Two Simplified Algorithms for Maintaining
Order in a List

Michael A. Bender'*, Richard Cole?**, Erik D. Demaine®* * *,
Martin Farach-Colton*!, and Jack Zito!

! Dept of Computer Science, SUNY Stony Brook, Stony Brook, NY 11794, USA.
bender@cs.sunysb.edu. JackZito@JackZito.com.
2 Courant Institute, New York University, 251 Mercer Street,
New York, NY 10012, USA. cole@cs.nyu.edu.
3 MIT Laboratory for Computer Science, 200 Technology Square,
Cambridge, MA 02139, USA. edemaine@nit.edu.
4 Google Inc., 2400 Bayshore Parkway, Mountain View, CA 94043, USA, and
Department of Computer Science, Rutgers University,
Piscataway, NJ 08855, USA. farach@cs.rutgers.edu.

Abstract. In the Order-Maintenance Problem, the objective is to main-
tain a total order subject to insertions, deletions, and precedence queries.
Known optimal solutions, due to Dietz and Sleator, are complicated. We
present new algorithms that match the bounds of Dietz and Sleator. Our
solutions are simple, and we present experimental evidence that suggests
that they are superior in practice.

1 Introduction

The Order-Maintenance Problem is to maintain a total order subject to the
following operations:

1. Insert (X,Y): Insert a new element Y immediately after element X in the
total order.

2. Delete (X): Remove an element X from the total order.

3. Order (X,Y): Determine whether X precedes Y in the total order.

We call any such data structure an order data structure.

1.1 History

The first order data structure was published by Dietz [4]. It supports insertions
and deletions in O(logn) amortized time and queries in O(1) time. Tsakalidis
improved the update bound to O(log* n) and then to O(1) amortized time [10].

* Supported in part by HRL Laboratories, NSF Grant ETA-0112849, and Sandia Na-
tional Laboratories.
** Supported in part by NSF Grants CCR-9800085 and CCR-0105678.
*** Supported in part by NSF Grant EIA-0112849.
T Supported in part by NSF Grant CCR-9820879.

The fastest known order data structures was presented in a classic paper by
Dietz and Sleator [3]. They proposed two data structures: one supports insertions
and deletions in O(1) amortized time and queries in O(1) worst-case time; the
other is a complicated data structure that supports all operations in O(1) worst-
case time.

Special cases of the order-maintenance problem include the online list labeling
problem [1,5-7] also called the file maintenance problem [11-14]. In online list
labeling, we maintain a mapping from a dynamic set of n elements to the integers
in the range from 1 to u (tags), such that the order of the elements matches the
order of the corresponding tags. Any solution to the online list labeling problem
yields an order data structure. However, the reverse is not true: there is an
2(logn) lower bound on the list labeling problem [5,6]. In file maintenance, we
require that u = O(n), since it is the problem of maintaining a dynamic file
stored sequentially in memory with gaps for insertions.

1.2 Results

O(1) Amortized Order Data Structure: The drawback of Dietz and Sleator’s
amortized O(1) solution is its proof. It relies on a complicated potential-function
argument, which is not just unintuitive, but counterintuitive. This data struc-
ture assigns tags to elements ¢ la online list labeling®. If we use more bits for
the tags (say, 3logn rather than 2logn bits per tag), the amortized number of
relabels should decrease. However, the proof of the Dietz and Sleator algorithm
gives a paradoxical increasing upper bound on the amortized number of relabels.
This was cited in their paper as a shortcoming of their analysis.

We present a similar list labeling-based algorithm that has several advan-
tages. First, the proof is straightforward. Second, it yields a sensible tradeoff
between tag size and relabeling. We verify experimentally that this tradeoff is
essentially tight for our algorithm.

