
Computing Flat-Folded States

Hugo A. Akitaya, Erik D. Demaine, Jason S. Ku

Abstract: In this paper, we introduce a facewise definition for global flat foldability
on crease patterns with n convex faces that constrains O(n3) conditions on the
layer orders between pairs of overlapping faces, and prove that it is equivalent to
the established pointwise definition. We use this formulation to show that (1) such
a facewise layer order can be verified in O(min{n2 p,n2 +mp2}) = O(n3) time,
where m and p parameterize the complexity of the folding; and (2) all valid folded
states of a crease pattern can be implicitly computed in O(n3 +∑

k
i=1 t3

i 2ti) time
and O(∑k

i=1 si) space, where ti and si parameterize a decomposition of the problem
into k independent components. Lastly, we prove that unassigned crease patterns
on n faces can have at most 2O(n2) folded states, while there exist assigned crease
patterns on convex paper that achieve that bound, and assigned crease patterns on
square paper that have 2Ω(n logn) folded states.

1 Introduction
Given a crease pattern, what flat origami does it fold into? This basic question is
one of the oldest in the field of computational origami, first considered by Bern and
Hayes [96]. Akitaya et al. [15] proved that deciding whether a crease pattern
admits a global flat-folded state is NP-hard. But what if we want to find the flat
foldings anyway? How can we compute them in exponential time? Are there cases
where we can find the flat foldings efficiently? How do we even represent a flat
folding in a way that can be efficiently verified?

In this paper, we aim to solve these problems. A central challenge with rigorously
representing, verifying, or computing folded states is that the established definition
for a global folded state from [Demaine and O’Rourke 07] (which applies to 3D
folding, not just flat) specifies the layer order between an infinite set of pairs of
points — all those that overlap and are not creased. We call this the pointwise
definition of global foldability. The naı̈ve representation of this definition is not
finite, so it is not suitable for algorithms.

By contrast, many have proposed facewise conditions on a flat-folded state,
where we specify the layer order between pairs of faces (polygons). The earliest
is perhaps by Justin [Justin 94], who introduced the superposition of all crease
faces in the flat-folded geometry (as the “s-net”). Later work [Schneider 04,Lang
and Demaine 06] elaborated on and used this definition; others have developed
representations for the special case of m×n map folding [Morgan 12, Nishat 13, Jia

AKITAYA, DEMAINE, KU

et al. 23]. In particular, the FOLD file format for representing crease patterns and
folded states [Demaine et al. 16a] allows specifying the layer order between pairs of
faces. But software cannot formally check whether such a layer ordering (and the
corresponding folded state) is actually valid, because there is no known equivalence
between the pointwise definition and the various (essentially equivalent) facewise
definitions.

In this paper, we begin with some definitions in Section 2, and then introduce in
Section 3 a definition of global flat foldings of crease patterns with convex faces that
constrains a finite set of conditions on a facewise layer order defined between pairs
of overlapping faces, and prove that it is equivalent to the established pointwise
definition. This approach provides a definition that is much easier to work with
when specifying, checking, or finding flat foldings.

In Section 4, we use this formulation to show that such a facewise layer order for
a crease pattern with n convex faces can be verified in O(min{n2 p,n2 +mp2}) =
O(n3) time, where m is the complexity of the arrangement of folded creases, and p
is the “ply” of the folding, informally the maximum thickness of the folding. Thus
we prove that verifying a layer ordering is in P, and finding a layer ordering is in NP.
Past work gave a linear-time verification algorithm for the special case of m×n map
folding [Nishat 13]. Here we assume that we have already determined which faces
of the crease pattern overlap in the folded-state geometry, which is necessary to
even specify a layer order. Given a crease pattern, the geometry of the folded state
and overlaps can be found in polynomial time on a real RAM, but it remains open
how many bits of precision are necessary to do this correctly on a word RAM. (The
geometry involves square roots of crease lengths, similar to [Demaine et al. 20],
so we run into the open problem of sum-of-square-roots.) Thus it remains open
whether crease pattern flat foldability is in NP.

In Section 5, we provide an algorithm to compute all valid folded states by (1)
constructing a pruned constraint graph linking unassigned layer orders to related flat-
foldability constraints; (2) decompose this graph into k connected components where
component i contains ti unassigned binary variables defining the layer order between
two overlapping convex faces; and (3) solving for the si ≤ 2ti valid assignments
of each component separately. This algorithm runs in O(n3 +∑

k
i=1 t3

i 2ti) time and
O(∑k

i=1 si) space. We have implemented this algorithm in open-source software
[Ku 22]. In many practical crease patterns, the tis and sis turn out to be relatively
small, making this software reasonably efficient.

Lastly, in Section 6, we prove that crease patterns on n faces can have at most
2O(n2) folded states. We then describe two generalizable crease patterns on n faces:
one on convex paper that admits 2Ω(n2) valid foldings, and one on square paper that
admits 2Ω(n logn) valid foldings. These results formalize and extend early work [Bern
and Hayes 96] that sketches a construction of a square crease pattern with 2Ω(n logn)

valid folded states, and posed the open problem of whether crease patterns could
admit more solutions. By contrast, for the special case of 1×n stamp folding, the
number of folded states is known to be 2Θ(n) [Uehara 10].

COMPUTING FLAT-FOLDED STATES

2 Basic Definitions
We define a crease pattern Σ = (V,E) to be a planar straight-line graph embedded
in R2 with vertices (points) V and edges (open line segments) E. We call an edge
of a crease pattern a crease, and call any point in V ∪E a crease point. The crease
pattern partitions the plane into open subsets; the bounded such open subsets are the
(polygonal) faces F of the crease pattern. The degree of a polygon is the number of
vertices bounding the polygon, and the degree of a vertex is the number of creases
incident to the vertex. The crease pattern’s paper P is the union of the closures of its
faces.

A crease pattern is face-convex if each of its faces is convex. A crease bounds
a face if the crease is contained in the face’s closure. An interior crease bounds
two faces and a boundary crease bounds one face (and thus lies on the boundary of
the paper P). A crease pattern is well-bounded if the number of degree-2 vertices
(which we can assume all occur on the boundary) is at most a constant fraction of
the total number of vertices |V |. In this case, the average face degree is O(1), so
|V | and |E| are both Θ(|F |), and n = |F | is a reasonable measure of the complexity
of the crease pattern. A crease pattern that is not well-bounded can easily be made
well-bounded by triangulation, or otherwise cleaning up the boundary.

An isometric flat folding of crease pattern Σ = (V,E) with paper P is a function
f : P → R2 such that (1) the set of points not differentiable under f is a subset of
V ∪E; and (2) if γ : [0, ℓ]→ P is a piecewise-geodesic curve on P parameterized
with respect to arc-length, then f ◦ γ : [0, ℓ]→R2 is also a piecewise-geodesic curve
parameterized with respect to arc-length (of the same total arc-length ℓ). It is not
hard to show that under these conditions f must be continuous and nonexpansive,
and that f restricted to any face of the crease pattern is a rigid transformation
(allowing reflection).

