
Lossless Fault-Tolerant Data Structures
with Additive Overhead

Paul Christiano, Erik D. Demaine?, and Shaunak Kishore

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St.,
Cambridge, MA 02139, USA, {paulfc,edemaine,skishore}@mit.edu

Abstract. We develop the first dynamic data structures that tolerate δ
memory faults, lose no data, and incur only an Õ(δ) additive overhead
in overall space and time per operation. We obtain such data structures
for arrays, linked lists, binary search trees, interval trees, predecessor
search, and suffix trees. Like previous data structures, δ must be known
in advance, but we show how to restore pristine state in linear time,
in parallel with queries, making δ just a bound on the rate of memory
faults. Our data structures require Θ(δ) words of safe memory during an
operation, which may not be theoretically necessary but seems a practical
assumption.

1 Introduction

As computer memory systems increase in size, complexity, and density, so does
the chance that some bit flips during the lifetime of a computation or database.
A survey of practical studies [14] concludes that 1,000–5,000 soft errors (not
caused by permanent hardware failure) per billion hours per megabit is typical
on modern memory devices. On a modern PC with 24 gigabytes of memory, this
rate would imply one failure roughly every one to five hours. A recent study on
production Ask.com servers [12] suggests that the observed rate of soft errors on
ECC SDRAM is only 0.56 per billion hours per megabit, or roughly one failure
per year.

While these failure rates are reasonably small, in a complex data structure,
a single bit error can be catastrophic. For example, corrupting a single pointer
can make most of a data structure unreachable, losing data and likely causing
the system to crash. A natural problem, considered over the past 15 years, is
to design data structures that do not crash after a small number of memory
faults. Here we aim for the stronger property of losing none of the data in the
structure, preventing any higher-level algorithm from crashing. More precisely,
we develop data structures that tolerate a reasonable rate of memory failures
while remaining correct and efficient.

? Supported in part by MADALGO — Center for Massive Data Algorithmics — a
Center of the Danish National Research Foundation.

Model. Our model of failure-prone computation is the faulty RAM of [11]. At
any time, an adversary can corrupt the value of any word in the random-access
memory to an arbitrary value, provided that the total number of corrupted words
remains at most a known parameter δ. A fault-tolerant algorithm nonetheless
reports the same result as if no words were changed; if all operations are fault
tolerant, we call the data structure fault tolerant or lossless.

In addition to the main memory, we assume a working store of memory
that cannot fail (e.g., CPU registers and level-1 cache) during the execution
of a single operation. The working store is temporary, and cannot be used to
store actual data between operations. This ephemerality means that the model
supports multiple data structures with a single working store (CPU hardware).
Naturally, our results also hold if there is no working store, but the adversary
can modify words only between operations and not during (e.g., external storage
media that might be damaged between uses).

While we state results in terms of an upper bound δ on the total number
of faults, our data structures in fact support live recovery. In O(δ) time, we
can examine a block of O(δ) consecutive memory locations, correct all errors
within the block, restoring it to the state as if the errors never occurred. In
this way, the recovery process can proceed in parallel with other operations
with minimal locking, can be parallelized over multiple threads, and performs
well when memory transfers occur in blocks. Thus δ really becomes an upper
bound on the number of faults that can occur between passes of a background
linear-time recovery process.

Our results. We develop the first fault-tolerant data structures that are simul-
taneously lossless and dynamic, as well as the first fault-tolerant data structures
that are simultaneously lossless and efficient, requiring only an additive Õ(δ)
overhead in overall space and per-operation time. Furthermore, we show that
our techniques apply to a wide family of dynamic data structures: arrays, linked
lists, binary search trees, interval trees, predecessor structures, and suffix trees.
By contrast, previous work considered only dictionaries supporting membership,
linked lists, and static problems; and either lost data from memory errors, or
was static and required a lengthy recovery process.

Table 1 summarizes our results and how they compare to previous work. All
of the problems we consider have a trivial Ω(δ) lower bound on query time and
overall space: with o(δ) time, everything examined can be corrupted, and with
o(δ) space, some information must be lost. Hence, other than our interval trees
which have an additional Θ(log δ) factor, our time and space bounds are optimal.
The only suboptimal part is the requirement of Θ(δ) words of working store.
Improving this bound would require an advance in decoding error-correcting
codes of size Θ(δ) using failure-prone intermediate results.

