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Abstract

We present dynamic search-tree data structures that per-
form well in the setting of a hierarchical memory (includ-
ing various levels of cache, disk, etc.), but do not depend
on the number of memory levels, the block sizes and num-
ber of blocks at each level, or the relative speeds of mem-
ory access. In particular, between any pair of levels in
the memory hierarchy, where transfers between the levels
are done in blocks of size B, our data structures match
the optimal search bound of Θ(logB N) memory trans-
fers. This bound is also achieved by the classic B-tree data
structure, but only when the block size B is known, which
in practice requires careful tuning on each machine plat-
form. One of our data structures supports insertions and
deletions inΘ(logB N) amortized memory transfers, which
matches the B-tree’s worst-case bounds. We augment this
structure to support scans optimally in Θ(N/B) memory
transfers. In this second data structure insertions and dele-

tions requireΘ(logB N + log2 N
B

) amortized memory trans-
fers. Thus, we match the performance of the B-tree for
B = Ω(logN log logN).

1. Introduction
Steep Memory Hierarchy. The memory hierarchies of
modern computers are becoming increasingly “steep,” rang-
ing from fast registers and on-chip cache down to relatively
slow disks and networks. Because the speed of processors
is increasing more quickly than the speed of memory and
disk, the disparity between the various levels of the mem-
ory hierarchy is growing. For example, the Alpha 21264
chip can deliver 2 words from L1 cache in one cycle, but it
requires approximately 100 cycles to bring data from main
memory [12]. For any computer the access times of L1
cache and disk differ by approximately 6 orders of mag-
nitude. Because of these large variations in magnitude, it is
becoming increasingly dangerous to design algorithms as-
suming a “¤at” memory with uniform access times.
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The distinguishing feature of multilevel memory hierar-
chies is that memory transfers are done in blocks in order to
amortize the cost of a transfer [4]. This amortization only
works when each transfer contains many pieces of data to be
used by the CPU. Thus, our objective is to maintain locality
of reference, meaning that memory accesses are clustered in
time and space.

Maintaining Locality in Irregular and Dynamic Data.
Data locality is easier to maintain in algorithmic problems
having regular and/or static data, because the ¤ow of data
is predictable. Examples of such problems include matrix
multiplication, fast Fourier transform, and LU decomposi-
tion. Even in sorting, there is a £xed and predetermined
order in which the data must end up. In contrast, it is more
challenging to maintain data locality in irregular and dy-
namic problems because by de£nition the data ¤ow is con-
tinually changing and unpredictable, making it dif£cult to
organize data locality a priori.

Irregular and dynamic problems often require data-
structure solutions because data structures specialize in
moving data ef£ciently throughout memory. It has long
been recognized that the level of the memory hierarchy af-
fects the choice of data structure. For example, one of the
most fundamental data structures for manipulating arbitrary
data is a balanced search tree. The basic functionality that
we ask of a balanced search tree is that it maintain an or-
dered collection of elements subject to insertions, deletions,
and searches. Thus, balanced search trees such as AVL
trees [1], BB[α] trees [22], red-black trees [17], random-
ized search trees [29], skip lists [26], and splay trees [33]
are appropriate for main memory, whereas B-trees [10] are
more appropriate for external memory.

In this paper we develop search trees that are memory-
ef£cient at all levels of the memory hierarchy. A cen-
tral innovation of our data structures is that they avoid
any memory-speci£c parameterization. That is, our data
structures do not use any information about memory access
times, or cache-line or disk-block sizes. It may be surpris-
ing that data structures can be made cache-ef£cient with-
out using the parameters that describe the structure of the
memory hierarchy, but we demonstrate that this is possi-
ble. Such data structures and algorithms are called cache-
oblivious [16, 25]. The cache-oblivious model has been suc-
cessfully explored in the context of regular and static prob-
lems [16, 25]. This paper initiates the problem of manipu-



lating irregular and dynamic data cache-obliviously.

Performance Models for Memory Hierarchy. The clas-
sic way to measure the running time of an algorithm (e.g., in
the RAM model) is to count the number of machine instruc-
tions. In a machine with a memory hierarchy, an important
additional factor to measure is the number of memory block
transfers at each level, scaled according to the relative speed
of accesses. The idea of counting memory transfers was in-
troduced in the cell-probe model [43]. We stress that these
memory transfer times should not be treated as constants
because they can vary by many orders of magnitude and are
often the dominant feature of running time.

There is a tradeoff between the accuracy of a model and
its ease of use. One body of work explores multilevel hier-
archies [2, 3, 5, 28, 37, 39] and more complicated models
of memory [6, 27]. A problem with many of these mod-
els is that algorithms must take into account many parame-
ters, e.g., the relative speeds and block sizes at each memory
level. While this leads to accurate time predictions, it makes
it dif£cult to design and analyze optimal algorithms in these
models.

A second body of work concentrates on two-level mem-
ory hierarchies, either in the context of memory and disk
[4, 9, 18, 37, 38], or cache and memory [30, 20]. In such a
model there are only a few parameters, making it relatively
easy to design ef£cient algorithms. The motivation is that it
is common for one level of the memory hierarchy to dom-
inate the running time. The dif£culty with this approach is
that the programmer must focus efforts on a particular level
of the hierarchy, resulting in a program that is less ¤exible
to different-scale problems, and does not adapt to when the
dominating level changes, e.g., as a program starts to page
in virtual memory.

B-Trees. Before developing our cache-oblivious search
trees, we review the standard solutions for two-level and
multilevel hierarchies. The classic two-level solution, both
in theory and practice, is a B-tree [10]. The basic idea is
to maintain a balanced tree having a fanout proportional to
the memory block size B, rather than constant size. This
means that one block read determines the next node out of B
nodes, so a search completes in Θ(logB N) memory trans-
fers. A simple information-theoretic argument shows that
this bound is optimal.