Point sets P1,P2, . . . ,Pk overlap under f if the intersection
⋂

i f (Pi) has dimension
equal to the minimum dimension of the Pis. Specifically, we will discuss the overlap
between pairs or larger collections of faces (two-dimensional, so the overlap must
be two-dimensional); pairs of creases (both one-dimensional, so the overlap must be
one-dimensional), and the overlap between a crease and a face (so the overlap must
be one-dimensional). Note that for two creases to overlap, their foldings must be
collinear. An interior crease is folded if its bounding faces overlap in the folding
and unfolded otherwise. The overlap set of a point p ∈ f (P) is the set of faces that
contain a point q such that f (q) = p. The ply of an isometric flat folding is the
maximum size of any overlap set for points in f (P). Other recent work [Eppstein 23]
has used ply and treewidth of an associated planar graph to provide a fixed-parameter
tractable algorithm for testing flat foldability of a crease pattern.

It is known that a crease pattern with a single vertex incident to all folded
creases obeys the so-called Kawasaki-Justin Theorem: the alternating sum of angles
between consecutive folded creases when cyclically ordered around the vertex
equals zero [Demaine and O’Rourke 07]. This condition turns out to be necessary
and sufficient: a crease pattern Σ = (V,E), together with a labeling of each crease
as either folded or unfolded, has an isometric folding if and only if every vertex

AKITAYA, DEMAINE, KU

(restricted to folded creases) locally obeys the Kawasaki-Justin Theorem.

3 Flat Foldability from Convex Faces
An isometric flat folding f does not completely describe a flat folding; we still need
to specify the layer order of overlapping faces. Indeed, for general crease patterns,
the Kawasaki-Justin Theorem is not enough to guarantee flat foldability, because the
layer orders required by individual vertices might be incompatible with each other.
Geometric Folding Algorithms [Demaine and O’Rourke 07, Chapter 11] (referred
to henceforth as GFA) defines a function λ to describe the layer ordering of an
arbitrary folding (not necessarily flat) We call λ a “pointwise” layer order function,
as it is defined on every pair of points on the paper that are mapped to the same
point in the folding.

While this definition is very general, it is hard to work with computationally,
as the conditions apply to a possibly infinite set of point pairs. In this section, we
provide a new “facewise” definition of layer order that is specific to flat foldings of
crease patterns with convex faces. In Section 3.1, we first reproduce the pointwise
definition from GFA restricted to flat foldings which allows some simplification.
Then, in Section 3.2, we identify the finite set of constraints that a facewise layer
order Λ must satisfy, where Λ is defined between every pair of overlapping faces.
Finally, in Section 3.3, we prove the equivalence of the two definitions (pointwise
and facewise) of flat foldability.

3.1 Pointwise Definition of Global Flat Foldability
This section summarizes the GFA definition from [Demaine and O’Rourke 07,
Chapter 11], with slight simplifications from the restriction to flat foldings. A
pointwise layer order function λ defines λ (p,q) for any two noncrease points
p,q ∈ P with f (p) = f (q), where λ (p,q) ∈ {+1,−1} according to whether p is
above or below q, relative to a global notion of upward.1 Call λ valid if it satisfies
four conditions:

1. Antisymmetry condition: If λ (p,q) is defined, then λ (q, p) =−λ (p,q). Intu-
itively, if p is above q, then q is below p.

2. Transitivity condition: If λ is defined pairwise on p,q,r, and λ (p,q)=−λ (r,q),
then λ (r, p) = λ (q, p). Intuitively, if q is between p and r, then p has the same
order relative to q and r.

3. Consistency condition: If (p,q),(p′,q′) ∈ dom(λ) are path-connected (end-
points of a path) in dom(λ), then λ (p,q) = λ (p′,q′).

4. Noncrossing conditions: For any two distinct nonboundary (possibly crease)
points p,q ∈ P for which f (p) = f (q), and for any sufficiently small ε > 0, let
Np ⊆ P be the open disk neighborhood of p that remains within ε distance of
f (p) in R2, and similarly define Nq. By choosing ε sufficiently small, we can

1The GFA definition for λ (p,q) is relative to q’s normal, which is necessary when there is no global
notion of upward, but we simplify here for flat folding.

COMPUTING FLAT-FOLDED STATES

assume that Np and Nq have no vertices except possibly p and q respectively,
and that the closures N p and Nq are disjoint. We require that (f ,λ) restricted to
points in P′ = ∂Np ∪∂Nq (which has two connected components) be a valid 1D
folded state defined as follows.

Figure 1: Depiction of two points p,q ∈ P for which f (p) = f (q), in the crease
pattern (left) and in the folding (right).

Consider a 1D piece of paper P′ ⊆ P that is the disjoint union of one or more
topological circles and for which f (P′) is a subset of a 2D circle as shown in
Figure 1. Looking at the top side of P, we obtain a notion of clockwise for
each such topological circle of P′. For any two distinct nonboundary (possi-
bly crease) points p′,q′ ∈ P′ for which f (p′) = f (q′), and for any sufficiently
small ε ′ > 0 (in particular ε ′ < ε), define p+, p− ∈ P′ to be the clockwise- and
counterclockwise-next points (respectively) from p′ for which f (p+), f (p−) are
at distance ε ′ from f (p′); and similarly define q+,q−. Assume (by ε ′ being
sufficiently small) that the clockwise segment of P′ from p− to p+ has no crease
points except p′, and similarly the clockwise segment of P′ from q− to q+ has
no crease points except q′. Because f (P′) is a subset of a 2D circle and ε ′ < ε ,
f (p+), f (p−), f (q+), f (q−) occupy at most two points (the two points of the
2D circle at distance ε ′ from f (p′) = f (q′)). We decompose into three cases
paralleling the naming conventions introduced in [Akitaya et al. 15]; see Figure 2.
(a) Tortilla-tortilla condition: Two of f (p+), f (p−), f (q+), f (q−) occupy

the same point a, and two occupy the other point b. If f (p+) = f (p−) = a
and f (q+) = f (q−) = b (corresponding to Case 2 of GFA), then there are no
requirements (crossing is impossible). Otherwise (corresponding to first two
subcases of Case 4 of GFA), assume by symmetry that f (p+) = f (q+) = a
and f (p−) = f (q−) = b. Then we require that λ (p+,q+) = λ (p−,q−).

(b) Taco-tortilla condition: Three of f (p+), f (p−), f (q+), f (q−) occupy the
same point a, and one occupies the other point b. (This corresponds to
last two subcases of Case 4 of GFA .) Assume by symmetry that f (p+) =
f (q+) = f (q−) = a and f (p−) = b. Then we require that λ (q+, p+) =
λ (q−, p+).

(c) Taco-taco condition: All four points f (p+), f (p−), f (q+), f (q−) occupy
the same point a. (This corresponds to Case 5 of GFA .) Then we require
that λ (p+,q+) = λ (p−,q+) if and only if λ (p+,q−) = λ (p−,q−). We here
note that this condition is equivalent to:

λ (p+,q+)+λ (p−,q+)+λ (p+,q−)+λ (p−,q−) = 0 mod 4.

