a graph G,
denoted tw(G), is the minimum width over all possible
tree decompositions of G. A tree decomposition is called
a path decomposition if T = (I, F ) is a path. The
pathwidth of a graph G, denoted pw(G), is the minimum
width over all possible path decompositions of G.



Third, we need a basic notion of embedding; see,
e.g., [RS94, CM05]. In this paper, an embedding refers
to a 2-cell embedding, i.e., a drawing of the vertices and
edges of the graph as points and arcs in a surface such
that every face (connected component obtained after
removing edges and vertices of the embedded graph)
is homeomorphic to an open disk. We use basic ter-
minology and notions about embeddings as introduced
in [MT01]. We only consider compact surfaces with-
out boundary. Occasionally we refer to embeddings in
the plane, when we actually mean embeddings in the
2-sphere. If S is a surface, then for a graph G that is
(2-cell) embedded in S with f facial walks, the number
g = 2 − |V (G)| + |E(G)| − f is independent of G and
is called the Euler genus of S. The Euler genus coin-
cides with the crosscap number if S is nonorientable,
and equals twice the usual genus if the surface S is ori-
entable.

3 Decomposition

In this section, we prove our main result, Theorem 1.1,
that bounded-genus graphs have a partition of their
edges into any number k ≥ 2 of pieces such that
contracting any piece results in bounded treewidth.

3.1 Preliminaries. We say that a graph G satisfies
property Cw

k , and write G ∈ Cw
k , if E(G) can be parti-

tioned into k subsets E1, . . . , Ek such that tw(G/Ei) ≤
w for every i = 1, . . . , k.

Lemma 3.1. Let F ⊆ E(G) be a set of edges and
H = G/F . If G ∈ Cw

k , then H ∈ Cw
k .

Proof. Let E1, . . . , Ek be a partition of E(G) showing
that G ∈ Cw

k . For i = 1, . . . , k, let E′
i = Ei \ F .

Clearly, Hi = H/E′
i = (G/Ei)/(F \ Ei) is a minor of

Gi = G/Ei. Therefore, tw(Hi) ≤ tw(Gi), and so the
partition E′

1, . . . , E
′
k of E(H) shows that H ∈ Cw

k . 2

Lemma 3.2. Let G be a graph, and let H be an induced
subgraph of G that is obtained by deleting at most r
vertices from G. If H ∈ Cw

k , then G ∈ Cw+r
k .

Proof. Let E′
1, . . . , E

′
k be a partition of E(H) showing

that H ∈ Cw
k . Let E1 = E′

1 ∪ (E(G) \ E(H)),
and let Ei = E′

i for 2 ≤ i ≤ k. Then H/E′
i is

obtained from G/E′
i by deleting at most r vertices, so

tw(G/E′
i) ≤ tw(H/E′

i) + r. Moreover, because G/Ei is
a minor of G/E′

i, we have tw(G/Ei) ≤ tw(G/E′
i). Both

inequalities together show that G ∈ Cw+r
k . 2

3.2 Face-Distance on a Surface. The following
result of Eppstein [Epp00] (see also [DH04a]) relates
the diameter and the treewidth of a graph on a fixed
surface.

Theorem 3.1. [Epp00] Let G be a graph embedded in
a fixed surface of genus g, and let x0 ∈ V (G). If
every vertex of G is at distance at most d from x0, then
tw(G) ≤ 3d + 3 if g = 0, and tw(G) = O(gd) if g ≥ 1.

If G is embedded in some surface, one can define a
distance function on T (G) = V (G)∪E(G) based on the
smallest number of faces joining two elements in T (G).
More precisely, we define the face-distance ϕ(x, y) on
T (G) inductively as follows. For every x ∈ T (G) we
have ϕ(x, x) = 0. If x and y are distinct and d ≥ 1 is
an integer, then ϕ(x, y) ≤ d if there exists z ∈ T (G)
such that ϕ(x, z) ≤ d − 1 and z and y lie on the same
facial walk. Finally, ϕ(x, y) = d if ϕ(x, y) ≤ d and
ϕ(x, y) 6≤ d − 1. It is clear that ϕ(x, y) ≤ d if and only
if there exist facial walks F1, . . . , Fd such that x ∈ F1,
y ∈ Fd and Fi ∩ Fi+1 6= ∅ for i = 1, . . . , d − 1. In this
case we say that F1, . . . , Fd is a face-chain of length d
connecting x and y. This shows that ϕ is a metric on
T (G).