Our data structures require δO(1) preprocessing time at the very beginning to
construct the necessary error-correcting codes. The dynamic interval tree data
structure (Section 5.1) uses randomization to solve stabbing queries, making
them prone to reporting corrupted results. Assuming an oblivious adversary,
each stabbing query is guaranteed to succeed with probability 1 − ε by spend-

Loss/ Time/op. Space Working
Problem

error overhead overhead store
Model Ref.

Dynamic linked list 0 +O(δ) +O(δ) O(δ) RAM 2.7
Dynamic hash table 0 +O(δ) +O(δ) O(δ) RAM 2.8
Dynamic predecessor 0 +O(δ) +O(δ) O(δ) RAM 3.1
Dynamic binary search tree 0 +O(δ) +O(δ) O(δ) RAM 3.1
Dynamic interval tree 0 +O(δ lg δ),× lg 1

ε
+O(δ lg δ) O(δ) RAM 5.1

Suffix tree construction 0 +O(δ) +O(δ) O(δ) RAM 4.1

Dynamic linked list O(δ) O(1) O(1) O(δ) pointer [2]
Dynamic binary search tree O(δ) O(1) O(1) O(δ) pointer [2]
Static sorting 1 +O(δ) +O(δ) O(1) RAM [9]
Static search 1 +δ +O(δ) O(1) RAM [9]
Dynamic search tree 1 +O(δ) +O(δ) O(1) RAM [8]
Dynamic hash table 1 +O(δ) +O(δ) O(1) RAM [8]
Dynamic priority queues 1 +O(δ) +O(δ) O(1) RAM [3]

Static dictionary, δ = O(n) 0 O(1) 22O(
√

lg n)
O(1) cell probe [6]

Table 1. Summary of new and previous on fault-tolerant data structures. All time
bounds are amortized. Here δ denotes the upper bound on the number of faults, and
ε denotes query failure probability (guaranteed to be 0 except where ε appears in
bounds). Quantities (including δ) are measured in words (elements).

ing a factor of O(1/ε) in time. We analyze according to an adaptive adversary
(following [11]), which enables the adversary to corrupt any δ additional queries.

Related work. Finocchi and Italiano [11] introduced the faulty-memory RAM
model of failure-prone computation that we use, which led to the bulk of the
research in fault-tolerant data structures [9,8,3]. All of the results in this line,
however, tolerate the loss of one data element per fault, replacing it with an
arbitrary corrupted value. The idea behind this tolerance was to obtain better
bounds—additive instead of multiplicative Õ(δ) overheads—by avoiding repli-
cation. (Hence the conference version of [11] had a title ending “. . . (without
redundancy)”.). Our data structures show, however, that it is possible to never
lose data yet keep additive Õ(δ) overheads.

Before the work in the RAM model, Aumann and Bender [2] considered
analogous problems in the pointer machine. Here it is necessary to assume that
O(δ) nodes of the structure cannot be corrupted, in order not to lose the entire
structure. Furthermore, because the model essentially prevents low-level manip-
ulation of data, without replication pointer-machine data structures necessarily
lose data from each error.

The only other work that considers lossless data structures is by de Wolf
[6]. His results are all static, and rely on locally decodable codes, for which an
optimal trade-off between local decodability and total space is an open problem.
As far as we know, the best known upper bound on space for a static dictionary
is superpolynomial in n, as indicated in Table 1.

2 Fundamental Techniques

Previous results in fault-tolerant data structures use one of two techniques to
store data in faulty memory: data replication or error-correcting codes. On the
one hand, a single word can be reliably stored by maintaining Θ(δ) copies—the
resilient variables of [10]. A resilient variable can be accessed quickly, but re-
quires Θ(δ) multiplicative space overhead. On the other hand, δ words can be
reliably stored in an error-correcting code of size Θ(δ). Although error-correcting
codes reduce the space overhead, reading a single word from an error-correcting
code requires Θ(δ) time. Our main contribution is the introduction of data struc-
tures that combine these two techniques to achieve simultaneous space and time
efficiency.

