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Abstract Eppstein [5] characterized the minor-closed graph families for which
the treewidth is bounded by a function of the diameter, which includes, e.g., planar
graphs. This characterization has been used as the basis for several (approxima-
tion) algorithms on such graphs (e.g., [2,5–8]). The proof of Eppstein is compli-
cated. In this short paper we obtain the same characterization with a simple proof.
In addition, the relation between treewidth and diameter is slightly better and ex-
plicit.
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1 Introduction

Eppstein [5] introduced the diameter-treewidth property for a class of graphs,
which requires that the treewidth of a graph in the class is upper bounded by a
function of its diameter. This notion has been used extensively in a slightly mod-
ified form called the bounded-local-treewidth property, which requires that the
treewidth of any connected subgraph of a graph in the class is upper bounded by
a function of its diameter. For minor-closed graph families, which is the focus of
most work in this context, these properties are identical.

The reason for introducing graphs of bounded local treewidth is that they have
many similar properties to both planar graphs and graphs of bounded treewidth,
two classes of graphs on which many problems are substantially easier. In partic-
ular, Baker’s approach for polynomial-time approximation schemes (PTASs) on
planar graphs [1] applies to this setting. As a result, PTASs are known for heredi-
tary maximization problems such as maximum independent set, maximum triangle
matching, maximum H-matching, maximum tile salvage, minimum vertex cover,
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minimum dominating set, minimum edge-dominating set, and subgraph isomor-
phism for a fixed pattern [2,5,8]. Graphs of bounded local treewidth also admit
several efficient fixed-parameter algorithms. In particular, Frick and Grohe [6] give
a general framework for deciding any property expressible in first-order logic in
graphs of bounded local treewidth.

The foundation of these results is the following characterization by Eppstein
[5] of minor-closed families with the diameter-treewidth property. An apex graph
is a graph in which the removal of some vertex leaves a planar graph.

Theorem 1 Let F be a minor-closed family of graphs. Then F has the diameter-
treewidth property if and only if F does not contain all apex graphs, i.e., F ex-
cludes some apex graph.

We reprove this theorem with a much simpler proof. Similar to Eppstein’s
proof, we use the following theorems from Graph Minor Theory. The m×m grid
is the planar graph with m2 vertices arranged on a square grid and with edges
connecting horizontally and vertically adjacent vertices.

Theorem 2 [4] For integers r and m, let G be a graph of treewidth at least m4r2(m+2).
Then G contains either the complete graph Kr or the m × m grid as a minor.

Theorem 3 [9] Every planar graph H can be obtained as a minor of the r×r grid
H , where r = 14|V (H)| − 24.

For readers unfamiliar with the notions of minors and treewidth, we give the
necessary definitions for background.

Contracting an edge e = {u, v} in an (undirected) graph G is the operation of
replacing both u and v by a single vertex w whose neighbors are all vertices that
were neighbors of u or v, except u and v themselves. A graph G is a minor of a
graph H if H can be obtained from a subgraph of G by contracting edges. A graph
class C is minor-closed if any minor of any graph in C is also a member of C. A
minor-closed graph class C is H-minor-free if H /∈ C.

Representation of a graph as a tree with a tree decomposition plays an impor-
tant role in the design of algorithms. A tree decomposition of a graph G = (V, E)
is a pair (χ, T ) where T = (I, F ) is a tree and χ = {χi | i ∈ I} is a family of
subsets of V (G) such that (1)

⋃

i∈I χi = V ; (2) for each edge e = {u, v} ∈ E,
there exists an i ∈ I such that both u and v belong to χi; and (3) for all v ∈ V ,
the set of nodes {i ∈ I | v ∈ χi} forms a connected subtree of T . The maxi-
mum size of any χi, minus one, is called the width of the tree decomposition. The
treewidth of a graph G, denoted by tw(G), is the minimum width over all possible
tree decompositions of G.

2 The Main Result

First we present a property of apex-minor-free graphs. The vertices (i, j) of the
m × m grid with i ∈ {1, m} or j ∈ {1, m} are called boundary vertices, and the
rest of the vertices in the grid are called nonboundary vertices.
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Fig. 1 Construction of the minor k × k grid K.

Lemma 1 Let G be an H-minor-free graph for an apex graph H , let k = 14|V (H)|−

22, and let m > 2k be the largest integer such that tw(G) ≥ m4|V (H)|2(m+2).
Then G can be contracted into an augmented grid R, i.e., an (m−2k)× (m−2k)
grid augmented with additional edges (and no additional vertices) such that each
vertex v ∈ V (R) is adjacent to less than (k + 1)6 nonboundary vertices of the
grid.

Proof By Theorem 2, G contains an m × m grid M as a minor. Thus there exists
a sequence of edge contractions and edge/vertex deletions reducing G to M . We
apply to G the edge contractions from this sequence; we ignore the edge deletions;
and instead of deletion of a vertex v, we only contract v into one of its neighbors.
Call the new graph G′, which has the m×m grid M as a subgraph and in addition
V (G′) = V (M).