Lemma 3.3. Let G be a graph embedded in the plane
and x0 ∈ V (G). Let a and b, b ≥ a, be integers, and let
S(a, b) be the subgraph of G induced on all vertices and
edges whose face-distance from x0 is at least a and at
most b. Then tw(S(a, b)) ≤ 3(b− a + 1).

Proof. For each face F of G, let c be the face-distance
of V (F ) from x0, and let xF be a vertex of F at face-
distance c from x0. Then add to G all edges xF y, where
y ∈ V (F ) is at face-distance c + 1 from x0. Clearly, the
resulting graph G̃ has an embedding in the plane which
extends the embedding of G and preserves the face-
distance from x0. Consider the corresponding graph
S̃(a, b) ⊇ S(a, b).

For every vertex at face-distance d from x0 (a ≤
d ≤ b), the newly inserted edges of G̃ give rise to
paths of length d to x0. The initial a− 1 edges of such
paths do not belong to S̃(a, b), but they show that all
vertices in S(a) lie on the same face of S̃(a, b). This
implies that S̃(a, b) is a subgraph of a plane graph Z
in which each vertex is at distance at most b − a + 1
from some vertex y0. By Theorem 3.1, we conclude
that tw(S(a, b)) ≤ tw(Z) ≤ 3(b− a + 2). 2

Lemma 3.4. Let G be a graph and suppose that for
a vertex-set A ⊆ V (G), the graph H = G − A has
an embedding in the plane such that every 2-connected
component B of H has a vertex x0 such that every
vertex in B is at face-distance at most d from x0. Then
tw(G) ≤ |A|+ 3(d + 1).

Proof. Clearly, tw(H) = max tw(B), where the maxi-
mum runs over all 2-connected components B of H. By



assumption on the face-distance in 2-connected compo-
nents of H, every B is of the form S(0, d) for some
choice of a base vertex x0 ∈ V (B). By Lemma 3.3
we have tw(B) ≤ 3(d + 1). Consequently, tw(G) ≤
|A|+ tw(H) ≤ |A|+ 3(d + 1). 2

3.3 Main Proof. If F is a subset of E(G), we say
that G has property Cw

k with respect to F if E(G)
can be partitioned into k subsets E1, . . . , Ek such that
tw(G/Ei) ≤ w for every i = 1, . . . , k and such that
F ⊆ E1.

For nonnegative integers k, q, w, we define property
Cw

k,q as the class of all graphs G embedded in some
surface such that for every collection F1, . . . , Fq of q
faces, G has property Cw

k with respect to F = E(F1) ∪
· · · ∪ E(Fq).

Our first result concerns planar graphs.

Theorem 3.2. Let k ≥ 1 and q ≥ 0 be integers. If
w ≥ 6k(q + 1), the class Cw

k,q contains all plane graphs.

Proof. Let G be a plane graph and let F1, . . . , Fq be the
prescribed distinguished faces, and let F = E(F1)∪· · ·∪
E(Fq).

Let us fix a vertex x0 of G. We first partition
vertices and edges of G into level sets Lj (j ≥ 0), so that
Lj contains all vertices and edges whose face-distance
from x0 is equal to j. Observe that for every face R
of G, we have V (R) ∪ E(R) ⊆ Lj ∪ Lj+1 for some
j ≥ 0. Next we define sets Ki for i ≥ 1. Each of
them is the union of one or more consecutive sets Lj .
We define K0 = L0 = {x0}. In general, having defined
Ki, let Lj be the last level set that was included into
Ki. If i 6≡ 0 (mod k), then we add Lj+1 and Lj+2 into
Ki+1 and consequently repeat the procedure with i + 1
(unless Lj+2 is empty, in which case we stop). If i ≡ 0
(mod k), let l ≥ 2 be the smallest integer such that
Lj+l+1, . . . , Lj+l+2k−2 are all disjoint from F . Since all
edges from each face Ft (1 ≤ t ≤ q) are contained in two
consecutive level sets, we have 2 ≤ l ≤ 2q(k − 1) + 2.
Now we add Lj+1, . . . , Lj+l to Ki, and proceed with the
next value of i (unless Lj+l+1 is empty, in which case
we stop).