2.1 Blocked Fault-Tolerant Data Structures

Our data structures consist of “fault-tolerant blocks”, which interpolate grace-
fully between the performance of resilient variables and error-correcting codes.
To construct fault-tolerant blocks, we use the linear-time encodable and decod-
able error-correcting codes due to Spielman [13]. A concise statement of some of
their results is the following:

Theorem 2.1. [13] In kO(1) time, we can compute an O(k)-size description Ck
of an error-correcting code which can be used as input to encoding and decoding
algorithms E and D. Given a string x of k words, E(x,Ck) encodes x into a
string y of O(k) words such that any string z differing from y on at most k words
can be decoded: D(z, Ck) = x.

We call k the multiplicity of the error-correcting code. For our purposes, this
quantity is both the number of words stored by the code and the maximum
number of word errors the code corrects. We will always set the multiplicity k to
a power of 2 between 1 and δ. When creating any fault-tolerant data structure,
we precompute Ck for each of these values of k. Because these descriptions have
total size O(δ), we can store them all in safe memory. This precomputation takes
δO(1) time, constituting the preprocessing needed by our data structures.

A fault-tolerant block of multiplicity k stores a k-word string x in Θ(δ) space
by storing d 2δ+1

k e copies of the error-correcting code E(x,Ck) contiguously in
memory. Our data structures will call for fault-tolerant blocks of varying multi-
plicities. When a small amount of data must be accessed frequently, we will store
it in fault-tolerant blocks of constant multiplicity; in this limit, fault-tolerant
blocks reduce to resilient variables. When a large amount of data must be ac-
cessed infrequently, we will store it in fault-tolerant blocks of multiplicity Θ(δ);
in this limit, at least in spirit, a fault-tolerant block reduces to a single error-
correcting code which corrects δ errors. In between these two extremes, we obtain
useful trade-offs between space and time costs.

The data in a fault-tolerant block cannot be corrupted by fewer than δ + 1
word errors. The value stored in an error-correcting code in a fault-tolerant block

of multiplicity k can only be changed if more than k of its words are corrupted.
Thus the total multiplicity of all corrupted codes is at most δ, while the total
multiplicity of all codes is at least 2δ + 1. It follows that the value stored in
a fault-tolerant block can be correctly recovered in time O(δ) by decoding all
of its error-correcting codes and taking the majority value. We can remove all
errors from a fault-tolerant block by safely reading its value in this way and then
writing a new fault-tolerant block which stores that value without errors.

A blocked fault-tolerant data structure is an array of fault-tolerant blocks;
see Fig. 1. All of our fault-tolerant data structures are blocked. One benefit is
that error detection and correction can be performed locally as described above.
The problem of removing all errors from a blocked fault-tolerant data structure
is embarrassingly parallel. (However, each parallel processor needs its own O(δ)
working store of safe memory.)

Theorem 2.2 (Live recovery). All errors can be removed from a blocked fault-
tolerant data structure of size n by p ≤ n

δ processors in O(n/p) time.

2.2 Fault-Resistant Operations Θ(δ)

index 3

block 1:

block 2:

block 3:

block 4:

block 5:

4 4

2 2 2 2

1 1 1 1 1 1 1 1

8

2 2 2 2

Fig. 1. Blocked data structures con-
sist of a sequence of blocks each di-
vided into Θ(δ/k) codes of multi-
plicity k, for varying (power-of-two)
values of k. If the prejudice number
is 3, then an operation will read the
shaded codes. The index 3 is faulty
if any of those codes are faulty.

We can read a fault-tolerant block of mul-
tiplicity k in time O(k) rather than O(δ)
by reading only one of its d 2δ+1

k e error-
correcting codes. This speed-up comes at the
expense of accuracy: by corrupting k < δ
memory locations, an adversary may change
the value returned by this operation. Our
general approach is to compose fast but inac-
curate operations with slow but reliable end-
to-end verification. Whenever an operation
fails, we implicitly discover the location of a
memory fault, which we may avoid in the fu-
ture, enabling us to amortize away the cost.
In this section, we formalize this approach.