Furthermore, our analysis yields a counter-intuitive insight. Intuitively, it
seems advantageous to assign the tag of a new element to be the average of its
neighbors. Otherwise, an adversary could insert in the smaller half, thus inducing
more relabelings. Indeed, Dietz and Sleator’s proof relies on this average-tag
choice. Our proof is independent of the tag-choice strategy; thus, the bound
holds no matter how the tag is chosen. Perhaps our bounds are simply tighter
for bad choices of tags. However, we confirm the insensitivity to tag selection
experimentally.

In summary, we present a simple amortized solution along with a simple
proof. This proof elucidates the tradeoffs and quirks of the algorithm, and we
verify these experimentally. Furthermore, we show experimentally that our so-
lution dominates Dietz and Sleator’s in terms of the bit/relabel tradeoff.

5 They use a standard trick of indirection to overcome the list labeling lower bound.
We use the same trick.

O(1) Worst-Case Order Data Structure: The Dietz and Sleator worst-
case constant-time solution relies on an algorithm by Willard [11-14] for the
file maintenance problem. Instead, we give a direct deamortization of the simple
amortized algorithm above. Due to space considerations, we defer the discussion
of this algorithm to the full paper.

O(log? n) Worst-Case File Maintenance: This result matches the bounds
of the afore-mentioned Willard result. However, a complete description of our
result takes 5 pages (See Section 5), rather than Willard’s 54.

2 Preliminaries

2.1 Indirection: Shaving a Log

Below, we give a solution to the order-maintenance problem that takes O(logn)
amortized time to update and O(1) worst-case time for queries. The standard
technique of having a two-level data structure, where the bottom level has
O(logn) elements and the top level has ©(n/logn) elements can be applied
to any data structure with such a complexity to improve the update time to
O(1) amortized time, while keeping O(1) worst case time queries.

We omit the details, which can be found, e.g., in [3].

2.2 Connection to Weight-Balanced Trees

Our order maintenance algorithms rely on a close connection between list label-
ing and weight-balanced trees. Suppose we have a list where each element has
been assigned an integer tag from [0, u). The bits of the tags implicitly form a
binary tree, which is the trie of the bit strings. We call this trie the virtual tree.

The leaves of the virtual tree correspond to the tags, with each root-to-
leaf path specifying the tag’s binary representation. The depth of the virtual
tree is logu. As we insert new elements into the list, we assign them new tags,
effectively inserting new leaves into the virtual tree. When we run out of tags,
we redistribute tags within some subrange of the list, and this redistribution
corresponds to a rebalancing operation in the implicit tree.

The next two lemmas give the algorithmic connection between this tree view-
point and the list-labeling viewpoint:

Lemma 1. Any strategy for maintaining n tags in the universe [0,u), u = n®
for some constant ¢, with amortized relabel cost f(n) yields a strategy for main-
taining balanced binary trees of height logu with amortized insertion time of

O(f(n))-

If the converse were true, we would immediately have an O(1) amortized so-
lution to the order maintenance problem (e.g., by using red-black trees plus the
indirection noted above). However, updates in balanced tree structures might
change many root-to-leaf paths. For example, a root rotation in red-black tree

changes the path label of every leaf. Therefore, the cost of modifying (i.e., split-
ting/merging/rotating) a node v in the virtual tree is proportional to the number
of descendants of v, which we refer to as the weight of v.

The weight cost of an operation on a tree is the running time of the operation,
plus the sum of the weights of all modified nodes. For example, the red-black tree
has O(log n) weight-cost searches and O(n) weight-cost insertions and deletions.
This definition extends naturally to amortized weight cost, and we note that
red-black trees have O(n) amortized weight-cost insertion and deletions as well.

Theorem 1. Any balanced-tree structure with (amortized) weight cost f(n) for
insertions, maximum degree d, and depth h yields a strategy for list labeling with
(amortized) cost O(f(n)) and tags from universe [0,d").

