
Linear Reconfiguration of Cube-Style Modular
Robots

Greg Aloupis1, Sébastien Collette2, Mirela Damian3, Erik D. Demaine4, Robin
Flatland5, Stefan Langerman6, Joseph O’Rourke7, Suneeta Ramaswami8, Vera

Sacristán9 ∗, and Stefanie Wuhrer10

1 Université Libre de Bruxelles, Belgique, greg@scs.carleton.ca
2 Université Libre de Bruxelles, Belgique, sebastien.collette@ulb.ac.be

3 Villanova University, Villanova, USA, mirela.damian@villanova.edu
4 Massachusetts Institute of Technology, Cambridge, USA, edemaine@mit.edu

5 Siena College, Loudonville, N.Y., USA, flatland@siena.edu
6 Université Libre de Bruxelles, Belgique, stefan.langerman@ulb.ac.be

7 Smith College, Northampton, USA, orourke@cs.smith.edu
8 Rutgers University, Camden, USA, rsuneeta@camden.rutgers.edu

9 Universitat Politècnica de Catalunya, Barcelona, Spain, vera.sacristan@upc.edu
10 Carleton University, Ottawa, Canada, swuhrer@scs.carleton.ca

Abstract. In this paper we propose a novel algorithm that, given a
source robot S and a target robot T , reconfigures S into T . Both S
and T are robots composed of n atoms arranged in 2 × 2 × 2 meta-
modules. The reconfiguration involves a total of O(n) atom operations
(expand, contract, attach, detach) and is performed in O(n) parallel
steps. This improves on previous reconfiguration algorithms [1–3], which
require O(n2) parallel steps. Our algorithm is in place; that is, the re-
configuration takes place within the union of the bounding boxes of the
source and target robots. We show that the algorithm can also be im-
plemented in a synchronous, distributed fashion.

1 Introduction

A self-reconfiguring modular robot consists of a large number of independent
units that can rearrange themselves into a structure best suited for a given
environment or task. For example, it may reconfigure itself into a thin, linear
shape to facilitate passage through a narrow tunnel, transform into an emergency
structure such as a bridge, or surround and manipulate objects in outer space.
Since modular robots are comprised of groups of identical units, they can also
repair themselves by replacing damaged units with functional ones. Such robots
are especially well-suited for working in unknown and remote environments.

Various types of units for modular robots have been designed and proto-
typed in the robotics community. These units differ in shape and the operations
they can perform. In this paper, we consider homogeneous self-reconfiguring

∗ Partially supported by projects MEC MTM2006-01267 and DURSI 2005SGR00692.

modular robots composed of cubical units (atoms) arranged in a lattice config-
uration. Each atom is equipped with an expansion/contraction mechanism that
allows it to extend its faces out and retract them back. Each face of an atom is
equipped with an attaching/detaching mechanism that allows it to attach to (or
detach from) the face of an adjacent atom. Prototypes of cubical atoms include
crystalline atoms [4] and telecube atoms [5]. The collection of atoms compos-
ing a robot is connected in the sense that its dual graph (vertices correspond to
atoms, edges correspond to attached atoms) is connected. When groups of atoms
perform the four basic atom operations (expand, contract, attach, detach) in a
coordinated way, the atoms move relative to one another, resulting in a recon-
figuration of the robot. To ensure connectedness of the reconfiguration space,
the atoms are arranged in meta-modules, which are groups of k × k × k atoms
attached to one another in a cubic shape.

The complexity of a reconfiguration algorithm can be measured by the num-
ber of parallel steps performed, as well as the total number of atom operations. In
a parallel step, many atoms may perform moves simultaneously. Reducing the
number of parallel steps has a significant impact on the reconfiguration time,
because the mechanical actions (expand, contract, attach, detach) performed
by the atoms are typically the slowest part of the system. Furthermore, since
atoms may have limited battery power, it is useful to reduce the total number
of mechanical operations (i.e., the atom operations) performed.