AKITAYA, DEMAINE, KU

Figure 2: Depictions of the three noncrossing conditions relevant to flat folding,
specifically (a) tortilla-tortilla, (b) taco-tortilla, and (c) taco-taco.

3.2 Facewise Definition of Global Flat Foldability
In this section, we define “facewise” layer orderings for a face-convex crease pattern.
A facewise layer order function Λ defines Λi j for any two faces Fi,Fj that overlap
under f , where Λi j ∈ {+1,−1} according to whether Fi is above or below Fj,
relative to a global notion of upward. Order Λ is valid if it satisfies the following five
types of constraints2, also paralleling the naming conventions of [Akitaya et al. 15].

1. Antisymmetry constraints: For every pair of overlapping faces Fi,Fj, define
antisymmetry constraint (i, j) to be Λi j = −Λ ji. Informally, if Fi is above Fj,
then Fj is below Fi.

2. Transitivity constraints: For every triple of overlapping faces Fi,Fj,Fk, define
transitivity constraint (i, j,k) to be that the orders Λi j, Λ jk, Λki are not all equal.
Informally, if three faces overlap, there must exist a total order between them.

3. Tortilla-tortilla constraints: For every unfolded crease ei j bounding faces Fi,Fj,
define the following tortilla-tortilla constraints:

• For every face Fk that overlaps ei j, define tortilla-tortilla constraint (i, j,k,k) to
be Λik = Λ jk.

• For every unfolded crease ekl that overlaps ei j and bounds Fk,Fl where Fk
overlaps Fi, define tortilla-tortilla constraint (i, j,k, l) to be Λik = Λ jl .

Informally, if a face overlaps an unfolded crease, that face cannot be ordered
between the two faces bounding the crease.

4. Taco-tortilla constraints: For every folded crease ei j bounding Fi,Fj, define
the following taco-tortilla constraints:

• For every face Fk that overlaps ei j, define taco-tortilla constraint (i, j,k,k) to
be Λik = Λ jk.

• For every unfolded crease ekl that overlaps ei j and bounds Fk,Fl where Fk
overlaps Fi, define taco-tortilla constraint (i, j,k, l) to be Λik = Λ jk.

2We use the word ‘constraint’ to distinguish from ‘condition’ in the pointwise definition.

COMPUTING FLAT-FOLDED STATES

Λik Λil Λ jk Λ jl
1 1 1 1 valid
1 1 1 −1 invalid by taco-taco (i, j,k, l)
1 1 −1 1 invalid by taco-taco (i, j,k, l)
1 1 −1 −1 valid
1 −1 1 1 invalid by taco-taco (i, j,k, l)
1 −1 1 −1 invalid by transitivity (i,k, l)
1 −1 −1 1 invalid by transitivity (i,k, l)
1 −1 −1 −1 invalid by taco-taco (i, j,k, l)

−1 1 1 1 invalid by taco-taco (i, j,k, l)
−1 1 1 −1 invalid by transitivity (i, j,k)
−1 1 −1 1 valid
−1 1 −1 −1 invalid by taco-taco (i, j,k, l)
−1 −1 1 1 invalid by transitivity (i, j,k)
−1 −1 1 −1 invalid by taco-taco (i, j,k, l)
−1 −1 −1 1 invalid by taco-taco (i, j,k, l)
−1 −1 −1 −1 valid

Figure 3: Case analysis of all possible orders between faces Fi,Fj,Fk,Fl corre-
sponding to a taco-taco constraint (i, j,k, l), assuming without loss of generality that
Λi j = Λkl = 1.

Informally, if a face overlaps a folded crease, that face cannot be ordered between
the two faces bounding the crease.

5. Taco-taco constraints: For every pair of overlapping folded creases ei j,ekl ,
where ei j bounds faces Fi,Fj and ekl bounds faces Fk,Fl where all faces overlap,
define taco-taco constraint (i, j,k, l) to be Λik + Λ jk + Λil + Λ jl = 0 mod 4.
Informally, if two folded creases and their adjacent faces overlap, either the faces
bounding one crease lie entirely above the faces bounding the other (the sum is
±4), or the faces bounding one crease nest inside the faces bounding the other
(the sum is 0). Note that this condition alone is not enough to forbid all crossings
configurations between Fi,Fj,Fk,Fl , but the transitivity constraints are enough to
forbid the other crossing configurations, as can be seen in Figure 3.

3.3 Equivalence
Theorem 1. An isometric flat folding of a face-convex crease pattern has a valid
pointwise layer order if and only if it has a valid facewise layer order.

Proof. We show how to convert any valid pointwise layer order λ into a correspond-
ing valid facewise layer order Λ, and vice versa.

λλλ →→→ ΛΛΛ: Given λ , we construct Λ by defining Λi j for every pair of overlapping
faces Fi,Fj. By convexity of Fi and Fj, the intersection of their foldings is convex and
thus connected. Thus, the set X = {(p,q) | p ∈ Fi,q ∈ Fj, f (p) = f (q)} ⊆ domλ

is path-connected. By the Consistency Condition, λ is constant over X , and this

AKITAYA, DEMAINE, KU

constant value is our definition of Λi j. It remains to show that Λ satisfies the facewise
antisymmetry, transitivity, taco-taco, taco-tortilla, and tortilla-tortilla constraints.

• Antisymmetry constraint (i, j): Fi and Fj overlap, so there are points pi ∈ Fi
and p j ∈ Fj with f (pi) = f (p j) where λ (pi, p j) is defined. Then Λi j = λ (pi, p j)
by our construction of Λ, λ (pi, p j) =−λ (p j, pi) by the antisymmetry condition,
and −λ (p j, pi) =−Λ ji by our construction of Λ. Thus Λi j =−Λ ji.

• Transitivity constraint (i, j,k): Fi, Fj, and Fk all overlap, so there are points
pi ∈ Fi, p j ∈ Fj, and pk ∈ Fk with f (pi) = f (p j) = f (pk) where λ (pi, p j),
λ (p j, pk), and λ (pk, pi) are all defined. If Λi j = Λ jk, then λ (pi, p j) = λ (p j, pk)
by our construction of Λ, λ (pi, p j) =−λ (pk, p j) by the antisymmetry condition,
λ (pk, pi) = λ (p j, pi) by the transitivity condition, λ (pk, pi) =−λ (pi, p j) by the
antisymmetry condition, and Λki =−Λi j by our construction of Λ. Symmetrically,
if Λ jk =Λki then Λi j =−Λ jk, and if Λki =Λi j then Λ jk =−Λki. Thus Λi j,Λ jk,Λki
are not all equal.