The situation becomes more complex with more than
two levels of memory hierarchy. We need a multilevel struc-
ture, one level per transfer block size. Suppose B1 > B2 >
· · · > Bk are the block sizes between the k + 1 levels of
memory. At the top level we have a B1-tree; each node of
this B1-tree is a B2-tree, etc.

At this point such a data structure becomes very dif£cult
to manage. Code that is generic to the number of mem-
ory levels is complicated and almost certainly inef£cient.
Hierarchy-speci£c code needs to be rewritten for each ma-

chine architecture. Even with generic code, the parameters
in the code needed to be changed or tuned to the speci£c
memory hierarchy each time the program is ported to an-
other machine. This parameter tuning can be dif£cult and
time-consuming, and if it is done improperly it can have
worse effects than much simpler algorithms. Finally, such
tuning is impossible in a heterogeneous computing environ-
ment where processors with different local memory charac-
teristics access the same data, for example, across a net-
work, or stored on some distributable permanent medium
such as CD-ROM.

Cache-Oblivious Algorithms. The cache-oblivious
model enables us to reason about a simple two-level
memory model, but prove results about an unknown
multilevel memory model. This model was introduced
by Frigo, Leiserson, Prokop, and Ramachandran [16, 25]
introduced the cache-oblivious model as a clean way to
They show how several basic problems—namely matrix
multiplication, matrix transpose, Fast Fourier Transform,
and sorting—have optimal algorithms that are cache-
oblivious. Optimal cache-oblivious algorithms have also
been found for LU decomposition [11, 34] and a static,
complete binary tree [25]. All these algorithms perform
an asymptotically optimal number of memory transfers for
any memory hierarchy and at all levels of the hierarchy.
More precisely, the number of memory transfers between
any two levels is within a constant factor of optimal. In
particular, any linear combination of the transfer counts is
optimized.

The theory of cache-oblivious algorithms is based on the
ideal-cache model of Frigo, Leiserson, Prokop, and Ra-
machandran [16, 25]. In this model there are two levels
in the memory hierarchy, which we call cache and disk, al-
though they could represent any pair of levels. The disk is
partitioned into memory blocks each consisting of a £xed
number B of consecutive cells. The cache has room for C
memory blocks, although the exact value of this parameter
will not be important in our applications. The cache is fully
associative, that is, it can contain an arbitrary set of C mem-
ory blocks at any time. Recall that parameters B and C are
unknown to the cache-oblivious algorithm or data structure,
and they should not be treated as constants.

When the algorithm accesses a location in memory that
is not stored in cache, the relevant memory block is au-
tomatically fetched from disk. in what we call a memory
transfer. If the cache is full, the ideal memory block in the
cache is elected for replacement, based on the future char-
acteristics of the algorithm.

While this model may super£cially seem unrealistic,
Frigo et al. have shown that it can be simulated by essen-
tially any memory system with only a small constant-factor
overhead. For example, if we run a cache-oblivious algo-
rithm on a several-level memory hierarchy, we can use the



ideal-cache model to analyze the number of memory trans-
fers between each pair of adjacent levels. Because the al-
gorithm is cache-oblivious, it performs well on all levels.
See [16] for details.

The algorithms in our paper only need a constant num-
ber of memory blocks in the cache at once, so any semi-
intelligent block-replacement strategy will suf£ce for our
purposes. In general, however, the least-recently-used
(LRU) block-replacement strategy can be used to approx-
imate the omniscient strategy within a constant factor [16,
32]. Finally, the assumptions of full associativity and auto-
matic block replacement are also reasonable, because they
can be implemented in normal memory with only an ex-
pected constant factor overhead [16].

The concept of algorithms that are uniformly optimal
across multiple memory models was considered previously
by Aggarwal, Alpern, Chandra, and Snir [2]. These au-
thors introduce the HMM model, in which the cost to ac-
cess memory location x is df(x)e, where f(x) is mono-
tone nondecreasing and polynomially bounded. They show
matrix multiplication and FFT algorithms that are optimal
for any cost function f(x). One distinction between the
HMM model and the cache-oblivious model is that, in the
HMM model, memory is managed by the algorithm de-
signer, whereas in the cache-oblivious model, memory is
managed by the existing caching and paging mechanisms.
Also, the HMM model does not model block transfers. The
HMM model was extended by Aggarwal, Chandra, and Snir
to the BT model to take into account block transfers [3]. In
the BT model the algorithm can choose and vary the block
size, whereas in the cache-oblivious model the block size is
£xed and unknown.

Results. We develop three cache-oblivious search-tree
data structures. These results demonstrate that even irregu-
lar dynamic problems can be solved ef£ciently in the cache-
oblivious model. Let B be the (unknown) memory block
size and let N be the number of elements in the tree.

Our £rst cache-oblivious search tree is implemented in
a single array of size O(N). This data structure has the
same optimal query bound as B-trees, O(logB N) mem-
ory transfers.1 Furthermore, searching from an arbitrary
node at height h has an optimal cost of O(1 + h/B) mem-
ory transfers. Scans of k elements also run optimally
in O(1 + k/B) memory transfers. Insertions and dele-
tions require O(logB N + logB√

B
log2 N) amortized mem-

ory transfers. This bound matches the B-tree search cost of
O(logB N) provided B = Ω((logN)2(log logN)4).

The memory block size B being at least polylogarith-
mic in the problem size N is reasonable, just as the transdi-
chotomous model [14] speci£es that the number of bits in a
machine word is logarithmic in the problem size. Further-

1As with B-trees, our goal is to optimize query time, not update time as
in buffer trees [7].

more, we have the most to gain from locality of reference
when the block size is large, so our data structures are op-
timized for these cases. As memory hierarchies get deeper
and the lowest level becomes farther from the CPU, our data
structures become more important.