Our main contribution in this paper is a novel algorithm that, given a source
robot S and a target robot T , each composed of n atoms arranged in 2× 2× 2
meta-modules11, reconfigures S into T in O(n) parallel steps and a total of O(n)
atom operations. Our algorithm improves significantly the previously best-known
reconfiguration algorithms for cube-style modular robots [1–3], which take O(n2)
parallel steps as well as O(n2) atom operations. In addition, our algorithm re-
configures S into T in place, in the sense that the reconfiguration takes place
within the union of the bounding boxes of S and T , while keeping the robot
connected at all times during the reconfiguration. An in place reconfiguration
is useful when there are restrictions on the amount of space that a robot may
occupy during the reconfiguration process. Note that in this work we have not
taken into consideration any issues regarding the robot’s mass or inertia. How-
ever, the “in place” nature of our algorithms mitigates some of the issues arising
from such constraints.

2 Preliminaries

2.1 Robots as Lattices of Meta-Modules

There exist atom configurations which cannot be reconfigured, e.g. a single row
of atoms. Connectedness of the reconfiguration space is guaranteed for robots
composed of meta-modules [1, 2], where a meta-module is a connected set of k3

11 Throughout the paper, n refers to the number of robot atoms and m refers to the
number of robot meta-modules, where n = 8m.

atoms arranged in a k×k×k grid. It is desirable that meta-modules be composed
of as few atoms as possible. In our reconfiguration algorithms, meta-modules are
of minimum size consisting of a 2× 2× 2 grid of atoms [6, 2].

We define two basic meta-module moves (hardware independent) used by our
reconfiguration algorithms, similar to the ones described in [2].

Slide(dirSlide). Slides a meta-module one step in the direction dirSlide with
respect to some substrate meta-modules. This move is illustrated in Fig. 1,
where each box represents a meta-module. The preconditions for applying
this move are: (i) the sliding meta-module (A in Fig. 1a) is adjacent to a
meta-module in a direction orthogonal to dirSlide (B in Fig. 1a), which in
turn is adjacent to a meta-module in direction dirSlide (C in Fig. 1a) and (ii)
the target position for the sliding meta-module is free. This move allows the

C B

AdirSlide

C B

A

C B A C B

A

AC B C

(a) (b) (c)
B

Fig. 1. Examples of Slide(x−): (a) Meta-module A slides alone, (b,c) A carries adja-
cent meta-modules.

sliding meta-module to “carry” other attached meta-modules (as in Figs. 1b-
c), as long as the target position for a carried meta-module is unoccupied
and the carried meta-module is only attached to other meta-modules moving
simultaneously in the same direction.

k-Tunnel(sPos, ePos). Pushes the meta-module located at sPos into the
robot, and pops a meta-module out of the robot in position ePos. There
are two preconditions for applying this move: (i) sPos is at a leaf node in
the dual graph of the starting configuration (i.e. it is attached to only one
other meta-module) and ePos is a leaf node in the dual graph of the end-
ing configuration, and (ii) there is an orthogonal path through the robot
starting at sPos and ending at ePos, with k orthogonal turns (see Fig. 2).
This move performs an “inchworm” move between successive turns. Thus the
contracted “mass” of sPos is transferred between turns using O(1) motions.

In [7], sequences of atom operations implementing Slide and k-Tunnel for
cube-style robots are illustrated. The robot stays connected at all times during a
meta-module slide or tunnel move. In addition to these two moves, meta-modules
can also attach to and detach from adjacent meta-modules.

As for the complexity, attaching and detaching is done in O(1) parallel steps
using O(1) atom operations. The Slide operation is also implemented in O(1)
parallel steps using O(1) atom operations, no matter how many meta-modules
are carried in the move. The k-Tunnel is implemented in O(k) parallel steps

A

B1

C

B1

B2 B2

B1

B3

B1

B2 B3

B4

(a) (b) (c) (d)

pos

pos

Apos

Cpos

Cpos

Cpos
Apos Apos

Fig. 2. Examples of Tunnel(Apos, Cpos) with orthogonal turns at Bi, i = 1, 2, 3, 4. (a)
1-Tunnel (b) 2-Tunnel (c) 3-Tunnel (d) 4-Tunnel.

using O(k) atom operations, as long as no meta-modules are attached along the
path between consecutive turns. Our algorithms ensure this property and only
have the need for k ≤ 4.

2.2 Centralized and Distributed Complexity

We consider both centralized and distributed models of computation. In the cen-
tralized model algorithms (described in Sect. 3), computation is performed only
by a central processing unit in order to determine the sequence of reconfiguration
moves for each meta-module. In Sect. 4 we briefly discuss how to adapt our al-
gorithms to a synchronous distributed model. While this model does not depend
on a central processor, it assumes the existence of a clock, used to synchro-
nize the meta-module moves; each meta-module performs local computations to
determine the sequence of moves it needs to perform synchronously.

