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Figure 1: Screenshot of Cookie Clicker.

Cookie Clicker1 is a popular online incre-
mental game where the goal of the game is to
generate as many cookies as possible. In the
game, you can click on a big cookie icon to bake
a cookie, which we model as an initial cookie
generation rate. You can also use the cookies
you have generated as currency to purchase var-
ious items that increase your cookie generation
rate. In this paper, we analyze strategies for
playing Cookie Clicker optimally. While simple
to state, the game gives rise to interesting anal-
ysis involving ideas from NP-hardness, approxi-
mation algorithms, and dynamic programming.

Each cookie-generating item in this game
can be purchased multiple times, but after each
item purchase, the item’s cost will increase at
an exponential rate, given by Cn = C1 · αn−1,
where C1 is the cost of the first item and Cn is
the cost of the nth item. In the actual game, α = 1.15. There is no real end condition in the
game, but in this paper we have two possible end conditions: reaching a certain number M of
cookies or reaching a certain cookie generation rate R.

Cookie Clicker falls into a broader class of popular online games called “incremental” games,
in which the primary mechanic of the game is acquiring income and spending that income on
income generators in order to acquire even more income. Some of the other well-known games
in this genre include Adventure Capitalist, Cow Clicker, Clicker Heros, Shark Souls, Kittens
Game, Egg Inc., and Sandcastle Builder (Based around the xkcd comic Time, number 1190).

Models. In most of this paper, we will assume that you start with 0 cookies and that
the initial cookie generation rate from clicking on the big cookie icon is 1. We will describe
each item by a tuple (x, y, α), where x denotes how much the item will increase your cookie
generation rate, y denotes the initial cost of the item, and α denotes the multiplicative increase
in item cost after each purchase. The case where α = 1 for every item is a special case called
the fixed-cost case. The goals of the game is to find the optimal sequence and timing of item
purchases that minimizes some objective function.

There are multiple possible objective functions that we could want to optimize for, but we
will focus on the following two:

1. Reaching M cookies in as little time as possible
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2. Reaching a generation rate of R in as little time as possible

Our analysis of various versions of Cookie Clicker gives rise to interesting and varied results;
refer to Table 1. First, we present some general results, such as the fact that the optimal
strategy involves a “Buying Phase” where items are purchased in some sequence as quickly as
possible, and then a “Waiting Phase” where no items are purchased.

We begin our version-by-version analysis by examining the case where exactly 1 item is
available for purchase, and we present formulas describing how many copies of the item should
be purchased in both the fixed-cost case and the increasing-cost case.

Next, we analyze cases involving 2 items. In the 2 item fixed-cost case, we prove that the
optimal solution always involves buying some number of copies of one item, followed by some
number of copies of the other item.

Then, we analyze the case involving k items. In the k items fixed-cost case, a weakly
polynomial time dynamic programming solution can be used to find the optimal sequence of
items to buy, and in the increasing-cost case, a strongly polynomial time dynamic programming
solution can be used. Additionally, a greedy algorithm can be devised with an approximation
ratio that approaches 1 for sufficiently large values of M .

Afterwards, we present negative results, including proofs of Weak NP-hardness of the de-
cision version of the problem of reaching a generation rate of R as quickly as possible, as well
as for a version of Cookie Clicker that allows you to start with a nonzero number of cookies.
Finally, we define a discretized version of Cookie Clicker where decisions regarding whether or
not to buy an item happen in discrete time steps and prove Strong NP-hardness for that version.

Table 1: Summary of Results

Problem Variant Result for M version Result for R version

1 Item Fixed-Cost with item
(x, y, 1)

Final answer is ≈ y
x ln M

y
O(1) to solve

Final answer is ≈ y
x ln R

x
O(1) to solve

1 Item Increasing-Cost with
item (x, y, α)

Stop “Buying Phase” after
logα

M
y items

O(1) to solve

Stop “Buying Phase” af-
ter R

x items
O(1) to solve

2 Items Fixed-Cost with
items (xi, yi, 1) where y2 > y1

Solutions of the form
[1, 1, . . . , 1, 2, . . . , 2] for large
enough M
u1 logφ u2 + O(u1) to solve,

where ui ≈ yi
xi

log M
yi

Solutions of the form
[1, 1, . . . , 1, 2, . . . , 2, 1, 1]
for a small number of
1’s at the end for large
enough R.

k Items Fixed-Cost with
items (xi, yi, 1)

Dynamic Program-
ming solution, runtime
O(maxi(

Mxik
yi

))

Dynamic Programming
solution, runtime O(kR)

k Items Increasing-Cost with
items (xi, yi, αi)

O(maxi(k logkαi

M
yi

)) using
Dynamic Programming
Greedy Algorithm has
Approximation Ratio of
1 +O( 1

logM ) for k = 2

O(maxi(k( Rxi )
k)) using

Dynamic Programming
Weakly NP-hard by
reduction from PARTI-
TION

k Items Increasing-Cost with
items (xi, yi, αi) with Initial
Cookies

Weakly NP-hard by reduc-
tion from PARTITION

Weakly NP-hard by re-
duction from M version

Discrete k Items Increasing-
Cost with items (xi, yi, αi)
with Initial Cookies

Strongly NP-hard by reduc-
tion from 3-PARTITION

Strongly NP-hard by re-
duction from M version
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