We adopt the notion of prejudice num-
bers from [10]. In their setting, each vari-
able is copied 2δ+1 times, and the prejudice
number p represents the minimal “trusted in-
dex.” Formally, whenever an operation needs to access a variable, it uses the pth
copy. If an operation fails, then a fault must have occured in the pth copy of some
variable, so the prejudice number is incremented and the operation repeated.

In our setting, the prejudice numbers play a slightly different role; refer to
Fig. 1. Each prejudice number p ∈ {1, 2, . . . , 2δ + 1} is associated with one error-
correcting code from each fault-tolerant block, as follows: in a fault-tolerant
block of multiplicity k, the prejudice number p is associated with the d pk eth
error-correcting code. Thus k prejudice numbers are assigned to any given error-
correcting code of multiplicity k.

An error-correcting code is faulty if it no longer decodes to the correct value.
A prejudice number is faulty if it is associated with some faulty code. Because
multiple prejudice numbers may be assigned to the same error-correcting code,
a single faulty code may cause multiple indices to become faulty. By simple
counting, we can bound the number of faulty indices:

Lemma 2.3. The number of faulty indices is at most the number of memory
faults.

An operation is fault-resistant if it succeeds when given a nonfaulty prejudice
number. We can fault-resistantly read a resilient variable in constant time by
reading the copy indexed by the prejudice number. Using a similar idea, we can
quickly read a fault-tolerant block:

Lemma 2.4. We can fault-resistantly read a fault-tolerant block of multiplicity
k in O(k) time.

2.3 Fault-Tolerant Operations

An operation is fault-tolerant if it always succeeds. In particular, fault-tolerant
operations do not depend on the choice of a prejudice number. In this section,
we describe our basic approach to implementing fault-tolerant operations, which
is to compose a fault-resistant query with fault-tolerant verification.

Lemma 2.5. If a query Q has a fault-resistant implementation that runs in t1
time and does not modify the data structure, and it is possible to fault-tolerantly
verify the result of Q in t2 time, then Q has a fault-tolerant implementation with
amortized running time O(t1 + t2), assuming at least δ invocations.

Proof (sketch). We start with prejudice number p = 1. Whenever we perform
an operation, we verify the result. If the operation failed, then we increment
the prejudice number p and try again. Because the original operation is fault-
resistant, we only need to repeat the operation if the prejudice number is faulty.
By Lemma 2.3, this happens at most δ times. Some technical details arise when
this transformation is applied in general and when Q is probabilistic, which we
address in the full version of the paper. �

2.4 Fault-Tolerant Memory

A fault-tolerant memory is a large array implemented by a sequence of fault-
tolerant blocks of multiplicity δ. Fault-tolerant memory allows us to establish a
relationship with data structures in the external-memory model.

Lemma 2.6. Suppose that an operation can be completed in the external-memory
model using T memory transfers and t computation steps, with block size B = δ
and local memory M = O(δ). Then the same operation can be completed fault-
tolerantly in the faulty RAM model in O(δT + t) time.

This correspondence does not generally produce efficient data structures be-
cause it does not make use of fault-tolerant blocks with lower multiplicities, but
it is helpful in some cases.

Theorem 2.7. There is a fault-tolerant linked list that stores n elements using
O(n + δ) space. It supports advancing a pointer k steps, inserting k elements,
and deleting k elements in O(k + δ) time.

Theorem 2.8. There is a fault-tolerant dictionary that stores n elements using
O(n+ δ) space and supports insertions, deletions, and lookups in O(δ) time per
operation.

3 Fault-Tolerant Predecessor

A predecessor data structure stores a set of keys xi from some fixed ordered
universe and supports insertions, deletions, and the predecessor query: given a
key x, find the largest xi that is at most x. Important examples of predecessor
structures include balanced binary search trees, van Emde Boas priority queues,
y-fast trees, and fusion trees.

We present a general technique for making any predecessor data structure
fault-tolerant. Asymptotically, the transformation introduces only O(δ) additive
space and time overhead. We require two technical conditions: (1) that prede-
cessor queries do not modify the data structure, and (2) that the space use
grows at least linearly with the number of keys. Splay trees do not satisfy the
first condition, although AVL trees, red-black trees, and scapegoat trees do. Van
Emde Boas queues whose size depends on the universe do not satisfy the second
condition, although van Emde Boas queues with hashing do.