In this paper we do not address the issue of reducing the computation time;
however, we observe that straightforward implementations of our centralized
algorithms require O(n2) computation time. The amount of computation per-
formed by each meta-module in the distributed implementations is O(n). Com-
munication time in both models depends on whether information can be broad-
casted to all atoms simultaneously, or if information must propagate through
the network of atoms. Since a total of O(n) information must be communicated,
this takes O(n) time if broadcasted and O(n2) if propagated.

3 Centralized Reconfiguration

In this section we present an algorithm that reconfigures any given source robot,
S, into any given target robot, T , where S and T are each a connected set
of m meta-modules composed of n = 8m atoms. We describe the algorithm
first for reconfiguring 2D robots which consist of a single layer of meta-modules
(Sect. 3.1). We then generalize this to 3D robots (Sect. 3.2).

3.1 Centralized Reconfiguration in 2D

The main idea behind the algorithm is to transform the source robot S into the
common comb configuration which is defined in terms of both S and T . Then

by executing in reverse the meta-module moves of this algorithm for T , we can
transform the common comb into T . In transforming S into the common comb,
there is an intermediate step in which S is reconfigured into a (regular) comb.

2D Robot to 2D Comb. In a comb configuration, the meta-modules form
a type of histogram polygon [8]. Specifically, the meta-modules are arranged in
adjacent columns, with the bottom meta-module of each column in a common
row (see Fig. 3e). This common row is called the handle; the columns of meta-
modules extending upward from the handle are called teeth.

Initially, the algorithm designates the row containing the topmost meta-
modules of S as the wall (see Fig. 3a). We view the wall as infinite in length.
The wall sweeps over the entire robot, moving down one row in each step. By
having certain meta-modules slide downward with the wall, the teeth of the
comb emerge above the wall. We call this process “combing” the robot. In what
follows we will refer to the row of meta-modules immediately above (below) the
wall as w+ (w−).

wall S SSM SM

(a)

wall

(e)

wall

k

M MM MSMS M

(b)

1

wall
k

SS SS MMMM

(c)

1k2 wall

(d)

SSSSSS M Mk2

x

y

Fig. 3. The initial configuration is converted into a comb as it is swept by the wall.

Algorithm 1 outlines the combing process. After initializing the wall in Step
1, the loop in line 2 slides the wall down row by row. In each iteration, Step
2.1 labels each wall meta-module as stationary (S) if it has a meta-module ad-
jacent below and moving (M) otherwise (see Fig. 3). Intuitively, moving meta-
modules will move downward to occupy the gap below. Step 2.2 identifies moving
wall components, which are maximal sequences of adjacent moving wall meta-
modules. In Fig. 3b for example, there are three moving wall components consist-
ing of the 1st, 3rd − 6th, and 8th wall meta-modules. A moving wall component
will always have a stationary meta-module adjacent to one or both ends, for
otherwise it would be disconnected from the rest of the robot.

Step 2.3 moves the wall down by one meta-module row. The moving com-
ponents and the teeth attached to them move down with the wall. This is done
by having each moving wall meta-module adjacent to a stationary meta-module
perform a Slide(y−) move, thus moving itself one row below w.r.t. the adjacent
stationary wall meta-module. Figures 3a-3e show the robot configuration after
successive moving wall steps.

A series of attach and detach operations in Step 2.4 prepares the robot for the
next iteration. First, the end meta-modules of the moved components attach on
the left and right to any newly adjacent meta-modules (if not already attached).
Then each stationary meta-module (now in row w+) detaches itself from any

adjacent meta-modules to its left and right. Finally, all meta-modules in w−

that are now adjacent to a wall meta-module attach to this wall meta-module.

Algorithm 1 2D-Combing(S)
1.Set wall to row containing topmost meta-modules of S.
2.while there are meta-modules below the wall do

2.1 Label wall meta-modules moving or stationary.
2.2 Identify moving wall components.
2.3 Move wall one row lower, carrying moving components and attached teeth.
2.4 Adjust meta-module attachments

Lemma 1. The robot configuration forms one connected component at all times.

Proof. Omitted.

Lemma 2. A 2D robot can transform into its comb configuration in place in
O(n) parallel steps and a total of O(n) atom operations.