We require a balanced-tree structure where the weight costs of all operations
are small. Fortunately, a few such trees exist, such as BB[«] trees (8], skip lists [9],
and weight-balanced B-trees [2]. All these trees are weight balanced, in the sense
that, for every non-leaf node, the weights of its children are within constant
factors of each other.

These tree, when combined with indirection, give simple constant-time amor-
tized solutions to the order-maintenance problem. The advantage of our solution
below, as well as Dietz and Sleator’s, is that it does not maintain the tree ex-
plicitly.

2.3 Roadmap

In Section 3, we show an amortized order-maintenance data structure that does
not store the weight-balanced tree explicitly. The algorithm is similar to Dietz
and Sleator’s original algorithm, but our analysis is simple enough to teach
to undergraduates, and it elucidates the performance issues. These performance
issues are further explored and experimentally verified in Section 4. In Section 5,
we give an O(log2 n) algorithm for file-maintenance.

3 The Amortized Order-Maintenance Algorithm

Our algorithm does not use an explicit tree, but our analysis does. Let u, the
tag universe size, be a power of two, and consider the complete binary tree in
which the leaves represent the u tags. At any state of the algorithm, n of these
leaves are occupied, namely, the leaves that correspond to the tags used to label
list elements.

When we insert an element f between elements e and g, we are free to choose
any tag between the tags of e and g. If e and g occupy adjacent leaves (their
tags differ by 1), then we relabel a sublist of the linked list to make room for the
new element.

Each internal node of the tree corresponds to a (possibly empty) sublist of
the linked list, namely those linked elements that occupy leaves below the node.

Each leaf has log u such enclosing tag ranges. The density of a node is the fraction
of its descendant leaves that are occupied.

When we insert f between e and g, if we need to relabel, we examine the
enclosing tag ranges of e until we find the smallest enclosing tag range with
low-enough density. We calculate the density by traversing the elements within
a certain tag range (instead of walking up the implicit tree).

It remains to define when an enclosing region is considered “sparse enough.”
We define the overflow threshold as follows. Let T be a constant between 1 and
2. For a range of size 29, that is, a leaf of the tree, the overflow threshold 7 is
1. Otherwise, for ranges of size 2, 7; = 7;,_1 /T = T~*. We say that a range is in
overflow if its density is above the overflow threshold.

We summarize the algorithm as follow: relabel the smallest enclosing range
that is not overflowing. Note that larger enclosing ranges may be in overflow.
We lazily stop at the smallest non-overflowing range.

This algorithm is similar to Dietz and Sleator’s. Whereas we scan the list
in geometrically increasing tag ranges, they scan the list in geometrically in-
creasing number of list elements. Whereas we have a stopping condition that
is a function of the density and size of our subrange, their stopping condition
is that the density drops by some constant between sublists. We therefore call
our algorithm the Tag-range Relabeling Algorithm, and Dietz and Sleator’s the
List-range Relabeling Algorithm.

We now show that the labels assigned to list elements are logarithmic in
length, and that the amortized cost of an insertion is O(logn).

Lemma 2. The Tag-range Relabeling Algorithm uses O(logn) bits per tag.

Proof. Note that u is a function of n, but n may change wildly. Thus, we pick
a u that works for any value from n/2 to 2n. If at any point we have too few
or too many list elements, we rebuild the data structure for the new value of n.
This rebuilding introduces only a constant amortized overhead.

The root range must never be allowed to overflow. It is the subrange of last
recourse. That is, we should always be able to relabel at the root. The density
at the root is at most 2n/u, because we rebuild if we get more than 2n elements.
So we set Tiog, = T~ 198" = y~198T = 2 /u. Thus, u = (2n)/171°8¢ 50 we use
logn/(1 —logT) bits. O

We conclude that the worst-case query complexity is O(1) since tags fit in a
constant number of machine words.

Lemma 3. The amortized cost of insertion in the Tag-range Relabeling Algo-
rithm is O(logn).