Each Ki consists of at least two and at most
2+2q(k−1)q consecutive level sets Lj . Next, we let K̃t

(1 ≤ t ≤ k) be the set of all Ki, where i ≡ t (mod k).
Finally, we let Et ⊆ E(G) be the set of all edges in K̃t.

Let 1 ≤ t ≤ k, and let us consider a 2-connected
component B of G/Et. It is easy to see that planarity
of G implies that B ⊆ (Ki ∪ Ki+1 ∪ · · · ∪ Ki+k)/Et,
where i ≡ t (mod k). Because K0 ∪ K1 ∪ · · · ∪ Ki is
connected, B is of the form S(a, b), where b − a + 1 ≤
2+2(k−1)q+2(k−1) = 2(k−1)(q+1)+2. Lemma 3.4
implies that the treewidth of G/Et is at most 6k(q +1).

This completes the proof. 2

Theorem 3.2 will be extended to other surfaces by
applying induction on the Euler genus. The inductive
proof will use some geometric surgery, so we recall some
definitions.

Let G be embedded in a surface S of Euler genus g,
and let C = v1v2 . . . vrv1 be a cycle of G. If we traverse
C starting at v1 and going through v2, . . . , vr and back
to v1, we can classify the edges incident to C as those
on the “left” and those on the “right” side of C. It
may happen that, when we come back to v1 after the
traversal, the left and right interchange. In such a case
we say that C is a 1-sided cycle; otherwise it is 2-sided.

The 2-sided cycles can be classified further as those
that are surface-separating and those that are not. The
former ones have the property that no edge incident
to C is simultaneously on the left and on the right of
C, and every path in G that starts with an edge on
the left and ends with an edge on the right contains
an intermediate vertex that is in C. If C is a 2-sided
cycle in G, then we can cut the surface along C. When
doing so, C is replaced by two copies C ′, C ′′ of itself, and
edges on the left of C are incident with C ′, while edges
on the right stay incident with C ′′. The new graph has
a natural 2-cell embedding where C ′ and C ′′ become
additional facial cycles. If C is surface-separating, then
the graph obtained after cutting is disconnected and the
corresponding embedded graphs have genus g′ and g′′,
respectively, such that g′ + g′′ = g. If g′ = 0 or g′′ = 0,
then we say that C is contractible in S.

We can also define cutting along a 1-sided cy-
cles: replace C = v1v2 . . . vrv1 by a single cycle C ′ =
v′1 . . . v′rv

′′
1 . . . v′′r v′1, which becomes facial in the corre-

sponding embedding. The reader is referred to [MT01]
for more details.

If G is 2-cell-embedded in a surface of positive Eu-
ler genus, then G contains noncontractible cycles. The
minimum number r such that there exist r facial walks
F1, . . . , Fr, whose union contains a noncontractible cycle
in G, is called the face-width or representativity of the
embedding. In this case, there is a noncontractible sim-
ple closed curve γ in the surface S that passes through
F1, . . . , Fr and intersects G precisely in r vertices. We
can define the operation of cutting along the curve γ in
the same way as we did for cutting along a cycle. While
doing this, each vertex of G ∩ γ is replaced by two ver-
tices. The facial walks of the cut graph are the same as
those in G except that F1, . . . , Fr are replaced by two
(or one if γ is 1-sided) new facial walks.

Theorem 3.3. Given any integers k ≥ 1, q ≥ 0, and
g ≥ 1, let w = 120 kg(2g + q + 2). Then the class Cw

k,q

contains all graphs embedded in surfaces whose Euler



genus is at most g.

Proof. Let G be a graph embedded in a surface S of
Euler genus g. By Lemma 3.4 it suffices to show that
E(G) can be partitioned into E1, . . . , Ek such that every
G/Ei contains a set of at most 36k(2g − 1)(2g + q + 2)
vertices whose removal leaves a graph embedded in the
plane such that all vertices in the same 2-connected
component B are at face-distance at most 8k(2g −
1)(2g + q + 2) from a reference vertex x0 in B. The
proof is by induction on g. As the base case we shall
consider g = 0, which is covered by Theorem 3.2 and
where each 2-connected component of G/Ei contains a
vertex whose face-distance from all other vertices is at
most 2k(q + 1). We assume henceforth that g ≥ 1.