• Tortilla-tortilla constraint (i, j,k,k): Fk and crease ei j overlap, so there are
points p ∈ ei j and q ∈ Fk with f (p) = f (q). Let P′ ⊂ P and Q′ ⊂ P be the 2D
circles centered on p and q respectively, with radii ε chosen sufficiently small
such that P′ ⊂ Fi∪Fj ∪ei j and Q′ ⊂ Fk and P′∪Q′ contains no vertices; and define
p′ ∈ P′∩ ei j, q′ ∈ Q′ such that f (p′) = f (q′). For ε ′ sufficiently small, there are
points p+ ∈ Fi ∩P′, q+ ∈ Fk ∩Q′ with f (p+) = f (q+) and points p− ∈ Fj ∩P′,
q− ∈ Fk ∩Q′ with f (p−) = f (q−) such that the distances from p+, p− to p′ along
P′, and from q+,q− to q′ along Q′, are all ε ′. Then λ (p+,q+) = λ (p−,q−) by
the tortilla-tortilla condition. Because p+ ∈ Fi, p− ∈ Fj, and q+,q− ∈ Fk, by our
construction of Λ we have Λik = Λ jk.

• Tortilla-tortilla constraint (i, j,k, l): creases ei j,ekl overlap, so there are points
p ∈ ei j and q ∈ ekl with f (p) = f (q). Let P′ ⊂ P and Q′ ⊂ P be the 2D circles
centered on p and q respectively, with radii ε chosen sufficiently small such that
P′ ⊂ Fi∪Fj ∪ei j and Q′ ⊂ Fk ∪Fl ∪ekl and P′∪Q′ contains no vertices; and define
p′ ∈ P′∩ ei j, q′ ∈ Q′∩ ekl such that f (p′) = f (q′). For ε ′ sufficiently small, there
are points p+ ∈ Fi∩P′, q+ ∈ Fk ∩Q′ with f (p+) = f (q+) and points p− ∈ Fj ∩P′,
q− ∈ Fl ∩Q′ with f (p−) = f (q−) such that the distances from p+, p− to p′ along
P′, and from q+,q− to q′ along Q′, are all ε ′. Then λ (p+,q+) = λ (p−,q−) by
the tortilla-tortilla condition. Because p+ ∈ Fi, p− ∈ Fj, q+ ∈ Fk, and q− ∈ Fl , by
our construction of Λ we have Λik = Λ jl .

• Taco-tortilla constraint (i, j,k,k): Fk and crease ei j overlap, so there are points
p ∈ Fk and q ∈ ei j with f (p) = f (q). Let P′ ⊂ P and Q′ ⊂ P be the 2D circles
centered on p and q respectively, with radii ε chosen sufficiently small such that
P′ ⊂ Fk and Q′ ⊂ Fi ∪Fj ∪ ei j and P′∪Q′ contains no vertices; and define p′ ∈ P′,
q′ ∈ Q′ ∩ ei j such that f (p′) = f (q′). For ε ′ sufficiently small there are points
q+ ∈ Fi ∩Q′, q− ∈ Fj ∩Q′, p+ ∈ Fk ∩P′ with f (q+) = f (q−) = f (p+) such that
the distances from p+ to p′ along P′, and from q+,q− to q′ along Q′, are all ε ′.
Then λ (q+, p+) = λ (q−, p+) by the taco-tortilla condition. Because q+ ∈ Fi,
q− ∈ Fj, and p+ ∈ Fk, by our construction of Λ we have Λik = Λ jk.

COMPUTING FLAT-FOLDED STATES

• Taco-tortilla constraint (i, j,k, l): creases ei j,ekl overlap, so there are points
q ∈ ei j and p ∈ ekl with f (p) = f (q). Let P′ ⊂ P and Q′ ⊂ P be the 2D circles
centered on p and q respectively, with radii ε chosen sufficiently small such that
Q′ ⊂ Fi∪Fj ∪ei j and P′ ⊂ Fk ∪Fl ∪ekl and P′∪Q′ contains no vertices; and define
p′ ∈ P′∩ ekl , q′ ∈ Q′∩ ei j such that f (p′) = f (q′). For ε ′ sufficiently small, there
are points q+ ∈ Fi ∩Q′, q− ∈ Fj ∩Q′, p+ ∈ Fk ∩P′ with f (q+) = f (q−) = f (p+)
such that the distances from p+ to p′ along P′, and from q+,q− to q′ along Q′, are
all ε ′. By the taco-tortilla condition, λ (p+,q+) = λ (p−,q−). Because p+ ∈ Fi,
p− ∈ Fj, and q+ ∈ Fk, by our construction of Λ we have Λik = Λ jl .

• Taco-taco constraint (i, j,k, l): creases ei j,ekl overlap, so there are points p ∈
ei j and q ∈ ekl with f (p) = f (q). Let P′ ⊂ P and Q′ ⊂ P be the 2D circles
centered on p and q respectively, with radii ε chosen sufficiently small such
that P′ ⊂ Fi ∪Fj ∪ ei j and Q′ ⊂ Fk ∪Fl ∪ ekl and P′ ∪Q′ contains no vertices;
and define p′ ∈ P′∩ ei j, q′ ∈ Q′∩ ekl such that f (p′) = f (q′). For ε ′ sufficiently
small, there are points p+ ∈ Fi ∩P′, p− ∈ Fj ∩P′, q+ ∈ Fk ∩Q′, q− ∈ Fl ∩Q′

with f (p+) = f (p−) = f (q+) = f (q−) such that the distances from p+, p− to p′

along P′, and from q+,q− to q′ along Q′, are all ε ′. By the taco-taco condition,
λ (p+,q+)+λ (p−,q+)+λ (p+,q−)+λ (p−,q−) = 0 mod 4. Because p+ ∈ Fi,
p− ∈ Fj, q+ ∈ Fk, and q− ∈ Fl , by our construction of Λ we have Λik +Λ jk +Λil +
Λ jl = 0 mod 4.

ΛΛΛ →→→ λλλ : For any two noncrease points p,q, let Fi,Fj be the faces containing p,q
respectively. Define λ (p,q) = Λi j wherever f (p) = f (q).

• Antisymmetry condition: Given points p,q with f (p) = f (q), let Fi,Fj be the
faces containing p,q respectively. Then λ (p,q) = Λi j by our construction of
Λ, Λi j = −Λ ji by the antisymmetry constraint, and −Λ ji = −λ (q, p) by our
construction of Λ. Thus λ (p,q) =−λ (q, p).

• Transitivity condition: Given points p,q,r with f (p) = f (q) = f (r), let Fi,Fj,Fk
be the faces containing p,q,r respectively. If λ (p,q) =−λ (r,q), then Λi j =−Λk j
by our construction of Λ, Λi j = Λ jk by the antisymmetry constraint, Λki =−Λi j
by the transitivity constraint, Λki = Λ ji by the antisymmetry constraint, and thus
by our construction of Λ, we have λ (r, p) = λ (q, p).

• Consistency condition: Given (p,q), (p′,q′) that are path-connected in dom(λ),
since λ is not defined for crease points, p, p′ must exist in the same face Fi, and
q,q′ must exist in the same face Fj. By our construction of Λ, λ (p,q) = Λi j =
λ (p′,q′).