We improve the insertion and deletion costs by using
one level of indirection. Our second cache-oblivious search
tree again performs searches in O(logB N) memory trans-
fers and scans in O(1 + N

B
) memory transfers. However,

insertions and deletions are even more ef£cient, requiring
O(logB N + log2 N

B
) amortized memory transfers. This last

bound matches the B-tree search cost of O(logB N) pro-
vided B = Ω(logN log logN).

In our third cache-oblivious search tree, we remove the
requirement that the data structure perform scans. This
data structure has the same optimal query bound as B-trees,
O(logB N) memory transfers, and the same amortized in-
sert/delete bound as B-trees, O(logB N) amortized memory
transfers.

These data structures use new tools for cache-oblivious
manipulation of data. Several of these tools are of more
general interest than search trees. Following the work of
Itai, Konheim, and Rodeh [19] and Willard [40, 41, 42],
we develop a packed-memory structure for maintaining an
ordered collection of N items in an array of size O(N)

subject to insertions and deletions in O( log2 N
B

) memory
transfers; see Section 2.3. In another context, this struc-
ture can be thought of as a cache-oblivious linked list that
supports scanning k consecutive elements in O(1 + k/B)
memory transfers (instead of the na΅ve O(k)), and updates

in O(1 + log2 N
B

) amortized memory transfers. We conjec-
ture that the update bound of this cache-oblivious linked list
is best possible subject to obtaining the optimal scan bound
cache-obliviously.

This packed-memory structure seems fundamental to the
problem of reorganizing data cache-obliviously. In the con-
text of balanced search trees, we fold a tree layout resem-
bling the van Emde Boas data structure onto the packed-
memory structure. We use a strongly weight-balanced
search tree, which has desirable properties for maintaining
locality of reference; see Section 2.2. The packed-memory
structure allows us to make room for inserted nodes, but
has the side effect of moving nodes around, which invali-
dates the parent and child pointers of nodes. We develop
additional techniques to maintain the integrity of the point-
ers, including an analysis of local and long-distance nodes
(Section 3.2), and the notion and analysis of buffer nodes
(Sections 3.3 and 3.4). Finally, we employ indirection to
improve the update bounds (Section 4).

Notation. One notational convention that we will use
throughout is of independent interest.2 We de£ne the hy-

2All logarithms are base 2 if not otherwise speci£ed.



per¤oor of x, denoted bbxcc, to be 2blog xc, i.e., the largest
power of two smaller than x. Thus, x/2 < bbxcc ≤ x. Sim-
ilarly, the hyperceiling ddxee is de£ned to be 2dlog xe. Anal-
ogously, we de£ne hyperhyper¤oor and hyperhyperceiling
by bbbxccc = 2bblog xcc and dddxeee = 2ddlog xee. These satisfy√
x < bbbxccc ≤ x and x ≤ dddxeee < x2.

2. Tools for Cache-Oblivious Data
Structures

2.1. Static Layout and Searches
We £rst present a cache-oblivious static search-tree struc-
ture, which is the starting point for our dynamic structure.
More precisely, given a base search tree, where each node
has O(1) children, we describe a mapping from the nodes
of the tree to positions in memory. We call this mapping
the van Emde Boas layout, because it resembles the recur-
sive structure in the van Emde Boas data structure [35, 36].3

Assuming the base tree has height Θ(logN), our structure
performs a search in Θ(logB N) memory transfers, which
is optimal to within a constant factor. Our layout is some-
what modi£ed from the layout for complete binary trees of
Prokop [25, pp. 61–62].

The basic idea of the van Emde Boas layout is simple.
Suppose the tree has height h, and suppose £rst that h is a
power of two. Conceptually split the tree at the middle level
of edges, between nodes of height h/2 and h/2 + 1. This
breaks the tree into the top recursive subtree A of height
h/2, and several bottom recursive subtrees B1, . . . , Bk of
height h/2. In particular, if all nonleaf nodes have the same
number of children, then the recursive subtrees all have size
roughly

√
N , and k is roughly

√
N . The layout of the tree

is obtained by recursively laying out each recursive subtree,
and combining these layouts in the order A, B1, . . . , Bk;
see Figure 1.

If h is not a power of two, the obvious form of round-
ing is to assign the top bh/2c levels to the top recursive
subtree, and the bottom dh/2e levels to the bottom recur-
sive subtrees. This rounding is satisfactory for the static
structure, but it is particularly useful for the dynamic struc-
ture to use a different rounding scheme. We assign a num-
ber of levels that is a power of two to the bottom recur-
sive subtrees, and assign the remaining levels to the top re-
cursive subtree. More precisely, the bottom subtrees have
height ddh/2ee (= bbh − 1cc) and the top subtree has height
h− ddh/2ee.

We now introduce the notion of levels of detail. This no-
tion is useful both for understanding why searches use few
memory transfers in the van Emde Boas layout and for un-
derstanding future manipulations of the layout. Any level

3We do not use a van Emde Boas tree—we use a normal tree with
pointers from each node to its parent and children—but the order of the
nodes in memory is reminiscent of van Emde Boas trees.

of detail is a partition of the tree into disjoint recursive sub-
trees. The £nest level of detail is level of detail 0, in which
each node is its own recursive subtree. The coarsest level of
detail, dlog2 he, is just the tree itself. In general, level of de-
tail k is derived by starting with the entire tree, recursively
partitioning it as described above, and exiting the recursion
whenever we reach a recursive subtree of height≤ 2k. Note
that according to the van Emde Boas layout, each recursive
subtree is stored in a contiguous block of memory.

One useful consequence of our method of rounding is the
following:

Lemma 1 At level of detail k, all recursive subtrees except
the one containing the root have the same height of 2k. The
recursive subtree containing the root has height between 1
and 2k inclusive.