Our construction is similar in spirit to the resilient dictionaries of [10]. The
main difference is that we use error-correcting codes within the leaves of our
structure rather than accepting a small number of errors. Our results also hold
for general predecessor structures rather than only for binary search trees. Our
amortized startup cost is higher, however: our amortization holds only after O(δ)
operations, rather than δε operations.

Theorem 3.1. Suppose that P is a predecessor data structure that stores n keys
in space s(n), supports queries in worst-case time tq(n) without modifying the
data structure, and supports updates in amortized time tu(n). Then there is a
fault-tolerant data structure P ′ that stores n keys in space O

(
δs

(
n
δ

))
, supports

queries in O(tq(n)+δ) amortized time, and supports updates in O(tq(n)+tu(n)+
δ) amortized time. The data structure also incurs δO(1) worst-case preprocessing
cost, plus an amortized startup cost of O(δ) operations. If the time bounds tq(n)
or tu(n) are valid only in expectation, then the amortized time bounds for P ′ are
also valid only in expectation.

Proof (sketch). We divide the keys into n
δ contiguous groups of size Θ(δ). We

choose one representative from each group, and put these n
δ representatives into

an instantiation of P which we call the summary structure. This copy of P is
stored in resilient variables (i.e., copied 2δ+ 1 times), while the keys themselves
are stored in fault-tolerant memory.

In order to find the predecessor of x, we perform a fault-resistant query in the
summary structure to find the group representative which precedes x. We then
fault-tolerantly access the corresponding group, and search for the predecessor
of x there. By Lemma 2.5, we can combine these operations to perform a fault-
tolerant predecessor query.

In order to insert or delete a key, we first perform a predecessor query to
find the group that should contain that key and then modify that group. Every
Ω(δ) operations, a group may grow too large or too small. When this happens,
we either split the group in two or merge it with an adjacent group, updating
the summary structure appropriately. �

4 Suffix Trees

A suffix tree stores a string S and supports the substring query: given a pat-
tern P , report the positions of all occurrences of P in S. Each character of S
may be an arbitrary machine word. Suffix trees occupy linear space, and can be
constructed in linear time plus the time required to sort the stored string [7]. In
this section, we describe a fault-tolerant suffix tree with the following guarantees:

Theorem 4.1. There is a fault-tolerant suffix tree that stores a string S of
length n in O(n + δ) space. The tree can be constructed in O(n log n + δ) time,
and supports substring queries in O(m+ k + δ) amortized time, where m is the
length of the pattern and k is the number of its occurrences. The data structure
also incurs δO(1) worst-case preprocessing cost, plus an amortized startup cost of
O(δ) operations.

Our construction is based on a new decomposition of a tree into short paths
and small subtrees, which we describe first. We then show how to to apply
this decomposition to build a suffix tree that supports fault-resistant substring
queries. Finally, we describe how to store some extra data which makes it possible
to efficiently verify the results of substring queries.

4.1 Fault-Resistant Tries

A trie is a rooted tree in which each edge is assigned a constant-size label. Each
vertex may also have a constant-size label. Tries support the retrieval operation:
given a pattern P of length m, return the vertex obtained by starting at the root
and walking down the tree, following the edges labeled by the corresponding ele-
ments of P . Let T be a trie of n nodes. We show how to build an implementation
of T that supports fault-resistant retrieval operations.

Fig. 2. Our fault-tolerant trie first de-
composes into micro trees, rooted sub-
trees of size at most δ, and splits the
remainder into nonbranching paths of
length at most δ. Here δ = 3.

First we partition T into micro trees
and micro paths as described by the fol-
lowing lemma; refer to Fig. 2.

Lemma 4.2. Any rooted tree on n
nodes can be partitioned into a collec-
tion of rooted subtrees of at most δ
nodes, called micro trees, and O(nδ)
paths of length at most δ, called micro
paths.