Proof. When we relabel a range of tags of size 2%, the resultant density through-
out the range becomes uniformly no more than 7;, because we only relabel ranges
that are not overflowing. The time complexity for this relabeling is O(2i7;) =
o((2/T)").

Before we relabel this range again, one of the two child subranges must
overflow. After the relabeling, the density of the child subranges is at most 7;

and when they next overflow their density will be at least 7;_;. This requires
at least (2 —T'/2)(2/T)* insertions, thus yielding an amortized insertion cost of
2-T/2=0(1).

Finally, by the previous lemma, each insertion has O(logn) enclosing sub-
ranges. Because the amortized cost per enclosing subrange is O(1), the total
amortized cost is O(logn). O

Using one level of indirection, we obtain

Theorem 2. The order-maintenance problem can be solved in O(1) amortized
insertion and deletion time and O(1) worst-case query time.

4 Experiments

4.1 Choosing Tags

Surprisingly, the method for picking the label of the new element does not play
a role in the proof. Consider two cases. The natural choice for a label is the
average of the neighbors, as in Dietz and Sleator. A seemingly worse choice for
the label is one more than the predecessor’s label, which is vulnerable to adver-
sarial relabeling. We refer to these strategies as Average Inserts and Consecutive
Inserts, respectively.

Our proof suggests that the two schemes have equal performance. But it may
be that our bound is simply tighter for the Consecutive Inserts case, and that
Average Inserts is in fact a constant factor faster. To determine the constant
factors, we performed the following experiment. We inserted n elements, each
at the front. Thus, the Consecutive Inserts algorithm generates a relabeling at
every other step.

20 b

Average Relabels per Insert

0 L L L L
64 256 1024 4096 16384 65536 262144
Records Inserted

Fig. 1. 32-bit tags with consecutive vs. average inserts.

It turns out that the total number of relabelings is almost the same for both
schemes, with only an additive-constant overhead. See Figure 1. What appears
to be happening is the following: Consecutive inserts trigger relabels after every
insert, but the number of elements relabeled is small. On the other hand, average
inserts have fewer triggers, and the number of elements relabeled is larger. With
Consecutive Inserts, the average number of relabels per element remains only a
small additive amount higher.

4.2 Space/Time Tradeoff

Note that the number of bits needed for an order maintenance structure that
hold n elements is logn/(1 — logT), where T is between 1 and 2. On a real
machine, the number of bits is fixed, and thus there is a tradeoff between n and
T. Recall that the amortized cost of insertions is (2 — 7'/2)(logn)/(1 — logT).
Thus, as we require our machine word to serve for more and more elements, we
require a larger T, the cost of an insertion increases. While this is not surprising,
Dietz and Sleator’s proof had a paradoxical, opposite tradeoff in the bounds.

In our proof, we concentrate on the duration of time that the root range
does not overflow, and when it does, we increase our word size and rebuild the
structure. This, of course, does not work on a real computer. So for each T,
the order data structure should have some maximum capacity, after which the
root overflows, and at some point after which we start thrashing with relabels.
In the next experiment, we measured how close to theoretical overflow we get
thrashing, for a variety of choices of T', and for Dietz and Sleator’s List-range
algorithm.

Figure 2 shows relabels per insertion as we insert more and more elements
into a list with a variety of choices of T, as well as for Dietz and Sleator (labeled
DNS in the figure). The theoretical capacity given by each choice of T is indicated
with an arrow.

@
3

Average Relabels per Insert
BoonoN W ow s s
5 8 &8 8 & & &

=
o

Xo by
Lo
beomOk

@

L L L
32768 1.04858e+06 3.35544e+07
Records Inserted

Fig. 2. 32-bit tags with constant thresholds.