We claim that each vertex v ∈ V (G′) is adjacent to at most k4 vertices in the
central (m − 2k) × (m − 2k) subgrid M ′ of M . In other words, let N be the set
of neighbors of any vertex v ∈ V (G′) that are in M ′. We claim that |N | ≤ k4.
Suppose for contradiction that |N | > k4.

Let nx denote the number of distinct x coordinates of the vertices in N , and let
ny denote the number of distinct y coordinates of the vertices in N . Thus, |N | ≤

nx · ny. Assume by symmetry that ny ≥ nx, and therefore ny ≥
√

|N | > k2.
We define the subset N ′ of N by removing all but one (arbitrarily chosen)

vertex that share a common y coordinate, for each y coordinate. Thus, all y coor-
dinates of the vertices in N ′ are distinct, and |N ′| = ny > k2. We discard all but
k2 (arbitrarily chosen) vertices in N ′ to form a slightly smaller set N ′′. We divide
these k2 vertices into k groups each of exactly k consecutive vertices according to
the order of their y coordinates. Now we construct the minor k×k grid K as shown
in Figure 1. Because each y coordinate is unique, we can draw long horizontal seg-
ments through every point. The k columns on the left-hand and right-hand sides
of M allow us to connect these horizontal segments together into k vertex-disjoint
paths, each passing through exactly k vertices of N ′′. These paths can be con-
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Fig. 2 In the k × k grid K, we (a) lift the vertex v
′, (b) contract the adjacent columns, and

(c) contract the adjacent rows, to form a (k− 2)× (k − 2) grid K
′. Vertex v

′ is adjacent to
all vertices in the grid, though the figure just shows four neighbors for visibility.

nected by vertical segments within each group. This arrangement of paths has the
desired k × k grid K as a minor, where the vertices of the grid correspond to the
vertices in N ′′.

Now, if v has been used in the contraction of a vertex v′ in K, we proceed
as shown in Figure 2. First we “lift” v′ from the grid—not removing it from the
graph per se, but marking it as “outside the grid.” Then we contract the remainder
of v′’s column and the two adjacent columns (if they exist) into a single column.
Similarly we contract the remainder of v′’s row with the adjacent rows. Thus we
obtain as a minor of K a (k − 2) × (k − 2) grid K ′ such that vertex v′ is outside
this grid and adjacent to all vertices of the grid. Now, by Theorem 3, because
k−2 ≥ 14|V (H)|−24, we can consider v′ as the apex of H and obtain the planar
part of H as a minor of K ′. Hence the original graph G is not H-minor-free, a
contradiction. This concludes the proof of the claim that |N | ≤ k4.

Finally, form a new graph R by taking graph G′ and contracting all 2k bound-
ary rows and 2k boundary columns into two boundary rows and two boundary
columns (one on each side). The number of neighbors of each vertex of R that are
not on the boundary is at most (k + 1)2k4. The factor (k + 1)2 is for the boundary
vertices each of which is obtained by contraction of at most (k + 1)2 vertices. �

Now we are ready to prove Theorem 1.

Proof (of Theorem 1) One direction is easy. The apex graphs Ai, i = 1, 2, . . . ,
obtained from the i × i grid by connecting a new vertex v to all vertices of
the grid have diameter two and treewidth i + 1, because the treewidth of the
i × i grid is i (see, e.g., [3]). Thus a minor-closed family of graphs with the
diameter-treewidth property cannot contain all apex graphs. Next consider the
other direction. Let G be a graph from a minor-closed family F of graphs ex-
cluding an apex graph H . We show that the treewidth of G is bounded above
by a function of |V (H)| and its diameter d. Let m be the largest integer such
that tw(G) ≥ m4|V (H)|2(m+2), and let k = 14|V (H)| − 22. Let R be the
(m − 2k) × (m − 2k) augmented grid obtained from G by contraction, using
Lemma 1. Because diameter does not increase by contraction, the diameter of R
is at most d. In addition, one can easily observe that the number of vertices of dis-
tance at most i from any vertex in R is at most 4r + 4r(k + 1)6 + 4r(k + 1)12 +
· · ·+ 4r(k + 1)6i ≤ 4r(k + 1)6(i+1), where r = m− 2k. Because the diameter is
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at most d, we have 4r(k +1)6(d+1) ≥ r2, i.e., m ≤ 2k +4(k +1)6(d+1). Thus the
treewidth of G is at most (4(k + 1)6(d+1) + 2k + 1)4|V (H)|2(4(k+1)6(d+1)+2k+3) =

O(|V (H)|6(d+1))O(|V (H)|6d+8) = 2O(d|V (H)|6d+8 lg |V (H)|), as desired. �
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