Proof (sketch). We start with the micro-
tree/macro-tree decomposition of [1].
Then we split non-branching paths in
the macro tree into subpaths of length
at most δ. �

The central idea of our construction
is to store a micro tree or micro path of size k in a fault-tolerant block of
multiplicity k. Every micro path traversed in a retrieval operation is read in
its entirety, except perhaps the last one. By storing each path in its own fault-
tolerant block, we are able to perform these accesses in total time that is linear
in |P |. Only one micro tree gets touched during a traversal, which we can access
in O(δ) time.

The use of fault-tolerant blocks of intermediate multiplicity is essential, be-
cause a micro path of size k must be stored in O(δ) space and must be traversable
inO(k) time. This is precisely the guarantee afforded by our fault-tolerant blocks.

In order to perform the tree decomposition safely in the presence of memory
faults, we use the correspondence observed in Lemma 2.6 and standard tech-
niques for manipulating trees in external memory.

Lemma 4.3. Given an Euler tour of a trie of size n in fault-tolerant memory,
we can fault-tolerantly construct a fault-resistant trie in O(n+ δ) time.

We can efficiently perform a fault-resistant retrieval query analogously to a
retrieval query on a traditional trie. Essentially, each time the retrieval accesses
a micro path or micro tree, we read the entire path or tree and load the result
into safe memory.

Theorem 4.4. There is a fault-resistant algorithm to retrieve a pattern P of
length m (provided as a stream) in a fault-resistant trie T in O(m+ δ) time.

4.2 Fault-Tolerant Suffix Trees

Suppose that S is a string of length n stored in external memory in blocks of
size B. There is an external-memory algorithm that computes the Euler tour
of the compressed suffix tree for S which runs in O(n log n) time and O(n logn

B)
memory transfers [4]. Given access to a string S as a stream, we can construct a

fault-tolerant suffix tree for S as follows. By Lemma 2.6, there is a fault-tolerant
algorithm that computes the Euler tour of the suffix tree for S in O(n log n+ δ)
time and that stores the result in fault-tolerant memory. By Lemma 4.4, we
can build a fault-resistant version of this trie. Our fault-tolerant suffix tree is
composed of the string S and an Euler tour of the suffix tree, stored in fault-
tolerant memory, and of the fault-resistant trie. This additional information
allows us to perform fault-tolerant queries on the suffix tree.

In order to perform a fault-tolerant suffix tree operation, we first perform a
fault-resistant query in the compressed suffix trie. With some care, we can verify
the result of this query by fault-tolerantly examining the corresponding location
of S. We then apply Lemma 2.5.

5 Interval Trees

An interval is a pair [ai, bi] of elements from some fixed ordered universe with
ai ≤ bi. Interval (ai, bi) contains x if ai ≤ x ≤ bi. An interval tree maintains
a set of intervals and supports insertions, deletions, and the stabbing query:
given element x, report all intervals containing x. In this section, we describe a
fault-tolerant interval tree with the following guarantees:

Theorem 5.1. There is a fault-tolerant interval tree that stores n intervals in
O(n+δ log δ) space, supports fault-tolerant updates in O(log n+δ log δ) amortized
time, and supports fault-tolerant stabbing queries in O((log n+k) log 1

ε + δ log δ)
amortized time, where k is the number of reported intervals and ε is an upper
bound on the probability of failure. The data structure also incurs δO(1) worst-
case preprocessing cost, plus an amortized startup cost of O(δ) operations. An
adversary may adaptively corrupt the results of δ stabbing queries, and each other
stabbing query fails with probability at most ε.

We follow the construction of interval trees from [5]. The interval tree stores
every interval’s endpoints in the leaves of a binary tree. Each interval is stored
twice at the least common ancestor of the leaves that store its endpoints: once
in a list sorted in increasing order of left endpoint, and once in a list sorted in
decreasing order of right endpoint. To perform a stabbing query at x, we search
the binary search tree for x. Every interval containing x was stored in one of
the nodes passed during this search. Whenever we move to the left child of a
node, we report all intervals with left endpoint less than x; whenever we move
to the right child of a node, we report all intervals with right endpoint at least
x. If x is contained in k of the intervals stored at an internal node, we can find
all k in O(k) time by scanning the appropriate list until we find an interval not
containing x.