Let F1, . . . , Fq be the distinguished faces whose
edges are requested to be in E1, and let r be the face-
width of G.

Suppose first that r < 36k(q +1). There is a simple
noncontractible curve γ in the surface S that intersects
G in precisely r vertices; denote them by v1, . . . , vr. Let
us cut the surface and also the graph G along the curve
γ. If γ is a surface-separating curve, then G is split this
way into two graphs G′ and G′′ which are embedded into
closed surfaces of Euler genera g′ and g′′, respectively,
where 1 ≤ g′ ≤ g′′ < g and g′ + g′′ = g. Note that
E(G) = E(G′) ∪ E(G′′) is a partition of E(G) and
that V (G′) ∩ V (G′′) = {v1, . . . , vr}. If γ is not surface-
separating, the graph G′ resulting after cutting along
γ is connected and is either embedded in a surface of
Euler genus g − 1 (if γ is 1-sided) or g − 2 (if γ is 2-
sided). All vertices that were affected by the cutting
along γ belong to precisely two faces F ′ and F ′′, if γ is
2-sided, and to precisely one face F ′ when γ is 1-sided.
In the latter case we set F ′′ = F ′ so that we can refer
to F ′ and F ′′ in all cases. The faces F ′ and F ′′ in G′

(and G′′) are not faces of G, while all other faces of G′

and G′′ coincide with those in G.
In G′ (and G′′ if applicable), we let F ′ and F ′′ be-

come additional distinguished faces that are requested
to be contained in E1. Now, we apply the induction hy-
pothesis to G′ (and G′′) with the extended collection of
at most q + 2 distinguished faces and with Euler genus
g − 1. Let E1, . . . , Ek be the corresponding partition of
edges of G′ (and G′′). Observe that some of the original
faces Fi may have disappeared, but all edges of those
faces would then be contained in F ′ and F ′′. Hence,
all edges of F1, . . . , Fq are contained in E1. Also, let us
observe that E(G) = E(G′) (or E(G) = E(G′)∪E(G′′)
when G′′ exists), so E1, . . . , Ek is a partition of E(G).

Let us consider a contraction Gi = G/Ei. Let
U ⊆ V (Gi) be the set of vertices corresponding to
v1, . . . , vr, so |U | ≤ r. Now we apply the induction
hypothesis. If γ is not surface-separating and the genus

of G′ is positive, then G′/Ei has a set A′ of at most
36k(2g−3)(2(g−1)+(q+2)+2) = 36k(2g−3)(2g+q+2)
vertices such that G′/Ei −A′ is embedded in the plane
with 2-connected components having face-distance from
one of their vertices at most 8k(2g − 3)(2(g − 1) + (q +
2) + 2) = 8k(2g − 3)(2g + q + 2). The same conclusion
also holds for Gi with the set A = A′∪U removed. This
completes the proof because |A| ≤ |A′|+ |U | ≤ 36k(2g−
3)(2g + q + 2) + 36k(q + 1) < 36k(2g − 2)(2g + q + 2).
The case when the genus of G′ is 0 is similar, the details
are omitted. Finally, if γ is surface-separating, we apply
induction on G′ and G′′. Again, the arithmetic works –
the removed set A = A′∪A′′∪U is smaller than claimed.

From now on, we assume that the face-width r
of G is at least 36k(q + 1). Let C0 be a shortest
noncontractible cycle in G. Let us first assume that C0

is 2-sided (possibly surface-separating). On the “left”
side of C0, there are disjoint cycles C ′

1, . . . , C
′
t of G,

all homotopic to C0 and, moreover, all vertices and
edges of C ′

i are at face-distance precisely i from C0, for
i = 1, . . . , t, where t = 4k(q + 1) ≤ br/8c − 1. Similarly,
on the “right” of C0 there are disjoint homotopic cycles
C ′′

1 , . . . , C ′′
t of G that are all homotopic to C0 and also

at face-distance at least 2 from C ′
1, . . . , C

′
t. These facts

are well-known; see, e.g., [MT01] or [BMR96, Moh92].
If C0 is 1-sided, there are cycles C ′

1, . . . , C
′
t such that

C ′
i is at face-distance i from C0. In this case, C ′

1, . . . , C
′
t

are all homotopic to each other (and homotopic to the
“square” of C0). They separate a Möbius strip contain-
ing C0 from the rest of the surface. For convenience we
write C ′′

i = C ′
i for 1 ≤ i ≤ t.