Lemma 2 Consider an N -node search tree T that is stored
in a van Emde Boas layout. Suppose that each node
in T has between δ ≥ 2 and ∆ = O(1) children.
Let h be the height of T . Then a search in T uses at
most 4 dlogδ∆logB N + logB ∆e = O(logB N) memory
transfers.

2.2. Strongly Weight-Balanced Search Trees
In order to convert the static static layout into a dynamic lay-
out, we need a dynamic balanced search tree. Our structure
will ultimately require important properties of the balanced
search tree that most search trees lack. The £rst property is
that, whenever a node is rebalanced (modi£ed to keep the
tree balanced), we can afford to scan all of its descendants.
More formally, we require the following property:

Property 1 Suppose that whenever we rebalance a node v
we also touch all of v’s descendents. Then the amortized
number of elements that are touched per insertion is only
O(logN).

Many weight-balanced trees, such as BB[α] trees [22], have
this property [21]. A tree is weight-balanced if the left sub-
tree (including the root) and the right subtree (including the
root) have sizes that differ by at most a constant factor. This
is stronger than merely requiring that most modi£cations
are near the leaves.

We require a stronger form of weight-balancedness
that most weight-balanced trees lack. Standard weight-
balancedness only guarantees a relative bound between sub-
trees with a common root, so the size difference between
subtrees of the same height may be large. In contrast, a
strongly weight-balanced tree satis£es the following abso-
lute constraint, relating the sizes of all subtrees at the same
level.

Property 2 For some constant d, any node v at height h
has Θ(dh) descendents.

One search tree that satis£es Properties 1 and 2 is the
weight-balanced B-tree of Arge and Vitter [8], and we will
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Figure 1. The van Emde Boas layout of a tree of height 5.

use this structure in our cache-oblivious B-tree.

De£nition 3 (Weight-Balanced B-tree [8]) The weight
w(u) of a node u in a tree T is the size of the subtree
rooted at u. We say that T is a weight-balanced B-tree
with branching parameter d, where d > 4, if the following
conditions hold:4

1. All leaves of T have the same depth.
2. The root of T has more than one child.
3. Balance: Consider a nonroot node u at height h in

the tree. (Leaves have height 1.) The weight of u is
bounded as follows:

dh−1

2
≤ w(u) ≤ 2dh−1.

4. Amortization: If a nonroot node u at height h has just
been rebalanced, then we will need Ω(dh) insertions
and/or deletions before u is rebalanced again. That is,
w(u)−dh−1/2 = Θ(dh) and 2dh−1−w(u) = Θ(dh).

This de£nition yields the following lemma, which is proved
by a simple counting argument.

Lemma 4 [8] Consider a weight-balanced B-tree with
branching parameter d. The root has between 2 and 4d
children. All internal nodes have between d/4 and 4d chil-
dren. The height of the tree is O(logd N).

In this paper we need an additional property about
weight-balancedness of subtrees not containing leaves:

Lemma 5 Consider the subtree A of a weight-balanced B-
tree containing a node v, its children, its grand-children,
etc., down some number a of levels. Then |A| < 4da.

We now describe how to do inserts and deletes. In [8],
deletes are performed using the global rebalancing tech-
nique of [24], where deleted nodes are treated as “ghost”
nodes to be removed when the tree is periodically reassem-
bled. In this paper, we will need to service deletes immedi-
ately, which is a staightforward modi£cation of the presen-
tation in [8].

Insertions. We search down the tree to £nd where to in-
sert a new leaf w. After inserting w, some ancestors of w
may become unbalanced. That is, some ancestor node u at
height h may have weight higher than 2dh−1. We now bring

4In [8] there is also a leaf parameter k > 0, but we simply £x k = 1.

the ancestors of w into balance starting from the ancestors
closest to the leaves. (If a child of node u is split, this does
not affect the weight w(u) of u, and thus this is a good order
in which to rebalance.)

If a node u at height h is out of balance, then we
split u into two nodes u1 and u2, which share the node
u’s children, v1, . . . , vk. In general we cannot partition
v1, . . . , vk between u1 and u2 so that w(u1) and w(u2)
are exactly equal (unless we rebalance u’s grandchildren,
great-grandchildren, etc). However, we can divide the chil-
dren fairly evenly as follows. Find the longest sequence of
v1, . . . , vk′ such that their total weight is at most dw(u)/2e,
that is,

∑k′

i=1 w(vi) ≤ dw(u)/2e. Thus, the smallest value
w(u1) can have is dw(u)/2e − 2dh−2 + 1 and the largest
value that w(u1) can have is dw(u)/2e. Therefore, w(u2)
is bounded as follows: bw(u)/2c ≤ w(v2) ≤ bw(u)/2c +
2dh−2− 1. Because d > 4, we continue to satisfy the prop-
erties of De£nition 3. In particular, at leastΘ(dh) insertions
or deletions are needed before either u1 or u2 is split.

Deletions. Deletions are similar to insertions. As before,
we search down the tree to £nd which leaf w to delete. After
deleting w, some ancestors of w may become unbalanced.
That is, some ancestor node u at height h may have weight
lower than 1

2
dh−1. As before, we bring the ancestors of

w into balance starting from the ancestors closest to the
leaves. We merge u with one of its neighbors. After merg-
ing u, however, it might now have a weight larger than its
upper bound, so we immediately split it into two nodes as
described in the insertion algorithm. (This may alternatively
be viewed as u stealing children from its neighbor.)

These properties are also satis£ed by the skip list data
structure of [26] in the expected sense.

Lemma 6 Skip lists satisfy Properties 1 and 2 in the ex-
pected sense.

We conjecture that if our cache-oblivious B-tree is built
with a skip list instead of a weight-balanced B-tree, we ob-
tain the same (expected) bounds. Because a more delicate
analysis is required to analyze this structure, we opt for a
deterministic structure.