• Tortilla-tortilla condition: Consider points p′, q′, p+, p−, q+, q− relevant to a
tortilla-tortilla condition, where f (p+) = f (q+) and f (p−) = f (q−) and p′,q′ are
either unfolded crease points or not crease points. There are three cases:

– If neither are crease points, then p+, p− are part of the same face Fi, and
q+,q− are part of the same face Fj, and by our construction of Λ, we have
λ (p+,q+) = Λi j = λ (p−,q−).

AKITAYA, DEMAINE, KU

– If exactly one is a crease point, assume it is p′ without loss of generality. Let
Fi be the face containing p+, Fj be the face containing p−, and Fk be the face
containing q+,q−. Then Fi and Fj are adjacent along an unfolded crease ei j
that contains p′ which overlaps Fk at q′. Then Λik = Λ jk by the tortilla-tortilla
constraint, and by our construction of Λ, we have λ (p+,q+) = λ (p−,q−).

– Otherwise, if both are crease points, let Fi,Fj,Fk,Fl be the faces containing
p+, p−, q+, q− respectively. Then Fi, Fj are adjacent along an unfolded
crease ei j that contains p′ and Fl , Fk are adjacent along an unfolded crease ekl
that contains q′. If ei j and ekl overlap, then Λik = Λ jl by the tortilla-tortilla
constraint, and λ (p+,q+) = λ (p−,q−) by our construction of Λ. Otherwise, ei j
overlaps Fk and Fl , and ekl overlaps Fi and Fj, so by the tortilla-tortilla constraint
Λik = Λ jk = Λ jl . By our construction of Λ, we have λ (p+,q+) = λ (p−,q−).

• Taco-tortilla condition: Consider points p′, q′, p+, p−, q+, q− relevant to a
taco-tortilla condition, where f (p+) = f (q+) = f (q−), q′ is a folded crease point,
and p′ is either a unfolded crease point or not a crease point. There are two cases:

– If p′ is not a crease point, let Fi, Fj be the faces containing q+ and q− re-
spectively, and let Fk be the face containing p+, p−. Then Fi, Fj are adja-
cent along a folded crease ei j that contains q′, and ei j overlaps Fk. Then
Λik = Λ jk by the taco-tortilla constraint, and by our construction of Λ, we have
λ (q+, p+) = λ (q−, p+).

– Otherwise, if p′ is an unfolded crease point, let Fi, Fj, Fk, Fl be the faces
containing q+, q−, p+, p− respectively. Then Fi, Fj are adjacent along a folded
crease ei j that contains q′, and Fk, Fl are adjacent along an unfolded crease
ekl that contains p′. If ei j and ekl overlap, then Λik = Λ jk by the taco-tortilla
constraint, and λ (p+,q+) = λ (p−,q−) by our construction of Λ. Otherwise,
ei j overlaps Fk, so Λik = Λ jk by the taco-tortilla constraint. By our construction
of Λ, we have λ (q+, p+) = λ (q−, p−).

• Taco-taco condition: Consider points p′, q′, p+, p−, q+, q− relevant to a taco-
taco condition, where f (p+) = f (p−) = f (q+) = f (q−) and p′,q′ are folded
crease points. Let Fi, Fj, Fk, Fl be the faces containing p+, p−, q+, q− respectively.
Then Fi, Fj are adjacent along a folded crease ei j that contains p′, and Fk, Fl are
adjacent along a folded crease ekl that contains q′. There are two cases:

– If ei j and ekl do not overlap, then ei j overlaps Fk and Fl , and ekl overlaps Fi
and Fj, so by the taco-tortilla constraint, Λik = Λ jk = Λil = Λ jl . In particular,
Λik +Λ jk +Λil +Λ jl = ±4 = 0 mod 4. By our construction of Λ, we have
λ (p+,q+)+λ (p−,q+)+λ (p+,q−)+λ (p−,q−) = 0 mod 4.

– Otherwise, if ei j and ekl overlap, then we can apply the taco-taco constraint,
Λik+Λ jk+Λil+Λ jl = 0 mod 4. By our construction of Λ, we have λ (p+,q+)+
λ (p−,q+)+λ (p+,q−)+λ (p−,q−) = 0 mod 4.

Thus we can convert a valid pointwise layer order λ into a corresponding valid
facewise layer order Λ, and visa versa, completing the proof.

COMPUTING FLAT-FOLDED STATES

4 Checking Validity of a Facewise Layer Order
Given a facewise layer order Λ of an isometric flat folding f of a well-bounded
face-convex crease pattern of size n, we can naı̈vely check whether it is valid in
O(n3) time by checking each face pair, crease pair, crease-face pair, and face triple
for overlap. Because the crease pattern is well-bounded and the intersection of
convex faces can be evaluated in time linear in the degree of the faces, each of
these overlaps takes O(1) time on average to evaluate. Thus it will take O(n2) time
to compute the overlap between all pairs, and O(n3) time to compute the overlap
between all triples. Each constraint corresponds to one of these overlaps, and can be
checked in O(1) time.

• If face pair Fi,Fj overlaps, we can check that Λi j,Λ ji are both defined and satisfy
antisymmetry in O(1) time.

• If a crease pair or crease-face pair overlaps, we can check whether the overlaps
between locally adjacent faces satisfy the preconditions for a tortilla-tortilla,
taco-tortilla, or tortilla-tortilla constraint, and then check it in O(1) time.

• If a face triple overlaps, we can check transitivity in O(1) time.

However, we can do better for foldings with low ply by making use of the cell
adjacency graph: the planar straight-line graph formed by the union of f (V) and
f (E). This structure was previously exploited in both [Mitani 08] and [Eppstein 23].
The cell adjacency graph partitions the plane into open subsets: bounded subsets
are called the cells C of the cell adjacency graph. Note that the overlap set must be
identical for all points within the same cell, which we identify as the overlap set of
the cell. The cell vertices are points f (V), together with any points of f (E) that are
on the boundary of more than two cells. Removing cell vertices from f (E) results
in a set of disjoint open segments that comprise the cell edges. For a well-bounded
crease pattern, we let m = |C|= O(n2) denote the size of the cell adjacency graph.

Theorem 2. A facewise layer order Λ of an isometric flat folding f of a well-
bounded face-convex crease pattern of size n, with ply p and cell adjacency graph
of size m, can be checked for validity in O(min{n2 p,n2 +mp2}) time.

Proof. First, check antisymmetry of Λ directly in O(n2) time. Then, we construct
the cell adjacency graph’s vertices, edges, and cells by computing the arrangement
of the folded images of crease pattern creases. This can be done via a standard plane
sweep in O(n logn+m) time. In addition, during the line sweep, it is possible to
build a dictionaries mapping each cell to: its adjacencies to other cells via shared
edges in O(m) time, and its overlap set of faces in O(mp) time, since the size of
each cell’s overlap set is at most p.