Now we cut the surface along C ′
t and along C ′′

t . If
C0 is surface-separating, then we obtain three embedded
graphs, G0, G′, and G′′, that are embedded into closed
surfaces of Euler genera 0, g′, and g′′, respectively,
where g′ ≤ g′′ < g and g′ + g′′ = g. This situation
is represented in Figure 1.

C'
t C ''

t

G'
G''

G
0

C'
t C ''

t

Figure 1: Cutting out a cylinder around C0.

If C0 is not surface-separating but is 2-sided, the
situation is similar to the above except that G′ and G′′



coincide and Euler genus of G′ is g− 2. If C0 is 1-sided,
then G0 is embedded in the projective plane (after we
add a disk to C ′

t), and G′ = G′′ has Euler genus g − 1.
Now we apply the induction hypothesis to each of

these surfaces in the same way as when considering the
case of small face-width. We have new distinguished
faces bounded by C ′

t and C ′′
t , two in G0 and one in

each of G′, G′′. If g = 1, then we cannot apply the
induction hypothesis directly because G0 has Euler
genus 1. However, the face-width of G0 is 2t + 1
and hence the reduction described in the first part of
the proof can be used. This gives partitions of the
edge sets of G0, G

′, G′′. Let the subsets (pieces) of
these partitions be E0i, E

′
i, E

′′
i (respectively), and let

Ei = E0i ∪ E′
i ∪ E′′

i for i = 1, . . . , k. All edges that
appear in two of the graphs are part of distinguished
faces, hence they all occur in the first subset of the
corresponding partition. This shows that E1, . . . , Ek

is a partition of E(G). The partition of G0 is made in
the same way as described in the proof of Theorem 3.2.
We start with the breadth-first search definition of level
sets Lj with the face C ′

t of G0 being L1 and included in
K1. This guarantees that C ′

t, . . . , C
′
1 are in consecutive

level sets L1, . . . , Lt. Because t = 4k(q + 1), each set
E0i (1 ≤ i ≤ k) contains one of the cycles C ′

j .
Let us now consider an arbitrary contraction

Gi = G/Ei = G′/E′
i ∪G′′/E′′

i ∪G0/E0i.

Let A′ and A′′ be the vertex sets of G′/E′
i and G′′/E′′

i

(respectively) whose removal leaves planar graphs whose
2-connected components have small face-diameter. As
mentioned above, E0i contains one of the cycles C ′

j ,
1 ≤ j ≤ t. Let x be the vertex of G0/E0i corresponding
to C ′

j . If A = A′∪A′′∪{x}, then Gi−A is embedded in
the plane. If i = 1, its 2-connected components coincide
with those in G0/E0i−x, G′/E′

i−A′, and in G′′/E′′
i −A′′.

The same holds when i 6= 1, except that a 2-connected
component B of G′/E′

i − A′ may be joined with a 2-
connected component B0 of G0/E0i − x containing C ′

t

(and similarly, one in G′′/E′′
i −A′′ which can be joined

with another 2-connected component of G0/E0i − x).
Because every vertex in B0 is at face-distance at most t
from some C ′

j that is contracted to a point and becomes
a cut vertex after the removal of x, the merging of B
and B0 can increase the face-distance from a reference
vertex in B by at most 2t = 8k(q+1). We now complete
the proof by applying induction. 2

The derived bounds on the width in Theorems 3.2
and 3.3 are by no means best possible. They can easily
be improved at the expense of longer proofs. However,
their dependence on k, q, and g cannot be eliminated.

The proofs of Theorems 3.2 and 3.3 yield
polynomial-time algorithms that enable us to construct

appropriate edge partitions of graphs of bounded Euler
genus:

Theorem 3.4. Given integers k ≥ 1, q ≥ 0, g ≥ 0,
w ≥ 120k(g + 1)(2g + q + 2), a graph embedded in a
surface of Euler genus at most g, and a collection of
q faces, one can find a partition of E(G) showing that
G ∈ Cw

k,q in polynomial time.