Proof. Clearly the reconfiguration is within the bounding box of the source
robot. For each of the O(m) iterations, it performs one parallel set of meta-
module Slide operations and three parallel attachment operations, which is
O(m) = O(n) parallel steps. We now consider the total number of atom opera-
tions performed. For each stationary meta-module that emerges above the wall,
there are at most 2 moving meta-modules that slid past it, one on either side.
At most m stationary meta-modules emerge above the wall, so the total number
of Slide operations is bounded by 2m. Since a meta-module is in w+ and w− at
most once and enters the wall at most once, the number of meta-module attach
and detach operations done in Step 2.4 is O(m). The Slide and attach/detach
operations require O(1) atom operations, making the total number of atom op-
erations performed O(m) = O(n). ut

2D Comb to 2D Common Comb. For two combs CS and CT , this section
describes an algorithm to reconfigure CS into the common comb, an intermediate
configuration defined in terms of both CS and CT .

Let hS and hT be the number of meta-modules in the handles of CS and CT ,
and let h = max(hS , hT). Let S1, S2, . . . , Sh denote the teeth of CS . If hS < hT ,
then let ShS+1, . . . , Sh be simply “empty teeth”. |Si| is the number of meta-
modules on top of the handle meta-module in tooth Si; it does not count the
handle meta-module. We will represent meta-modules by their “coordinates” in
the lattice. When referring to meta-modules by their coordinates, we’ll assume
the comb’s leftmost handle meta-module is at (1, 1). So the set {(i, j) | 2 ≤ j ≤
|Si|+1} is the set of meta-modules in tooth Si. All terms are defined analogously
for comb CT and for comb CU , whose description follows.

Let CU be a comb that is the union of CS and CT in the sense that the
length of CU ’s handle is h and its ith tooth has length max(|Si|, |Ti|), 1 ≤ i ≤ h.
The common comb is a subset of CU consisting of its h handle meta-modules
and a ‘right-fill’ of the m− h teeth meta modules into the shell defined by CU .
For example, Figs. 4a and 4b show CS and CT . In Fig. 4d, CU consists of all the
shaded and unshaded meta-modules; the common comb is all the shaded boxes.

1

10
2
34

5
6
7
8
9

1114
15

18
17
16

CS

1219
13
14

(a)

CT

(b)

1 2 3

(c)

10

4

5
6
7
8
9

1114
15

18
17
16

1219
13
14

1 2 3
45

6
8
9

1012

14
15
16
17
18

11
13

7

18

19

(d)

Fig. 4. (a) CS , with meta-modules labeled in reverse lexicographical order. (b) CT (c)
Shaded meta-modules are CS after extending its handle’s length to match CU . CU

consists of all shaded and unshaded boxes. Labels indicate which meta-modules moved
to form the handle. (d) Shaded meta-modules form the common comb for CS and CT .

Algorithm 2 describes in detail the process of converting CS to the com-
mon comb. Step 1 initializes queue O with the teeth meta-modules of CS in
reverse lexicographical order on their coordinates. (See the labeled ordering in
Fig. 4a.) This is the order in which teeth will be moved to fill in missing meta-
modules in the common comb. Step 2 lengthens CS ’s handle so that it contains h
meta-modules, moving meta-modules from O to the handle using 1-Tunnel op-
erations. Figure 4c shows the results of Step 2.

Once the handle is the proper length, then CS ’s teeth are lengthened to
match the lengths of CU ’s teeth, starting with the rightmost tooth. Since CU is
the union of CS and CT , each tooth Si of CS is either the same length as the
corresponding tooth in CU , or it is shorter. A key invariant of the algorithm is
that at the beginning of an iteration in Step 3, O contains exactly those meta-
modules in teeth S1, . . . Si of CS . This is certainly true in the first iteration
when i = h, and can be easily shown to be true inductively for all i. Therefore,
at the start of an iteration, if |Si| > 0 then the next |Si| meta-modules in O
are exactly the teeth meta-modules in Si. These meta-modules are already in
their final locations, and so they are just removed from O (Loop 3.1). Loop
3.2 then moves the next |Ui| − |Si| teeth meta-modules in O to tooth Si using
2-Tunnel operations. Figure 4d shows the resulting common comb.