The principal difficulty in making this structure fault-tolerant is that we do
not know in advance how many intervals we will need to read from an internal
node. In order to achieve a runtime O(log n+ k) + Õ(δ), we need to report each
interval in amortized constant time. But in order to report m intervals from an
internal node in O(m) time using the techniques we have seen so far, we need to

store them in a fault-tolerant block of multiplicity O(m). This strategy would
incur significant space overhead, because m may be much smaller than δ. To
overcome this difficulty, we store the intervals in a prefix list, composed of a
sequence of fault-tolerant blocks of exponentially increasing size; see Fig. 3.

Theorem 5.2. A fault-tolerant prefix list stores n elements from an ordered
universe in O(n+ δ log δ) space, supports fault-resistant access to the first k ele-
ments in O(k) time for any k, and supports insertions and deletions in O(log n+
δ log δ) time.

Θ(δ)

block 1:

block 2:

block 3:

block 4:

1 1 1 1 1 1 1 1

1 2 1 1 12 2 2

1 2 3 4 4321

1 2 3 4 5 6 7 8

Fig. 3. The prefix list stores δ copies of the
first element, δ/2 copies of the first and sec-
ond elements in a fault-tolerant block of mul-
tiplicity 2, δ/4 copies of the first four elements
in a fault-tolerant block of multiplicity 4, etc.,
and 1 copy of the first δ elements.

Proof (sketch). We store the first 2i

elements in a fault-tolerant block of
multiplicity 2i for i = 0, 1, . . . , log δ.
Because very little data is stored
redundantly, the total space over-
head is only O(δ log δ), but to read
k elements, we can read a single
fault-tolerant block of multiplicity
at most 2k, in O(k) time. �

By a similar argument, a fault-
tolerant prefix list supports finding
all k elements less than a fixed value
x in O(k) time.

We can now implement a fault-
resistant interval tree by carefully
transforming the classical construc-
tion, using a prefix list to store the
intervals at each interior node. In
contrast with our previous data structures, we have no way to verify the re-
sults of an interval stabbing query. Instead, we guarantee that our results are
correct with high probability by reading several error-correcting codes at random
from each fault-tolerant block we access.

References

1. S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proc. 39th
Annual Symposium on Foundations of Computer Science, pp. 534–543, 1998.

2. Y. Aumann and M. A. Bender. Fault tolerant data structures. In Proc. 37th
Annual Symposium on Foundations of Computer Science, pp. 580–589, 1996.

3. G. S. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G. F. Italiano, A. G.
Jørgensen, G. Moruz, and T. Mølhave. Optimal resilient dynamic dictionaries.
In Proc. 15th Annual European Symposium on Algorithms, pp. 347–358, 2007.

4. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and
J. S. Vitter. External-memory graph algorithms. In Proc. 6th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 139–149, 1995.

5. Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry.
Proc. IEEE, 80(9):1412–1434, September 1992.

6. R. de Wolf. Error-correcting data structure. In Proc. 26th International Symposium
on Theoretical Aspects of Computer Science, pp. 313–324, February 2009.

7. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. J. ACM, 47:987–1011, November 2000.

8. I. Finocchi, F. Grandoni, and G. F. Italiano. Resilient search trees. In Proc. 18th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 547–553, 2007.

9. I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal resilient sorting and searching
in the presence of memory faults. Theoretical Computer Science, 410(44):4457–
4470, October 2009.

10. I. Finocchi, F. Grandoni, and G. F. Italiano. Resilient dictionaries. ACM Trans-
actions on Algorithms, 6(1), 2009.

11. I. Finocchi and G. F. Italiano. Sorting and searching in faulty memories. Algorith-
mica, 52(3):309–332, 2008.

12. X. Li, K. Shen, M. C. Huang, and L. Chu. A memory soft error measurement
on production systems. In Proc. 2007 USENIX Annual Technical Conference, pp.
21:1–21:6, 2007.

13. D. A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1732, 1996.

14. Tezzaron Semiconductor. Soft errors in electronic memory. White paper, January
2004. http://www.tezzaron.com/about/papers/soft errors 1 1 secure.pdf.

http://www.tezzaron.com/about/papers/soft_errors_1_1_secure.pdf

	Lossless Fault-Tolerant Data Structures with Additive Overhead
	Paul Christiano1, Erik D. Demaine 1, Shaunak Kishore