Proof. The construction of the partition follows proofs
of Theorems 3.2 and 3.3 by adding the following ingre-
dients. A shortest noncontractible cycle in a graph of n
vertices embedded in a surface of Euler genus g can be
found in time O(g3/2n3/2 log n) as shown by Cabello and
Mohar [CM05]. (If g is considered fixed, the log n fac-
tor can be eliminated and the time complexity becomes
O(n3/2).) In [CM05] it is also shown how to determine
the face-width in time O(n3/2). Level sets can be con-
structed in linear time by a version of a breadth-first
search.

In conclusion, the overall computational complex-
ity of our algorithm is O(g5/2n3/2 log n), where an ad-
ditional factor of g appears because of the depth of the
recursion on g. (If g is considered to be fixed, the time
complexity becomes O(n3/2).) 2

This concludes the proof of Theorem 1.1.

4 Toward H-Minor-Free Graphs

We conjecture that our contraction decomposition re-
sult of Theorem 1.1 extends to H-minor-free graphs for
any fixed graph H. Such a result would be quite gen-
eral, paralleling the deletion decomposition of [DHK05],
and would have many implications on algorithmic and
structural Graph Minor Theory, in particular leading to
generalized PTASs as detailed below. However, as we
illustrate, solving this conjecture seems to require sig-
nificant new insights into structural Graph Minor The-
ory, beyond the insights already presented in this pa-
per for bounded-genus graphs. On the other hand, we
show how our results extend to “h-almost-embeddable
graphs”, which is one step toward solving the H-minor-
free case.

To understand how we might approach H-minor-
free graphs, we describe the deep decomposition theo-
rem of Robertson and Seymour. For the relevant back-
ground and terminology, refer to Appendix A.

Theorem 4.1. [RS03, DHK05, DDO+04] For every
graph H, there exists an integer h ≥ 0 depending
only on |V (H)| such that every H-minor-free graph
can be obtained by at most h-sums of graphs that are
h-almost-embeddable in surfaces of genus at most h.
Furthermore, the clique-sum decomposition, written as



G1⊕G2⊕· · ·⊕GN , has the additional property that the
join set of each clique-sum between G1⊕G2⊕· · ·⊕Gi−1

and Gi is a subset of the apices in Gi, and contains
at most three vertices from the bounded-genus part of
G1 ⊕G2 ⊕ · · · ⊕Gi−1. Furthermore, the decomposition
can be found in polynomial time.

To generalize our decomposition result of Theo-
rem 1.1 to H-minor-free graphs, we need to generalize
our partition algorithm from bounded-genus graphs to
h-almost-embeddable graphs, and then find a way to
combine the partitions obtained from each piece of the
clique sum. The first part—generalizing to h-almost-
embeddable graphs—can be achieved as follows, build-
ing on our techniques from Section 3. The apices and
their incident edges can increase the treewidth of any
(contracted) graph by at most an additive h = O(1), so
they can be placed arbitrarily into color classes of the
partition without effect. To handle vortices, we contract
each vortex subgraph down to a single vertex, then ap-
ply the bounded-genus decomposition, and then decon-
tract the vortex subgraphs and assign these edges arbi-
trarily into color classes. It can be shown that the last
decontraction phase increases the treewidth by an addi-
tive O(1), following the techniques of [Gro03, DH04b].
Thus we obtain the decomposition result of Theorem 1.1
extended to h-almost-embeddable graphs.

The second part—combining the partitions from
each piece of the clique sum—seems difficult. The root
cause of difficulty is that some of the edges in the
join set of a clique sum are virtual : these edges are
not in the actual graph, but appear in the individual
pieces. If we keep these virtual edges when applying
the decomposition to each piece, the partition may
assign some of these virtual edges to be contracted
in certain cases, but the edges cannot actually be
contracted because they do not exist in the actual graph.
On the other hand, if we delete these virtual edges
before applying the decomposition, we still obtain that
the pieces have bounded treewidth after contracting
one of the classes, but it becomes impossible to join
together these tree decompositions, because the join
set no longer forms a clique and thus it is no longer
contained in a single bag in each tree decomposition. A
näıve combination of these tree decompositions causes
a blowup in treewidth proportional to the number
of clique-sum operations, which can be large, while
intelligent combination with the join sets being cliques
causes the treewidth to simply become the maximum
treewidth over all the pieces [DHN+04, Lemma 3]. In
contrast, this problem does not arise if we only delete
edges within a label class as in [DHK05], instead of
contracting them, because the virtual edges can be
deleted (indeed, they must be deleted, but this can only