Observe that in Loop 3.2, tooth oPos is always the top meta-module of the
first non-empty tooth to the left of tooth Si. Therefore, the orthogonal path
followed in the 2-Tunnel operation is from oPos down to the handle meta-
module at the base of the tooth, through a (possibly length 0) section of the
handle containing only empty teeth, and then up to the top of tooth i. No meta-

modules are attached between turns along this path, so the 2-Tunnel operation
requires only O(1) basic operations to complete.

Algorithm 2 2D-Comb-To-Common-Comb(CS , CU)
1. Let O be a queue of the (i, j) coordinates of the teeth meta-modules (i.e., j > 1)

of CS , in reverse lexicographical order.
2. If hS < h then { extend CS ’s handle to length h }

2.1 For i = hS + 1 to h
2.1.1 oPos = O.dequeue()
2.1.2 In CS , 1-Tunnel(oPos,(i, 1))

3. For i = h down to 1 { lengthen teeth of CS , from right to left }
3.1 For j = 1 to |Si| O.dequeue() { remove meta-modules already in tooth Si }
3.2 For j = |Si|+ 1 to |Ui| { lengthen tooth Si }

3.2.1 if O.size() = 0 then exit
3.2.2 oPos = O.dequeue()
3.2.3 In CS , 2-Tunnel(oPos,(i, j))

Lemma 3. A 2D robot can transform into a common comb configuration in
place in O(n) parallel steps and a total of O(n) atom operations.

Proof. The reconfiguration takes place within the union of the bounding boxes
of CS and CT , which is contained within the union of the bounding boxes of S
and T . At most m modules are relocated, each by a 1-Tunnel or 2-Tunnel op-
eration requiring O(1) atom operations, resulting in O(m) = O(n) parallel steps
and atom operations. ut

Overall 2D Reconfiguration Algorithm. The general algorithm to reconfig-
ure any m meta-module robot S to any other m meta-module robot T consists of
four major steps. First S reconfigures into comb CS , then CS reconfigures into
common comb CST . Then the reverse moves of the 2D-Comb-To-Common-
Comb and 2D-Combing algorithms reconfigure CST into CT and then CT into
T .

Theorem 1. Any 2D source robot can be reconfigured into any 2D target robot
in place in O(n) parallel steps and a total of O(n) atom operations.

3.2 Centralized Reconfiguration in 3D

Analogous to the 2D case, in 3D the source robot S is also transformed into
a 3D common comb and then into target robot T . In transforming to the 3D
common comb there are two intermediate configurations, a terrain configuration
and a (regular) 3D comb configuration.

Source Robot to 3D Terrain. We use the 3D analog of the 2D-Combing
process, 3D-Combing, to reconfigure S into a 3D terrain. The 3D algorithm
is the same as in 2D, except the wall now consists of an entire 2D horizontal
layer of meta-modules, initially the topmost single layer of S. See Fig. 5. The

wall

(c)

wall

(b)

y

x

z
wall

(d)

wall

(a)

M M M M M M
MM

M

S

S
S

Fig. 5. The 3D-Combing algorithm. (a) Meta-modules labeled M form one F -shaped
connected component. (b, c, d) Robot configuration after (1, 2, 3) algorithm iterations.
(d) Final terrain configuration.

final result is that all meta-modules of S having the same (x, y) coordinates
are grouped together to form a contiguous tower of meta-modules. These towers
extend in the z+ direction, rest on an arbitrarily-shaped, connected base layer
(in the xy-plane), and are attached only to the base layer.

Lemma 4. A 3D robot can transform into a 3D terrain in place in O(n) parallel
steps and a total of O(n) atom operations.

3D Terrain to 3D Comb. A 3D Terrain I is reconfigured into a 3D comb
by applying the 2D-Combing algorithm of Sect. 3.1 to its base layer, thus
reconfiguring the base layer into a 2D comb. As the base meta-modules move
during the reconfiguration, they carry along the towers resting on top. If B(I)
is the base of I, then a call to 2D-Combing(B(I)) using the Slide operation
that carries towers (see Fig. 1c) accomplishes this. After this second combing
pass, the resulting 3D comb robot consists of a 2D comb in the xy-plane (call
this the xy-comb), and each tooth and its handle module in the xy-comb form
the handle of a comb with teeth extending up in the z direction (call these the
z-combs). We immediately have the following result.

Lemma 5. A 3D terrain can transform into a 3D comb in place in O(n) parallel
steps and a total of O(n) atom operations.