Finally, by Lemma 2, we obtain the following corollary:

Corollary 7 Searching in a strongly weight-balanced
search tree stored in the van Emde Boas layout costs at most



O(1 + logB N) memory transfers.

2.3. Packed-Memory Maintenance

Now we describe a data structure that will help us main-
tain a dynamic van Emde Boas layout of a strongly weight-
balanced search tree. The primary dif£culty is that we must
achieve two seemingly contradictory goals. On one hand,
we should pack the nodes densely into memory to achieve
locality of reference. On the other hand, we should leave
enough extra space between the nodes to permit future in-
sertions. We develop a packed-memory structure to resolve
this dilemma.

In the packed-memory problem, we have N elements
x1, x2, . . . , xN to be stored in an array A of size O(N). The
elements have precedence constraints x1 ≺ x2 ≺ · · · ≺ xN

which determine the order of the elements in memory. We
must support two update operations: a new element may
be inserted between two existing elements, and an existing
element may be deleted. We must maintain the following
invariants throughout the dynamic changes of the elements:

1. xi precedes xj in array A precisely if xi ≺ xj .
2. The elements are evenly distributed in the array A.

That is, any set of k contiguous elements xi1 , . . . , xik

is stored in a contiguous subarray of size O(k).
In order to maintain these invariants, elements must

move in the array. A na΅ve solution is to maintain all N
elements tightly packed in exactly N memory cells. Now
traversing the data structure uses at most dN/Be+ 1 mem-
ory transfers, which is within 1 of optimal. Unfortunately,
a single insertion requires Θ(N/B) memory transfers, be-
cause all the elements may have to be moved to make room
for one more.

Our solution has the following performance guarantees:
1. Scanning any set of k contiguous elements

xi1 , . . . , xik uses O(1 + k/B) memory transfers.

2. Inserting or deleting a new element uses O(1+ log2 N
B

)
amortized memory transfers.

Our solution is closely related to the paper of Itai, Konheim,
and Rodeh [19]. They consider the problem of storing ele-
ments in an array to maintain the £rst invariant. Their cost
measure is the number of elements touched, and they ob-
tain an O(log2 N) amortized bound. Willard [40, 41, 42]
presents a more complicated data structure that achieves an
O(log2 N) worst-case bound.5

Described roughly, our packed-memory structure is as
follows. When a window of the array becomes too full or
too empty, we evenly spread out the elements within a larger
window. For correctness and ef£ciency we must set the fol-
lowing parameters: (1) the window size, and (2) the thresh-
olds determining when a window is too full or too empty.

5This problem is closely related to, but distinct from, the problem of
answering linked-list order queries. See for example [13].

Because rebalancing simply involves a scan of elements,
we achieve the desired bound on memory transfers:

Theorem 8 The packed-memory problem can be solved in

O(1 + log2 N
B

) amortized memory transfers per insert and
delete.

Now whenever we require extra space for a new node
to insert into the strongly weight-balanced search tree, the
packed-memory structure makes room in O(1 + log2 N

B
)

amortized memory transfers.

3. Main Structure
Our main structure is the weight-balanced B-tree (described
in Section 2.2) organized according to the van Emde Boas
layout (described in Section 2.1). This section demonstrates
how to update the weight-balanced B-tree structure, while
maintaining the van Emde Boas layout and using few mem-
ory transfers.

There are four components to the cost of an update:
1. The initial cost of searching for the given element,

which is O(logB N) memory transfers by Lemma 2
in Section 2.1.

2. The cost of making room for nodes by using the
packed-memory structure from Section 2.3. By The-
orem 8, this cost is O(1 + log2 N

B
) amortized memory

transfers.
3. The cost of updating pointers to any nodes moved as

a result of the packed-memory structure. In the data
structure presented in Section 3.1, we will only be
able to obtain the (poor) bound of O(log2 N) amor-
tized memory transfers. In Sections 3.2–3.4, we will
use the idea of buffer nodes to improve this to O(1 +
logB√

B
log2 N) amortized memory transfers.

4. The remaining cost of modifying the structure of the
tree to accomodate splits and merges caused by an up-
date. This is the topic of Section 3.1. We will show that
this cost is O(1 + logN

B
) amortized memory transfers.

At the end of this section, we will obtain the following:

Theorem 9 The data structure with buffer nodes maintains
an ordered set, subject to searches in O(logB N) mem-
ory transfers, scans of k elements in O(1 + k/B) mem-
ory transfers, and insertions and deletions in O(logB N +
logB√

B
log2 N) amortized memory transfers.

Corollary 10 If B = Ω((logN)2(log logN)4), then in-
sertions and deletions take O(logB N) amortized memory
transfers, which matches the B-tree bound.

3.1. Splits and Merges
In this section, we outline the entire insertion and deletion
algorithms for our structure, and then we analyze the cost
of splits and merges (Cost 4 above). Splits and merges
cause signi£cant changes to the van Emde Boas layout. This



means that we need to move large blocks of nodes around
in memory to maintain the proper layout.

An insertion or deletion into a weight-balanced B-tree
consists of splits and merges along a leaf-to-root path, start-
ing at a leaf and ending at a node at some height. We
will show how to split or merge a node at height h in
O(1 + dh/B) memory transfers plus the memory transfers
from a single packed-memory insertion or deletion. By the
last property in De£nition 3, the amortized split-merge cost
of rebalancing a node v is O(1/B) memory transfers per
insertion or deletion into the subtree rooted at v. When we
insert or delete an element, this element is added or removed
in O(logN) such subtrees. Hence, the split-merge cost of
an update is O(1 + logN

B
) amortized memory transfers.

Next we describe the algorithm to split a node v. First, if
v is the root of the tree, we insert a new root node at the be-
ginning of the £le, and add parent-child pointers. Because
of the rounding scheme in the van Emde Boas layout, the
rest of the layout does not change when the height of the
tree changes.