In Figure 2, the y-axis represents the average number of relabels per inserted
element. The x-axis represents the number of elements inserted. For this graph,
lower points are better, representing fewer relabels per element inserted. Note
that for any given threshold T, the algorithm thrashes soon after the “rated”
maximum limit for that 7" has been exceeded. It is interesting to note that a
threshold of T = 1.5 is comparable to Dietz and Sleator’s algorithm for “worst
case” inserts. While Dietz and Sleator’s analysis suggests that the capacity of
their structure is approximately 64,000, our structure with 7" = 1.5 is rated to
approximately 430,000 elements. Thus Dietz and Sleator’s analysis has substan-
tial slack.

4.3 Variable T

Finally, note that although standard RAM models assume O(logn) word size,
computers have fixed word sizes. The choice of T" depends on n, the number
of inserted elements. For any particular n, we would like T" to be as small as
possible, to reduce the cost of insertions. One final note about our algorithm is
that there is nothing in our analysis that requires T to be fixed. At any step,
we can calculate the smallest T that keep the root range from overflowing, and
we use that T to compute the 7’s. We call this algorithm the Variable Threshold
Algorithm. Note that this algorithm does not produce theoretical improvements
over the fixed-threshold algorithm, because they assume incomparable machine
models. However, it seems to perform well, as Figure 3 shows.

Average Relabels per Insert

1 1 1
32768 1.04858e+06 3.35544e+07
Records Inserted

Fig. 3. 32-bit tags with fixed versus variable thresholds.

5 File Maintenance

We begin our description by showing how to store m items in an array of size
O(n). Four operations are supported:

Insert(e, f): Given a pointer to already stored item e, insert f immediately
after e.

— Delete(e): Given a pointer to item e, delete it.

— Scan-right(k, €): Given a pointer to item e, scan the next k items in the list
starting at item e.

Scan-left(k, e): Analogous to scan-right.

Our solution stores the items in list order in the array. Note that the order-
operation is trivially implemented by index comparison. The insert and delete
operations require O(log?n) worst case time and the scan requires O(k) time.
Willard gave a data structure with this performance. Unfortunately, his solution
is quite involved.‘ (The journal version requires some 54 pages).

As in Willard’s data structure, the array is implicitly recursively partitioned
into an O(logn) level balanced binary tree. The leaves correspond to length
alogn intervals of the array for a suitable constant a; we call such intervals
cells. As is standard, the nodes in the tree are assigned levels, incrementing from
the leaf level and with the leaves having level zero. The subinterval corresponding
to a node at level ¢ comprises 2° cells, and is called an i-interval. It is convenient
to extend tree terminology (e.g., parent, child, sibling) to the i-intervals.

The key invariant below ensures there is always room to insert an item.

Invariant 1.
(i) An i-interval stores at most (alogn — 2i) - 2* items.
(ii) The number of items stored in sibling é-intervals differ by at most 2-2* items.

The basic update operation is the following: when the number of items stored
by two sibling intervals differ by 2 - 27 items, 2° items are redistributed from
the fuller to the less full sibling, one item per cell. This redistribution is per-
formed over the next 2° insertions and deletions occurring on these two intervals,
O(logn) operations being performed per insertion or deletion. The process is
called an (i + 1)-rebalancing. The work performed during a single insertion or
deletion on a single rebalancing operation is called a phase of the rebalancing.
As each insertion or deletion lies within O(logn) intervals, the O(log®n) time
bound follows immediately.

In fact, Invariant 1(ii) might not be maintained during the course of a rebal-
ancing, so we modify it as follows:

Invariant 1(ii).

(ii) The number of items stored in sibling i-intervals differ by at most 2-2¢ items,
except possibly when a task is rebalancing an ancestral (j + 1)-interval, j > ¢,
and the task is moving items into or out of the i-intervals in question.

Since only 2% insertions or deletions are performed during the course of a
rebalancing, clearly Invariant 1(ii) holds after the rebalancing, given that it held
at the start. Justification of Invariant 1(i) is deferred. In order to detect when
the condition for rebalancing holds, with each node of the tree, we record its
imbalance, namely how many more items its left subinterval holds than its right
subinterval. The imbalance is stored in the cell immediately to the left of the
middle of the interval.