3D Comb to 3D Common Comb. Given two 3D combs CS and CT , this
section describes an algorithm to reconfigure CS into the 3D common comb
determined by CS and CT . Let s(t) be the number of z-combs in CS (CT);
equivalently, s(t) is the handle length of CS ’s (CT ’s) xy-comb. We assume CS

(CT) is positioned with the handle of its xy-comb starting at lattice coordinates
(1, 1, 1) and extending to (s, 1, 1) ((t, 1, 1)). Let Ci

S be the z-comb of CS in lattice

position i, let Si
j be the jth tooth of Ci

S , and let |Si
j | be the number of teeth

meta-modules in tooth Si
j (not counting the handle module at its base). Let hi

S

be the length of Ci
S ’s handle. All terms are defined analogously for combs CT

and CU .
As in 2D, comb CU is the union of CS and CT . Let u be the handle length

of CU ’s xy-comb. The common comb is a subset of CU consisting of the u
handle meta-modules in its xy-comb and its rightmost m − u meta-modules.
More precisely, for each z-comb Ci

U , i = u . . . 1, append to a list I the handle
meta-modules (i, 2, 1) to (i, hi

U , 1) of Ci
U , followed by the teeth meta-modules of

Ci
U in descending order on their y coordinate (primary key) and increasing order

on their z coordinate (secondary key). The first m− u meta-modules of I are in
the common comb.

Algorithm 3 describes in detail the process of converting CS to the common
comb. In Step 1, the algorithm converts each z-comb Ci

S to the 2D common
comb determined by Ci

U = Ci
S ∪ Ci

T using Algorithm 2. Since Ci
S and Ci

T may
not contain the same number of meta-modules, there may not be enough meta-
modules in Ci

S to fill the entire handle of Ci
U , in which case Ci

S will become only
a portion of the handle that starts with module (i, 1, 1). See Fig. 6a.

(a) (b) (c) (d)
x
y

z

Fig. 6. (a) Solid meta-modules are CS after each z-comb is converted to a common
comb. CU consists of the solid and the wireframe boxes. (b) CS after extending its
xy-comb handle to match that of CU . (c) CS during the execution of Step 4.3 of
Algorithm 3, as it lengthens the teeth of C7

S by tunneling meta-modules from C4
S . (d)

The 3D common comb (solid boxes only).

Step 2 creates a queue, O, of meta-modules, in the order in which they will
be used to fill meta-modules of CU . Step 3 extends the length of CS ’s xy-comb
handle so that it matches the length of CU ’s xy-comb handle. Figure 6b shows the
results of this step. The order of the meta-modules in O ensures that each leg of
the path is unattached to other meta-modules, thus allowing the Tunnel move
to be performed in O(1) time. In Step 4, the teeth of each z-comb in CS are
lengthened to match the lengths of the corresponding teeth in CU . Again, the
order of the meta-modules in O ensures that each Tunnel operation follows
a path whose segments are not attached to other meta-modules, allowing O(1)
tunnel moves. A stage of Step 4 is illustrated in Fig. 6c, with Fig. 6d showing
the resulting 3D common comb (solid meta-modules).

Lemma 6. A 3D robot can transform into a common comb configuration in
place in O(n) parallel steps and a total of O(n) atom operations.

Algorithm 3 3D-Comb-To-Common-Comb Algorithm(CS , CU)
1. For i = 1 . . . s

1.1 2D-Comb-To-Common-Comb(Ci
S , Ci

U) (with combs parallel to the yz plane)
2. Let O be an empty queue

For i = s down to 1
2.1 Append to O the teeth meta-modules of Ci

S , ordered by increasing
y (primary key) and decreasing z (secondary key)

2.2 Append to O all handle meta-modules of Ci
S except for module (i, 1, 1),

ordered by decreasing y
3. If s < u then { extend the handle of CS ’s xy-comb to length u }

3.1 For i = s + 1 to u
oPos = O.dequeue()
In CS , k-Tunnel(oPos, (i, 1, 1)), for k ∈ {1, 2}

4. For i = u down to 1 { fill in missing meta-modules of each z-comb }
4.1 For j = 1 to |Ci

S | − 1 O.dequeue() { remove meta-modules already in Ci
S }

4.2 For j = hi
S + 1 to hi

U { lengthen handle of Ci
S }

If (O.size() == 0) exit
oPos = O.dequeue()
In CS , k-Tunnel(oPos, (i, j, 1)), for k ∈ {2, 3}