Next, for each cell, we compute the unique linear order of the faces in its the
overlap set using Λ as a constant-time comparator. To do this, start with any cell C
and sort the faces in its overlap set in O(p2) time, and check that the order between
each pair of faces Fi,Fj is consistent with Λi j. Then traverse the cell adjacency
graph (e.g., via DFS) to incrementally sort the other overlap sets of other cells. To
transition from cell C to cell C′, remove any deleted faces and add any new faces;

AKITAYA, DEMAINE, KU

to add a face, do a linear scan to see where to put it, and to make sure it’s order is
consistent with Λ.3

This step takes O(mp2) time, since there are m cells and each face update takes
O(p) time. However, the running time is also bounded by O(n2 p): each added face
in a transition between cells is due to a crease pattern crease between the cells; and
each crease (of which there are |E| = O(n)) overlaps at most O(n) cell edges; so
the total number of added faces is O(n2), each of which takes O(p) time. If we
are unable to find a linear order for each cell that is consistent with Λ, that means
for some three faces Fi,Fj,Fk in some cell’s overlap set, there is no linear order
consistent with Λ, which can only occur if transitivity constraint (i, j,k) is violated.
Conversely, if a consistent linear order for each cell can be found, Λ satisfies all
transitivity constraints.

Finally, we check the remaining constraints in O(mp) time. For each edge e
between two cells C,C′, check each constraint type at the edge in O(p) time:

• Tortilla-tortilla: Linear scan the order of the overlap set for both C and C′ using
a two-finger algorithm to check that orders are consistent for faces that are in both
C and C′.

• Taco-taco: For each crease c between faces Fi,Fj in the overlap set of C such that
c overlaps e and Fi is below Fj, replace Fi in C’s order with an open parentheses
and replace Fj with a close parentheses. Then we can check that the parentheses
in the stack are balanced via a linear scan with a stack.

• Taco-tortilla: Augment the above taco-taco algorithm as follows: for each crease
between faces Fi ∈C,Fj ∈C′, replace Fi in C’s order with an open parentheses
and add a close parentheses at infinity for Fj.

So overall, this algorithm runs in O(min{n2 p,n2 +mp2}) time as desired.

5 Computing Folded States
Existing software that seeks to compute one or more folded states of a crease pattern
include Oripa [Mitani 12], Orihime [Meguro 21], and Oriedita [Oriedita 23]. This
software all generally follows the algorithm described by [Mitani 08] to compute
folded states — (1) construct the overlap set for each cell of the adjacency graph,
and (2) brute-force search for a linear order of faces within each cell that avoids self-
intersection of the paper — though it is not clear whether their methods correspond
to the same set of facewise constraints that are presented in this paper. This algorithm
necessarily requires exponential time to compute an exponential number of folded
states.

5.1 Constraint Graph
We present an alternative algorithm which constructs a bipartite constraint graph
between the facewise layer orders Λi j (the variables) and the set of validity con-

3Note that if we already knew the flat folding were valid, we could binary search to perform face
updates in O(log p), e.g., via AVL Trees; but to verify Λ, we must check the order of each added face
with respect to every other face in the cell, to ensure Λ does not violate transitivity.

COMPUTING FLAT-FOLDED STATES

straints defined in Section 3.2, with edges connecting each constraint to its associated
variables. Note that each vertex associated with a constraint has constant degree, so
the number of edges of the constraint graph is linear in the number of vertices. As
observed at the start of Section 4, we can compute the set of variables and the set of
constraints (and thus the entire constraint graph) in O(n3) time. For foldings with
low ply p, it is possible to compute the transitivity constraints in O(n2 p2) time. The
construction is similar to the proof of Theorem 2: walk the cell adjacency graph and
compute all pairs of faces in a cell that overlap each added face in O(p2) time.

5.2 Initial Variable Assignment based on Crease Assignment
First, it is common for some or all folded creases in a crease patterns to be assigned
as either mountain or valley relative to one side of the paper. Effectively, a crease
assignment for crease e means that, for the pair of faces Fi,Fj that bound e, the
assignment of Λi j is prescribed. Further, partial knowledge of the assignment of
some variables can allow us to infer the assignment of other variables. For example,
if faces Fi,Fj,Fk are known to share transitivity constraint (i, j,k), and we know that
Λi j = Λ jk =+1, then we can infer that Λki =−1, because they cannot all be equal.

As variables are assigned, for each constraint, the variables involved in the
constraint may be in one of three states: unassigned, or assigned either +1 or
−1. Because each constraint relates at most four variables, we can precompute a
constant-sized lookup table storing every partially assigned state of the variables
associated with each type of constraint, identifying that either:

1. some unassigned variable’s assignment is implied by the partial assignment;
2. no assignment of unassigned variables can be inferred; but some assignment of

the unassigned variables can satisfy the constraint; or
3. no assignment of the unassigned variables can satisfy the constraint.

We make these initial assignments via breadth-first search. Initialize a queue
with each variable associated with crease assignments. To process a variable from
the queue, record the variable’s assignment and mark the vertex associated with that
variable. Then, for each constraint adjacent to the variable in the constraint graph,
check in the lookup table whether any unassigned variables can be inferred and add
them to the queue. If ever a variable is assigned conflicting values, or a constraint
cannot be satisfied, then the crease pattern does not admit a valid layer order. This
initial assignment stage runs in O(n3) time because each variable gets added to the
queue at most once, and each edge of the graph gets traversed O(1) times.

5.3 Component Separation
At this point, we could do a brute-force exponential search for an assignment of the
remaining variables that satisfy the constraints. However, for many crease patterns,
we can speed up the search by identifying groups of variables that are assignable
independently from each other. After initial assignment, remove all assigned variable
vertices from the constraint graph to form the pruned constraint graph, which may
be disconnected into multiple components. If it is, the assignment of variables in one

AKITAYA, DEMAINE, KU

component is independent from the assignment of variables in another component.
In practice, these components are often small, so an exponential search on each one
is much faster than an exponential search on the whole graph.

Suppose each component i contains ti unassigned variables, where each Λi j
involves two faces Fi,Fj, for a total of ni ≤ 2ti distinct involved faces. Thus the
number of constraints in component i of the pruned constraint graph is at most
O(n3

i) = O(t3
i).

4 We can solve component i by trying all 2ti binary assignments
to the ti unassigned variables, and for each such assignment, checking the O(t3

i)
constraints in O(t3

i) time. Thus the total running time is O(t3
i 2ti).

After enumerating all assignments for each component, we can list all folded
states via the Cartesian product of the assignments from each independent compo-
nent; or we can count the total number of folded states by multiplying the number
of assignments found for each component. Storing only the assignments for each
component provides an implicit representation of all folded states, which can repre-
sent an exponential number of folded states in polynomial space; see Figure 5 for
one such example. This immediately leads to the following theorem.

Theorem 3. Given a well-bounded face-convex crease pattern with k pruned con-
straint graph components, where component i has ti unassigned variables, all of its
valid folded states can be implicitly computed in O

(
n3 +∑

k
i=1 t3

i 2ti
)

time. If si is the
number of valid assignments of the variables from component i, then we can store
an implicit representation of all ∏

k
i=1 si states in O(∑k

i=1 si) space.