Second, we insert a new node v′ into the packed-memory
structure, immediately after v (Cost 2 above). The packed-
memory insert may cause several nodes to move in memory,
in which case we also update the pointers to those nodes
(Cost 3 above). Then we redistribute the pointers among v
and v′ according to the split algorithm of weight-balanced
B-trees, using O(1) memory transfers.

Third, we need to repair the van Emde Boas layout. Con-
sider the coarsest level of detail in which v is the root of a
recursive subtree S. Suppose S has height h′, which can
only be smaller than h, the height of node v. Let S be com-
posed of top recursive subtree A of height h′ − bbh′/2cc
and bottom recursive subtrees B1, . . . , Bk each of height
bbh′/2cc; refer to Figure 2. The split algorithm recursively
splits A into A′ and A′′. (In the base case, A is the singleton
tree {v} and is already split into {v} and {v′}.)

At this point, A′ and A′′ are next to each other. Now
we must move them to the appropriate locations in the van
Emde Boas layout. Let B1, . . . , Bi be the children recur-
sive subtrees of A′, and let Bi+1, . . . , Bk be the children
recursive subtrees of A′′. We need to move B1, . . . , Bi in
between A′ and A′′. This move is accomplished by three
linear scans. Speci£cally, we scan to copy A ′′ to some tem-
porary space, then we scan to copy B1, . . . , Bi immediately
after A′, overwriting A′′, and then we scan to copy the tem-
porary space containing A′′ to immediately after Bi.

Now that A′′ and B1, . . . , Bi have been moved, we
need to update the pointers to the nodes in these blocks.
First we scan through the nodes in A′, and update the
child pointers of the leaves to point to the new locations
of B1, . . . , Bi. That is, we increase the pointers by ‖A′′‖,
the amount of space occupied in the packed-memory struc-
ture by A′′, including unused nodes. Second we update the

parent pointers of Bi+1, . . . , Bk to A′′, decreasing them by
‖B1‖+ · · ·+ ‖Bk‖. Finally, we scan the recursive subtrees
of height h′ that are children of B1, . . . , Bi, and update the
parent pointers of the roots, decreasing them by ‖A′′‖. This
can be done in a single scan because the children recursive
subtrees of B1, . . . , Bi are stored contiguously.

Finally, we analyze the number of memory transfers
made by moving blocks at all levels of detail. At each level
h′ of the recursion, we perform a scan of all the nodes at
most 6 times (3 for the move, and 3 for the pointer updates).
By Property 2, these scans cost at most O(1+dh

′

/B)mem-
ory transfers. The total split-merge cost is given by the cost
of recursing on the top recursive subtree of at most half the
height, and by the cost of the 6 scans. This recurrence is
dominated by the top level:

T (h′) ≤ T (h′/2)+c
(

1 + dh′

B

)

≤ c
(

1 + dh′

B

)

+O
(

dh′/2

B

)

.

Hence, the cost of a split is O(1 + dh
′

/B) ≤ O(1 + dh/B)
memory transfers, plus the cost of a packed-memory inser-
tion.

Merges can be performed within the same memory-
transfer bound by using the same overall algorithm. In
the beginning, we merge two nodes and apply a packed-
memory deletion. In each step of the recursion, we perform
the above algorithm in reverse, i.e., the opposite transfor-
mation from Figure 2.

Therefore, Cost 4 is small:

Lemma 11 The split-merge cost is O(1+ logN
B
) amortized

memory transfers per insertion or deletion.

3.2. Local Versus Long-Distance Nodes
So far we have shown that Costs 1, 2, and 4 are reason-
ably small, O(logB N + log2 N

B
) amortized memory trans-

fers. It remains to show how to bound Cost 3, the cost of
updating pointers to nodes moved by the packed-memory
structure. Super£cially it appears suf£cient to apply the
packed-memory structure to move nodes, and we have al-
ready bounded this cost by O( log2 N

B
). Unfortunately, up-

dating pointers to nodes that have moved is often signi£-
cantly more expensive. This is because the moved nodes
are always consecutive in memory, but the nodes that point
to them (parents and children) may each be in a different
memory block. Thus, we may incur an additional mem-
ory transfer for each pointer update, for an (unimpressive)
bound of O(log2 N) amortized memory transfers per up-
date in the packed-memory structure.

In order to provide a bound on the number of additional
memory transfers, we de£ne two classes of nodes, local
nodes and long-distance nodes. Informally, a local node
is a node whose immediate family (parent and children)
are within distance B in memory, and hence in the same
or abutting memory block. Otherwise, a node is a long-
distance node. (This terminology is based on the telephone
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Figure 2. Splitting a node. The top shows the modi£cation in the recursive subtree S, and the bottom
shows the modi£cation in the van Emde Boas layout.

system: it is cheaper to call your parents and children if the
call is local instead of long-distance.)

In order to identify which nodes are local nodes and
which nodes may be long-distance nodes, we examine the
van Emde Boas layout at the appropriate level of detail. We
consider the coarsest level of detail ` such that the leaf re-
cursive subtrees (those containing leaves of the tree) have at
most B nodes.

Lemma 12 The leaf recursive subtrees at level of detail `
have Ω(

√
B) nodes.

We distinguish three types of nodes within each recursive
subtree, the root, the leaves, and the internal nodes. Refer
to Figure 3. All internal nodes are local nodes, because
their immediate family is in the same recursive subtree. The
root of each recursive subtree may be a long-distance node,
because its parent is in a different recursive subtree. The
leaves of the whole tree (i.e., the leaves of the leaf recursive
subtrees) are all local nodes. The leaves of nonleaf recursive
subtrees may be long-distance nodes, because their children
are in different recursive subtrees.

bblogBcc

Figure 3. Local nodes (white) and long-
distance nodes (gray).

In the nonleaf recursive subtrees, half of the nodes are
long-distance nodes. To simplify the analysis, we treat all
nodes in nonleaf recursive subtrees as long-distance nodes.