help), whereas they cannot be contracted. We believe
that nonetheless these difficulties can be surmounted,
but only via a deep understanding of virtual edges
connecting to the bounded-genus part, and how they
can be realized by paths of real edges, in the graph
minor decomposition of Theorem 4.1.

With the decomposition result in hand, we obtain
the same general PTAS result of Theorem 1.2 for the
new class of graphs. In particular, this result gives us
PTASs for unweighted TSP and minimum-size c-edge-
connected submultigraph, because every H-minor-free
graph serves as its own unweighted spanner. Such a
PTAS for TSP in H-minor-free graphs would solve an
open problem of Grohe [Gro03]. However, to obtain
such PTASs for weighted graphs as in Corollary 1.1,
we also need to generalize the existing spanner results
[Gri00] from bounded-genus graphs to H-minor-free
graphs. We conjecture that such spanners exist. Some
partial progress toward this goal has been made in
[GS02].
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A Graph Minor Decomposition Theorem

In this appendix, we define the terminology necessary
for the Graph Minor Decomposition Theorem 4.1 of
Robertson and Seymour [RS03]. At a high level,
this theorem says that, for every graph H, every H-
minor-free graph can be expressed as a “tree structure”
of pieces, where each piece is a graph that can be
drawn in a surface in which H cannot be drawn,
except for a bounded number of “apex” vertices and a
bounded number of “local areas of non-planarity” called
“vortices”. Here the bounds depend only on H. To
make this theorem precise, we need to define each of
the notions in quotes.

Each piece in the decomposition is “h-almost-

embeddable” in a bounded-genus surface where h is a
constant depending on the excluded minor H. Roughly
speaking, a graph G is h-almost embeddable in a surface
S if there exists a set X of size at most h of vertices,
called apex vertices or apices, such that G − X can be
obtained from a graph G0 embedded in S by attaching
at most h graphs of pathwidth at most h to G0 within
h faces in an orderly way. More precisely, a graph G is
h-almost embeddable in S if there exists a vertex set X
of size at most h (the apices) such that G − X can be
written as G0 ∪G1 ∪ · · · ∪Gh, where

1. G0 has an embedding in S;

2. the graphs Gi, called vortices, are pairwise disjoint;

3. there are faces F1, . . . , Fh of G0 in S, and there
are pairwise disjoint disks D1, . . . , Dh in S, such
that for i = 1, . . . , h, Di ⊂ Fi and Ui := V (G0) ∩
V (Gi) = V (G0) ∩Di; and

4. the graph Gi has a path decomposition (Bu)u∈Ui
of

width less than h, such that u ∈ Bu for all u ∈ Ui.
The sets Bu are ordered by the ordering of their
indices u as points along the boundary cycle of face
Fi in G0.

The pieces of the decomposition are combined ac-
cording to “clique-sum” operations, a notion which goes
back to characterizations of K3,3-minor-free and K5-
minor-free graphs by Wagner [Wag37] and serves as an
important tool in the Graph Minor Theory. Suppose
G1 and G2 are graphs with disjoint vertex sets and let
k ≥ 0 be an integer. For i = 1, 2, let Wi ⊆ V (Gi) form a
clique of size k and let G′

i be obtained from Gi by delet-
ing some (possibly no) edges from the induced subgraph
Gi[Wi] with both endpoints in Wi. Consider a bijection
h : W1 → W2. We define a k-sum G of G1 and G2,
denoted by G = G1 ⊕k G2 or simply by G = G1 ⊕ G2,
to be the graph obtained from the union of G′

1 and G′
2

by identifying w with h(w) for all w ∈ W1. The images
of the vertices of W1 and W2 in G1⊕k G2 form the join
set. Note that each vertex v of G has a corresponding
vertex in G1 or G2 or both. Also, ⊕ is not a well-defined
operator: it can have a set of possible results.
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