10

The main part of the implementation lies in the rebalancing procedure itself.
The challenge is to show that the rebalancings at different levels of the tree do
not interfere.

WLOG, we consider a rebalancing of an (i + 1)-interval whose left half is
fuller. The rebalancing scans the (i + 1)-interval from right to left, shifting items
to the right, with the net effect of adding one item to each cell in the right
half and removing one item from each cell in the left half. Ignoring the effect of
further insertions and deletions, it is clear that the balance of any subinterval of
the (i + 1)-interval is unchanged.

In order to control the interaction of the various rebalancings, we need to
store O(7) auxiliary data with an é-rebalancing and O(1) data with each cell.

To understand the data stored with a rebalancing process, it is helpful to
consider the arrangement of data in an (i + 1)-interval that is being rebalanced:
at the right end, there will be data that has already been copied over to the new
density, in the middle there will be a gap with empty cells, and at the left end
will be the data that has yet to be moved. Finally, there may be two partially
filled cells, one at either end of the gap. The algorithm is slightly simplified by
requiring that at the end of its phase, the cell at the front (left end) of the gap
be empty (in the case of a gap less than one cell in length, we consider the cell
contents to be to the rear of the gap). We need to record how the data is to
be distributed in the gap, and what density of data is to be moved from the
left end (this is non-trivial owing to the interaction with rebalancing procedures
associated with subintervals of the (i + 1)-interval, as will become clear).

More specifically, the left end, comprising the as-yet-not-moved data, is par-
titioned into up to ¢ + 2 maximal h-intervals, h < i. For each such interval,
we record an integral number of items to be copied to or from each cell in the
interval (it is the same number for every cell). This data is stored as a linked
list, called the increment list. At the start of a rebalancing there will be two
i-intervals, one with count 1 and the other with count —1.

Similarly, the gap is partitioned into up to 2¢ maximal h-intervals, h < i. For
each interval, we record how many items are to be moved into it. The partially
filled cell at the rear of the gap, if any, forms a one-cell interval within the gap.
This data is also kept as a linked list, called the gap list.

Invariant 2. The number of items to be moved into the gap, as recorded in the
list of gap intervals, equals the change to the number of items in the “left end”,
as recorded in the list of intervals for the left end.

Both lists are kept in interval order, to facilitate combining of intervals as
needed. When the contents of a cell are moved the natural changes are made
to the lists. One detail remains to be specified: as the right end of the gap is
filled, the interval at the right end of the gap will be split in two: the associated
count is simply divided as evenly as possible. This has the effect of somewhat
smoothing the local fluctuations in density within the (i + 1)-interval.

In order to avoid unnecessary rebalancings at (h + 1)-subintervals due to
the gap created in the (i + 1)-interval by its rebalancing, we do not alter the
imbalance value for the (h + 1)-subinterval due to the data movements of the

11

(i + 1)-rebalancing. Of course, if the gap of the rebalancing includes the whole
(h + 1)-subinterval, as the subinterval begins to be filled, its imbalance is reset
to —1,0, or 1, as appropriate.

Thus we understand Invariant 1(ii) as applying to the imbalances apparently
recording the relative number of items in a pair of subintervals as opposed to
the actual number which may differ due to a rebalancing of a larger interval
containing these two subintervals.

The only difficulty with multiple rebalancing operations occurs when two
gaps meet. There are just two possibilities: either they cross or they combine,
as we detail. The task rebalancing the larger subinterval is named Big and the
task for the smaller subinterval, contained in Big’s subinterval, is named Small.

WLOG, suppose that Big is moving items from left to right.