The above algorithm works well in practice, but it is actually possible to infer
the assignment of even more variables, beyond the local inferences presented in
Section 5.2. A followup paper [Ku et al. 24] treats the set of the nontransitivity
constraints as a linear system to infer the initial assignment of a larger number of
variables, and uses additional polynomial-time procedures to increase the separation
of initially unassigned variables into components. Such techniques can reduce the
number of unassigned variables in each component, often leading to exponential
time gains in the final brute-force step of the solve.

5.4 Implementation
This algorithm has been implemented in an open-source web application called
Flat-Folder [Ku 22]. A primary motivator for the development of this algorithm
and software is to generate folded states in FOLD format [Demaine et al. 16b] as
test case input for future origami simulation software. Thus, we have compiled
three crease pattern datasets that are publicly available from the Flat-Folder GitHub
repository [Ku 22]:

• The instagram dataset contains 366 flat-foldable crease patterns from 58 different
origami designers from around the world. Most of these crease patterns are fully
mountain/valley assigned, with number of faces ranging from n = 7 to n = 11,859.
4We conjecture that this bound is not tight. The number ci of transitivity constraints can be cubic in

the number ni of faces, while the number ti of variables can be quadratic in the number ni of faces. But
these are both upper bounds, and it is not clear that they maintain a ci = O(t3/2

i) relationship.

COMPUTING FLAT-FOLDED STATES

• The grids dataset contains 375 flat-foldable crease patterns designed by Daniel
Brown. These crease patterns fold all possible diagonal-grid color-change patterns
that have four-fold rotational symmetry on square grids having side length ≤ 4.
All the crease patterns in this data set have vertices that lie on an integer grid.
Another followup paper [Brown and Ku 24] discusses the design of the crease
patterns in this data set.

• The unsatisfiable dataset contains 12 crease patterns that are known to be not flat
foldable.

Flat-Folder can successfully find at least one valid folded state for every example
in the dataset within seconds or minutes, and can compute all states for most
examples in a similar amount of time. Of course, computing all states for examples
having large components in their pruned constraint graph will take longer, since
our running time scales exponentially with component size. For efficiency, we cap
the number of folded states generated per component to 10,000, and report metrics
about each solve in a spreadsheet within the repository.

The example with the most found folded states under this filter is Satoshi
Kamiya’s Ryujin 2.1 (instagram #100). This crease pattern consists of 5,325 vertices,
11,097 edges, and 5,773 faces. The constraint graph consists of 453,998 variables,
119,105 taco-taco constraints, 586,781 taco-tortilla constraints, 0 tortilla-tortilla
constraints, and 30,523,575 transitivity constraints. The pruned constraint graph
consists of 248 components, 238 of which have two satisfying assignments, three
of which have three satisfying assignments, four of which have four satisfying
assignments, one of which has five satisfying assignments, one of which has 950
satisfying assignments, and one of which has 633,184 satisfying assignments (when
evaluated with no cap on states per component). Together these comprise over
9 ·1084 folded states, specifically:

9,182,612,107,624,936,419,438,282,251,782,996,996,651,024,099,336,268,033,225,057,196,673,656,643,305,603,072,000.

See [Ku 22] and [Ku et al. 24] for more details on the examples and software
performance.

6 Bounding the Maximum Number of Folded States
In this section, we give bounds on the maximum number of possible folded states
in terms of the number n of convex faces in the crease pattern. We prove that the
maximum number of folded states is 2Θ(n2) for convex paper, and 2Ω(n logn) for
square paper, independent of whether the creases are assigned.

Theorem 4. A face-convex isometrically flat-foldable crease pattern with n faces
can admit at most 2O(n2) valid folded states, even when the creases are unassigned.

Proof. Each valid folded state corresponds to a different facewise layer order Λ.
There are at most n(n− 1) layer orders between pairs of faces, and each layer
order has two possible assignments. So at most 2n(n−1) = 2O(n2) valid layer orders
assignments, and thus valid folded states, can possibly exist.

AKITAYA, DEMAINE, KU

Figure 4: A generalizable square crease pattern on a 6k×6k grid with Θ(k) faces
admitting 2Ω(k logk) valid folded states, here for k = 4.

Section 2 of [Bern and Hayes 96] provides a rough sketch of a construction for a
square crease pattern that admits nΩ(n) = 2Ω(n logn) valid folded states, and questions
whether there exist crease patterns that can admit more solutions. While the idea
behind their construction works, they do not provide specifics of their construction,
so it is hard to verify. In particular, care needs to be taken with the initial pleating
step when folding the square down to a rectangle, so as not to introduce too many
crease pattern faces. Below we provide a precise construction for a square crease
pattern that achieves the same bound with the same general approach, as well as a
new construction for a crease pattern on convex paper that meets the asymptotic
upper bound on valid folded states.

Theorem 5. A face-convex isometrically flat-foldable crease pattern of a square
paper with n faces can have nΩ(n) = 2Ω(n logn) valid folded states, even when the
creases are assigned.

Proof. Consider the family of crease patterns on square paper with assigned creases
aligned to a 6k×6k grid as shown in Figure 4. This crease pattern has n = 2(k−1)+
17k+2 = 19k = Θ(k) faces, where k independent flaps on the bottom overlap k−1
pleats on the top. Each of the k bottom flaps can be in k different positions relative
to the top k−1 pleats, leading to kk = 2k lgk = 2Θ(n logn) valid folded states.

Theorem 6. A face-convex isometrically flat-foldable crease pattern of a convex
paper with n faces can have 2Ω(n2) valid folded states, even when the creases are
assigned.

Proof. Consider the family of crease patterns on rectangular paper with height 1
and width 2k(k+ 2)− 1 for k ≥ 1, containing 45◦-diagonal mountain creases as
shown in Figure 5. This crease pattern has n = 4k = Θ(k) faces, where k red faces
each independently overlap k blue faces when folded. Specifically, for red face Fi

COMPUTING FLAT-FOLDED STATES

Figure 5: A generalizable crease pattern on 1× 2k(k+ 2)− 1 rectangular paper
with Θ(k) faces admitting 2Ω(k2) valid folded states, here for k = 4.

and blue face Fj, layer order Λi j can be independently assigned to either {+1,−1}.
Thus, this crease pattern admits exactly 2k2

= 2Ω(n2) valid folded states.

We conjecture that it may not be possible to achieve 2Ω(n2) valid folded states
from a square. Reaching that bound seems to require a folding with at least Ω(n2)
independent layer-order pairs, i.e., there must be Θ(n) flaps that must each indepen-
dently overlap Θ(n) other flaps (as for the convex construction of Theorem 6). In
order to get a flap to independently overlap many other flaps, some of these flaps
should have high aspect ratio. But making flaps with high aspect ratio from a square
seems to require the production of many crease pattern faces: making a flap with
aspect ratio r seems to require the addition of Θ(r) faces. But for the crease pattern
to retain O(n) faces, there can only be O(1) faces on average associated with each
independent flap. The square bound construction of Theorem 5 does not have any
high-aspect-ratio flaps; instead it gains exponential blowup from having a linear
number of separable components, each having a linear number of valid states. The
convex construction by contrast has a quadratic number of separable components,
each with a constant number of states, which seems difficult to achieve from square
paper.