Lemma 13 Within the subtree rooted at any node in a
strongly weight-balanced search tree, O(1/

√
B) of the

nodes are long-distance nodes.

In particular, in the entire tree a fraction of O(1/
√
B)

of the nodes are long-distance nodes. If the long-distance

nodes were evenly distributed in the van Emde Boas lay-
out, we could immediately obtain a bound of O( log2 N√

B
) on

Cost 3. However, local nodes are clustered near the leaves,
and long-distance nodes are also clustered; see Figure 4.
This clustering is not directly a problem because updates in
the strongly weight-balanced search tree are concentrated
near the leaves. Unfortunately, some leaves are located near
large clusters of long-distance nodes. Therefore, when we
insert a leaf into the packed-memory structure, it may move
many long-distance nodes, where each move costs an addi-
tional memory transfer.

4
√
N 4
√
N 4

√
N 4

√
N 4
√
N 4

√
N
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√
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√
N

√
N
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5

Figure 4. Distribution of local and long-
distance nodes in the van Emde Boas layout.
Shaded regions are mostly long-distance
nodes, and the clear regions are local nodes.
In this example, regions 3, 4, 6, 7 are leaf re-
cursive subtrees at level of detail `.

3.3. Buffer Nodes
We need to prevent long-distance nodes from being moved
around too much by the packed-memory structure. Because
we do not know the memory block size B, we do not know
which nodes are local and which are long-distance. Thus we
need to protect all nodes that might be long-distance nodes.
We do this by inserting buffers of dummy nodes around
each cluster of potential long-distance nodes. These buffer
nodes do not participate in the tree structure (i.e., they have



no parent and child pointers), so they are automatically lo-
cal nodes and can be moved cheaply by the packed-memory
structure.

Buffer nodes are placed as follows. Recall that the van
Emde Boas layout of a subtree T is the layout of the top re-
cursive subtree A, followed by the layouts of the bottom
recursive subtrees B1, . . . , Bk. Depending on the mem-
ory block size, it may be that we are at precisely the level
of detail `, i.e., the Bi’s are the leaf recursive subtrees.
In this case, recursive subtree A has mostly long-distance
nodes, so we must separate it from adjacent recursive sub-
trees of local nodes. For example, at level of detail 1 in
Figure 1, {17, 18, 19} is a recursive tree of mostly long-
distance nodes, and it is adjacent to leaf recursive subtrees
{14, 15, 16} and {20, 21, 22}.

Our solution is to add two buffers, each with dh−1/h
nodes, one immediately before A and the other immedi-
ately after A. Now A has been separated from its neigh-
bors, so we recursively lay it out with the normal van Emde
Boas layout. This may have been too coarse a level of de-
tail, so we recursively layout the bottom recursive subtrees
B1, . . . , Bk using the buffered van Emde Boas layout.

We have carefully chosen the size of the buffers to sat-
isfy two seemingly con¤icting properties. First, the buffers
are much larger (nearly quadratically) than the top recursive
subtree they barrier. Second, the total size of any recursive
subtree is still linear in the number of contained tree nodes,
so the query bound from Lemma 2 still holds.

Lemma 14 The buffers adjacent to top recursive subtree A
have size Ω(|A|2/ log |A|).
Lemma 15 The total size of buffers, contained in a recur-
sive subtree at any level of detail, is linear in the number of
tree nodes in that subtree. In particular, the data structure
has linear size.

Proof: Focus on the recursive subtree S of interest, and
let h be its height. Associate the buffers surrounding A
with the root of A. Recall that A is layed out using the
normal van Emde Boas layout, without recursive buffers.
Thus, each node in S is associated with at most two buffers.
Furthermore, only nodes at height h, ddh/2ee, ddh/2ee/2,
ddh/2ee/4, . . . are associated with buffers. Thus, it suf-
£ces to count nodes at those heights and multiply them by
the size of the corresponding buffers. By strong weight-
balancedness, the number of descendants of a node at height
h is at least 1

2
dh−1, so the number of nodes at height h is

at most 2|S|/dh−1. Hence the total size of buffers at height
2i within S is at most (2|S|/d2i−1)(2d2i−1/2i) = 4|S|/2i.
Summing over all i, the total size of all buffers in S is at
most 4|S|+ 4|S|/2 + 4|S|/4 + 4|S|/8 + · · · ≤ 8|S|. 2

Next we describe how to maintain buffers during splits
and merges. Before a split, there is a buffer before A and
after A. We leave the £rst buffer before A, i.e., A ′, and

move the second buffer to after A′′. We move half of the
buffer before A′ to after A′ (by performing a block swap
in three linear scans), and move half of the buffer after A′′

to before A′′. Then we double the sizes of the buffers by
inserting buffer nodes into their middles using the packed-
memory structure. Similarly, a merge is done as follows.
First we move the buffer after A′ to before A′, and move
the buffer before A′′ to after A′′, using linear scans. Then
we halve the sizes of the buffers by deleting buffer nodes
from their middles, using the packed-memory structure.

3.4. Cost of Updating Pointers
In this section, we show that buffers reduce the cost of up-
dating pointers, which is the culmination of our analysis.

Lemma 16 Consider a node v that is either in a leaf recur-
sive subtree in level of detail ` or a buffer node in the middle
of a buffer. Consider any interval I of packed memory con-
taining v. Then the number of long-distance nodes in I is
at most O(1 + logB√

B
|I|).

Proof: Consider building the interval by walking from v.
By construction, before we encounter a cluster of x long-
distance nodes, we will £rst hit a cluster of Ω(x2/ log x)
buffer nodes, which are local nodes. Hence, the ratio of
long-distance to local nodes is O( log x

x
), which is largest

when x is small. The smallest cluster of long-distance
nodes has size x = Ω(

√
B), so the worst possible ratio is

O( logB√
B
). 2

Lemma 17 The pointer-update cost is O(1+ logB√
B
log2 N)

amortized memory transfers per insertion or deletion.