Case 1. Small moves items from left to right.
Case 1a. The gap for Small is to the left of the gap for Big when they meet (due
to Big’s progress).
Then the rebalancing for Small is terminated, and Big’s process takes over
Small’s task by combining Small’s list with its own, as follows. Basically, the
collections of lists are merged so as to record the desired incremental changes
to intervals that have not had items moved, and to record the desired size for
intervals in the gap. This may entail the splitting or joining of some intervals
in order to combine information of equal sized intervals and to then produce
maximal intervals once more.
Case 1b. The gap for Big overlaps the right end of Small’s interval or is just to
the right of the right end of Small’s interval when Small is initiated, so in the
latter case Small’s gap meets Big’s gap as Small is initiated.
Small is terminated, and its lists combined with those for Big as in Case la.
Case 1c. The gap for Big is to the left of the gap for Small when they meet (due
to Small's progress). This is handled as in Case 1la.

Each of the above cases uses O(logn) time.

Case 2. Small moves items from right to left. Details left for the full paper.

To ensure an (i + 1)-rebalancing completes within 2 phases, in each phase
the contents of one cell are moved from the front end to the rear end of the
rebalancing’s gap. To ensure a smooth interaction with the processing of Cases
1 and 2 above, operations are ordered as follows. In a phase, first, adjacent gaps
moving in opposite directions, if any, are merged; then the contents of a cell are
moved across the gap; finally, adjacent gaps moving in the same direction, if any,
are merged.

Lemma 4. Invariant 2 is unaffected by the processing of Cases 1 and 2 above
and by insertions and deletions.

Lemma 5. Invariant 1(ii) holds.

Proof. A rebalancing of an (i + 1)-interval is completed within 2% insertions
and/or deletions to the interval, and thus the difference between the number of
items in the two halves remains bounded by 2 - 2¢. The only reason it would

12

not finish its task is through its being terminated and its work taken over by a
(j + 1)-rebalancing, for some j > i. But whenever the (i 4+ 1)-rebalancing would
have performed a phase, the (j+ 1) rebalancing would also perform a phase, and
hence the (j + 1)-rebalancing will finish the processing of the (i + 1)-interval at
least as soon as the (i 4 1)-rebalancing would have. Consequently Invariant 1(ii)
is maintained.

Lemma 6. Invariant 1(i) holds.

Proof. Left to the full version.

References

1.

2.

11.

12.

13.

14.

A. Andersson and O. Petersson. Approximate indexed lists. Journal of Algorithms,
29(2):256-276, 1998.

L. Arge and J. Vitter. Optimal dynamic interval management in external memory.
In FOCS, 1996.

P. Dietz and D. Sleator. T'wo algorithms for maintaining order in a list. In STOC;
1987.

P.F. Dietz. Maintaining order in a linked list. In STOC, 1982.

P.F. Dietz, J. I. Seiferas, and J. Zhang. A tight lower bound for on-line monotonic
list labeling. In SWAT, 1994.

P.F. Dietz and J. Zhang. Lower bounds for monotonic list labeling. In SWAT,
1990.

A. TItai, A. Konheim, and M. Rodeh. A sparse table implementation of priority
queues. In ICALP, 1981.

J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. SIComp,
2:33-43, 1973.

W. Pugh. Skip lists: a probabilistic alternative to balanced trees. In WADS, 1989.

. AK. Tsakalidis. Maintaining order in a generalized linked list. Acta Informatica,

21(1):101-112, May 1984.

D. Willard. Inserting and deleting records in blocked sequential files. Technical
Report TM81-45193-5, Bell Laboratories, 1981.

D. Willard. Maintaining dense sequential files in a dynamic environment. In STOC,
1982.

D. Willard. Good worst-case algorithms for inserting and deleting records in dense
sequential files. In SIGMOD, 1986.

D. Willard. A density control algorithm for doing insertions and deletions in a
sequentially ordered file in good worst-case time. Information and Computation,
97(2):150-204, 1992.

A Final Thought

Dietz and Sleator is quite influential
With its tags and its proofs by potential
But to teach it in class
Is a pain in the —

So our new result is preferential.