Acknowledgments
We thank the anonymous referees for their helpful comments.

References
[Akitaya et al. 15] Hugo A. Akitaya, Kenneth C. Cheung, Erik D. Demaine, Takashi

Horiyama, Thomas C. Hull, Jason S. Ku, Tomohiro Tachi, and Ryuhei Uehara. “Box
pleating is hard.” In Japanese Conference on Discrete and Computational Geometry
and Graphs, pp. 167–179. Springer, 2015.

[Bern and Hayes 96] Marshall Bern and Barry Hayes. “The complexity of flat origami.”
In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 175–183, 1996.

[Brown and Ku 24] Dan Brown and Jason S. Ku. “Folding all 4×4 Rotationally-Symmetric
Diagonal-Grid 2-Color Patterns.” In 8OSME, 2024.

[Demaine and O’Rourke 07] Erik D. Demaine and Joseph O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, 2007.

AKITAYA, DEMAINE, KU

[Demaine et al. 16a] Erik D. Demaine, Jason S. Ku, and Robert J. Lang. “A New File
Standard to Represent Folded Structures.” In Abstracts from the 26th Fall Workshop on
Computational Geometry, 2016. See https://github.com/edemaine/fold for the latest
FOLD standard.

[Demaine et al. 16b] Erik D. Demaine, Jason S. Ku, and Robert J. Lang. “A new file standard
to represent folded structures.” In Abstr. 26th Fall Workshop Computat. Geometry,
pp. 27–28, 2016.

[Demaine et al. 20] Erik D. Demaine, Adam C. Hesterberg, and Jason S. Ku. “Finding
Closed Quasigeodesics on Convex Polyhedra.” In Proceedings of the 36th International
Symposium on Computational Geometry (SoCG 2020), pp. 33:1–33:13, 2020. See full
paper at arXiv:2008.00589.

[Eppstein 23] David Eppstein. “A Parameterized Algorithm for Flat Folding.” In Proceedings
of the 35th Canadian Conference on Computational Geometry, pp. 35–42, 2023.

[Jia et al. 23] Yiyang Jia, Jun Mitani, and Ryuhei Uehara. “Clarifying the Difference between
Origami Fold Models by a Matrix Representation.” Thai Journal of Mathematics
21:4 (2023), 1061–1079. Available online (https://thaijmath2.in.cmu.ac.th/index.php/
thaijmath/article/view/1565).

[Justin 94] Jacques Justin. “Towards a Mathematical Theory of Origami.” In Proceedings of
the 2nd International Meeting of Origami Science and Scientific Origami, edited by
Koryo Miura, pp. 15–29. Otsu, Japan, 1994.

[Ku et al. 24] Jason S. Ku, Akira Terao, and Kenji N. Terao. “An Algebraic Approach to
Layer Ordering Constraints for Origami Flat-Foldability.” In 8OSME, 2024.

[Ku 22] Jason S. Ku. “Flat-Folder: A Crease Pattern Solver.” https://github.com/
origamimagiro/flat-folder, 2022.

[Lang and Demaine 06] Robert J. Lang and Erik D. Demaine. “Facet ordering and crease
assignment in uniaxial bases.” In Origami4: Proceedings of the 4th International
Conference on Origami in Science, Mathematics, and Education, pp. 189–205. AK
Peters Pasadena, California, 2006.

[Meguro 21] Toshiyuki Meguro. “Origami Homepage: Orihime.” http://mt777.html.
xdomain.jp/index.html, 2021.

[Mitani 08] Jun Mitani. “The folded shape restoration and the rendering method of origami
from the crease pattern.” In Proc. Int. Conf. on Geometry and Graphics, pp. 1–7, 2008.

[Mitani 12] Jun Mitani. “ORIPA: Origami Pattern Editor.” https://mitani.cs.tsukuba.ac.jp/
oripa/, 2012.

[Morgan 12] Tom Morgan. “Map Folding.” Master’s thesis, Massachusetts Institute of
Technology, 2012. Available online (https://erikdemaine.org/theses/tmorgan.pdf).

[Nishat 13] Rahnuma Islam Nishat. “Map Folding.” Master’s thesis, Univer-
sity of Victoria, 2013. Available online (https://dspace.library.uvic.ca/items/
f18edf3b-a3ed-4940-92bd-901d4c35f01a).

https://github.com/edemaine/fold
arXiv:2008.00589
https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1565
https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1565
https://github.com/origamimagiro/flat-folder
https://github.com/origamimagiro/flat-folder
http://mt777.html.xdomain.jp/index.html
http://mt777.html.xdomain.jp/index.html
https://mitani.cs.tsukuba.ac.jp/oripa/
https://mitani.cs.tsukuba.ac.jp/oripa/
https://erikdemaine.org/theses/tmorgan.pdf
https://dspace.library.uvic.ca/items/f18edf3b-a3ed-4940-92bd-901d4c35f01a
https://dspace.library.uvic.ca/items/f18edf3b-a3ed-4940-92bd-901d4c35f01a

COMPUTING FLAT-FOLDED STATES

[Oriedita 23] Oriedita. “Oriedita Main Page.” https://oriedita.github.io, 2023.

[Schneider 04] Jonathan Schneider. “Flat-foldability of origami crease patterns.” Manuscript,
Swarthmore College, 2004. https://www.sccs.swarthmore.edu/users/05/jschnei3/
origami.pdf.

[Uehara 10] Ryuhei Uehara. “Stamp Foldings with a Given Mountain-Valley Assignment.”
In Origami5: Proceedings of the 5th International Conference on Origami in Science,
Mathematics and Education, pp. 585–597. Singapore: A K Peters, 2010.

Hugo A. Akitaya
University of Massachusetts, Lowell, MA, USA, e-mail: hugo akitaya@uml.edu

Erik D. Demaine
Massachusetts Institute of Technology, Cambridge, MA, USA, e-mail: edemaine@mit.edu

Jason S. Ku
National University of Singapore, Singapore, e-mail: jasonku@nus.edu.sg

https://oriedita.github.io
https://www.sccs.swarthmore.edu/users/05/jschnei3/origami.pdf
https://www.sccs.swarthmore.edu/users/05/jschnei3/origami.pdf
mailto:hugo_akitaya@uml.edu
mailto:edemaine@mit.edu
mailto:jasonku@nus.edu.sg

	Introduction
	Basic Definitions
	Flat Foldability from Convex Faces
	Pointwise Definition of Global Flat Foldability
	Facewise Definition of Global Flat Foldability
	Equivalence

	Checking Validity of a Facewise Layer Order
	Computing Folded States
	Constraint Graph
	Initial Variable Assignment based on Crease Assignment
	Component Separation
	Implementation

	Bounding the Maximum Number of Folded States