4.3 For j = hi
S down to 1 {lengthen short teeth of Ci

S }
For k = |Si

j |+ 1 to |U i
j |

If (O.size() = 0) exit
oPos = O.dequeue()
In CS , k-Tunnel(oPos, (i, j, k)), for k ∈ {3, 4}

Overall 3D Reconfiguration Algorithm. The general algorithm to recon-
figure any 3D m meta-module robot S to any 3D m meta-module target robot
T consists of six stages: S reconfigures into 3D terrain IS , then IS reconfigures
into 3D comb CS , then CS reconfigures into common comb CST , and finally the
reverse moves reconfigure CST into CT , CT into IT , and then IT into T .

Theorem 2. Any source robot can be reconfigured into any target robot in place
in O(n) parallel steps and a total of O(n) atom operations.

4 Distributed Implementation

Our centralized algorithms can be executed by the meta-modules in a syn-
chronous, distributed fashion. The implementation must be synchronous since
both the Slide and k-Tunnel moves require strict coordination of motion
among the atoms in order to prevent collisions and disconnection of the robot.
To synchronize the operations, we assume each atom/meta-module can count
clock strikes modulo k, for any k ∈ N.

The Combing algorithm is easily adaptable to the synchronous distributed
model. During an initialization phase, each meta-module is sent its starting
(x, y, z) location and the wall’s starting position. Thereafter, each meta-module
can determine its next move in O(1) time using information on its current state

(moving or stationary), or by polling adjacent meta-modules on their state. For
example, each meta-module can determine its state by just checking if it is at-
tached to a module below. The reverse of this algorithm can be made distributed
in a similar way, sweeping the wall up instead of down.

The Comb-To-Common-Comb algorithms can also be distributed, albeit
with some stronger requirements. First, the initial and final configurations S
and T are communicated to each meta-module. In addition, each meta-module
requires a more powerful processor on board. Specifically, we require that each
meta-module can store information of size O(n) and can run an algorithm of
complexity O(n) in O(n) time. These requirements are necessary because each
meta-module must initially run the Comb-To-Common-Comb algorithm to
precompute which operations it will perform on each clock strike, since local
information alone is not enough to determine a meta-module’s next operation.
For example, meta-modules at the turn locations in the k-Tunnel operations
must determine when they will be involved in such an operation in order to
coordinate their actions. The reverse of this algorithm is similarly distributed.

Acknowledgments. We thank Thomas Hackl for his suggestion on how to
reduce the size of the meta-modules [6]. We thank the other participants of the
2007 Workshop on Reconfiguration at the Bellairs Research Institute of McGill
University for providing a stimulating research environment.

References

1. Rus, D., Vona, M.: Crystalline robots: Self-reconfiguration with compressible unit
modules. Autonomous Robots 10(1) (2001) 107–124

2. Vassilvitskii, S., Y., M., Suh, J.: A complete, local and parallel reconfiguration
algorithm for cube style modular robots. In: Proc. of the IEEE Intl. Conf. on
Robotics and Automation. (2002) 117–122

3. Butler, Z., Rus, D.: Distributed planning and control for modular robots with
unit-compressible modules. The Intl. Journal of Robotics Research 22(9) (2003)
699–715

4. Butler, Z., Fitch, R., Rus, D.: Distributed control for unit-compressible robots:
Goal-recognition, locomotion and splitting. IEEE/ASME Trans. on Mechatronics
7(4) (2002) 418–430

5. Suh, J.W., Homans, S.B., Yim, M.: Telecubes: Mechanical design of a module
for self-reconfigurable robotics. In: Proc. of the IEEE Intl. Conf. on Robotics and
Automation. (2002) 4095–4101

6. Hackl, T.: Personal communication (2007)
7. Aloupis, G., Collette, S., Damian, M., Demaine, E.D., Flatland, R., Langerman, S.,

O’Rourke, J., Ramaswami, S., Sacristán, V., Wuhrer, S.: Linear reconfiguration of
cube-style modular robots (2007) www.cs.siena.edu/papers/cbots long.pdf.

8. Arkin, E., Bender, M., Mitchell, J., Polishchuk, V.: The snowblower problem. In:
Proc. 7th Intl. Workshop on the Algorithmic Foundations of Robotics. (2006)