Proof: An insertion or deletion in the tree consists of splits
and/or merges in the tree, which cause insertions and/or
deletions in the packed-memory structure. We analyze the
cost of these packed-memory updates separately in three
cases, and the total cost is their sum.

1. A node v is inserted or deleted in the packed-memory
structure within a leaf recursive subtree. The packed-
memory structure moves some interval I of nodes con-
taining v. By Lemma 16, there are O(1 + logB√

B
|I|)

long-distance nodes in I . Thus, the amortized cost
of a packed-memory move is O( logB√

B
) memory trans-

fers. By the last property in De£nition 3, the amor-
tized number of packed-memory updates in this region
is O(1) per tree update. The product of these two val-
ues is O( logB√

B
).

2. A node v is inserted or deleted in the packed-memory
structure in a nonleaf recursive subtree. In this case,
the cost of a packed-memory move is O(1) memory
transfers. By the last property in De£nition 3 and by
Lemma 12, the amortized number of packed-memory
updates in this region is O(1/

√
B) per tree update.

The product is O(1/
√
B).



3. A node v is inserted or deleted in the packed-memory
structure in the middle of a buffer. Similar to Case 1,
by Lemma 16, the amortized cost of a packed-memory
move is O( logB√

B
) memory transfers. By the last prop-

erty in De£nition 3 and by Lemma 15, the amortized
number of packed-memory updates in this region is
O(1) per tree update. The product is O( logB√

B
).

By Theorem 8, the amortized number of packed-memory
moves per packed-memory update is O(log2 N). Combin-
ing with the above products, the total amortized cost per tree
update is O(1 + logB√

B
log2 N) memory transfers. 2

This lemma concludes the proof of the update bounds in
Theorem 9.

3.5. Queries
Scans can be supported optimally by introducing cousin
pointers between adjacent leaves. This modi£cation does
not increase the pointer-update cost by more than O(1)
memory transfers. For if an interval of leaves is moved
by the packed-memory structure, only the pointers in those
leaves and their two neighbors are affected.

Fingers can be implemented in a similar way, without
changing the update bounds, by adding cousin pointers to
all nodes. The analysis of the additional pointer-update cost
is left to the full paper.

4. Using Indirection
First we show how to use one level of indirection to reduce
the bounds in Theorem 9 to the bounds we claimed in the
introduction. We store the data structure in two arrays. The
leaf array stores all N of the elements, logically grouped
into blocks of size Θ(logN). The tree array stores the
cache-oblivious search-tree structure from Section 3 con-
taining the £rst element in each block of the leaf array, for
a total of Θ(N/ logN) elements. Each leaf of the tree ar-
ray points to the corresponding block in the leaf array (child
pointers), but there are no pointers from the leaf array to the
tree array (parent pointers).

We use one of two structures to store the leaf array, de-
pending on the data structure that we ultimately want to
build. Either we maintain the leaf-array blocks ordered into
one £le using the packed-memory structure, or we store
them unordered in arbitrary locations in the array. In either
case, insertions and deletions to the structure cause local
modi£cations to blocks. Whenever a block becomes full or
a constant-fraction empty, we split or merge it, respectively,
causing an insertion or deletion into the tree array. Thus,
only a fraction of O(1/ logN) of the insertions and dele-
tions into the data structure cause modi£cations to the tree
array. Consequently the amortized cost of updating the tree
array is O(logB N) + O( logB

B
logN) = O(logB N). A

query takes O(logB N)memory transfers to search through

the tree array, plus O( logN
B
) memory transfers to scan

through a block in the leaf array.
If we wish to support scanning k consecutive elements in

O(1 + k/B) time, then the blocks in the leaf array must be
maintained consecutively using the packed-memory struc-
ture. As a result, inserting or deleting an element in a
leaf-array block costs O( log2 N

B
) amortized memory trans-

fers to move nodes. Because moving k elements only af-
fects O(1 + k/ logN) pointers to the leaf array, we can up-
date these pointers in O(1+k/(B logN)) time by scanning
leaves of the tree array.

Theorem 18 The indirect data structure with ordered leaf
blocks maintains an ordered set, subject to searches in
O(logB N) memory transfers, insertions and deletions in

O(logB N+ log2 N
B

) amortized memory transfers, and scan-
ning k consecutive elements in O(1 + k/B) memory trans-
fers.

If scanning is not required, we can instead store the
blocks in the leaf array in an arbitrary order. This change
means that we no longer need the packed-memory struc-
ture, so the update cost matches that of B-trees:

Theorem 19 The indirect data structure with unordered
leaf blocks maintains an ordered set, subject to searches in
O(logB N) memory transfers, and insertions and deletions
in O(logB N) amortized memory transfers.

In fact, we can use two levels of indirection to avoid the
use of buffer nodes. The top level stores O(N/ log2 N)
nodes in the search-tree structure from Section 3.1. The
middle and bottom levels are composed of blocks of
Θ(logN) nodes. Depending on how blocks are maintained,
we obtain the bounds in Theorem 18 or Theorem 19.

5. Conclusion
We have presented cache-oblivious search-tree data struc-
tures that perform searches optimally. One data struc-
ture is stored in a single £le, permitting optimal scans and
searches from any node in the tree. The insertion and dele-
tion costs for this data structure match the B-tree bound
for B = Ω((logN)2(log logN)4). A second data struc-
ture uses indirection and performs scans optimally. For this
structure, insertions and deletions match the B-tree bound
for B = Ω(logN log logN). A third data structure also
uses indirection, and insertions and deletions always match
the B-tree bound. We believe this work to be an important
step in the emerging area of dynamic irregular data struc-
tures in the cache-oblivious model.
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