
Contemporary Mathematics

All Polygons Flip Finitely. . . Right?
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Abstract. Every simple planar polygon can undergo only a finite number
of pocket flips before becoming convex. Since Erdős posed this finiteness as
an open problem in 1935, several independent purported proofs have been
published. However, we uncover a plethora of errors, gaps, and omissions in
these arguments, leaving only two proofs without flaws and no proof that is
fully detailed. Fortunately, the result remains true, and we provide a new,
simple (and correct) proof. In addition, our proof handles nonsimple polygons
with no vertices of turn angle 180◦, establishing a new result and opening
several new directions.

1. Introduction

Pocket flipping. Given a simple polygon in the plane, a pocket is a maximal
connected region exterior to the polygon and interior to the convex hull. Provided
the polygon is not convex, at least one such a pocket exists; see Figure 1(a). The
boundary of such a pocket consists of one edge of the convex hull, called the pocket
lid, and a subchain of the polygon, called the pocket subchain. Flipping a pocket
transforms the polygon by reflecting the pocket subchain through the line extending
the pocket lid, keeping the rest of the polygon fixed. Such an operation is called a
pocket flip or simply a flip. Equivalently, if we view the polygon as a linkage where
the edges are rigid bars and the vertices are universal joints, a pocket flip can be
implemented by rotating the pocket subchain 180◦ around the axis through the
pocket lid; see Figure 1(b). (Here the motion takes place in 3D, but after each flip
the polygon remains planar.)

As long as the polygon remains nonconvex, we can pick an arbitrary pocket
and flip it. Because the line extending the pocket lid is a line of support of the
polygon (meeting the convex hull’s boundary but not its interior), and the pocket
subchain flips to the other side of that line, the resulting polygon always remains
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(a) 

(b) 

Figure 1. (a) Flipping the (shaded) pockets of a polygon until convex-
ification. (b) First flip viewed as a 180◦ rotation.

simple. What happens if we repeat the pocket-flipping process? In the example of
Figure 1(a), the polygon convexifies after a sequence of three flips. But could the
process go on forever, flipping smaller and smaller pockets and only convexifying
in the limit? This paper is about proving that every flipping sequence is finite:

Theorem 1.1. Every simple polygon convexifies after finitely many flips, no
matter which pocket is chosen at each step.

History. This theorem has a surprisingly intricate history, with multiple inde-
pendent discoveries of the problem and the theorem. This history has been largely
already reported in the surveys by Grünbaum [Grü95] and Toussaint [Tou99,
Tou05], each of which also provides their own proof of Theorem 1.1. The primary
purpose of this paper is to uncover some new surprises in this intricate history:
many of the purported proofs of the theorem, including these two latest, are in fact
incorrect or incomplete.

The earliest known reference to pocket flipping is a problem proposal in the
American Mathematical Monthly by Paul Erdős [Erd35]. For historical context,
this publication was a year after Erdős obtained his Ph.D., left Hungary, and be-
came a post-doctoral fellow at the University of Manchester; he was probably age 22.
Erdős asked a slightly different question:1 simultaneously flip all pockets of the

1His exact phrasing of the problem, which is the entirety of [Erd35], is as follows: “Given
any simple polygon P which is not convex, draw the smallest convex polygon P ′ which contains P .
This convex polygon P ′ will contain the area P and certain additional areas. Reflect each of these
additional areas with respect to the corresponding added side, thus obtaining a new polygon P1.
If P1 is not convex, repeat the process, obtaining a polygon P2. Prove that after a finite number
of such steps a polygon Pn will be obtained which is convex.” [Erd35]
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Figure 2. Flipping all pockets simultaneously can transform a simple
polygon into a nonsimple polygon.

polygon, and repeat this process until the polygon is convex. The trouble with
this version of the problem is that simultaneously flipping all pockets can make
the polygon self-intersecting (nonsimple); see Figure 2. While the original notion
of pocket flipping is ill-defined for nonsimple polygons, there is a natural gener-
alization of pocket flipping in this scenario, which we will consider in Section 4.
Interestingly, in this scenario, Erdős’s original problem of simultaneous pocket flips
remains unsolved.

Other than the original formulation [Erd35], the literature has considered the
version where we flip a single pocket, recompute the convex hull and pockets, and
repeat. The first known paper to consider this precise problem is a follow-up four
years later in the American Mathematical Monthly by Béla de Sz.-Nagy [dSN39].
In one elegant page, Nagy points out the issue with simultaneous pocket flips,
using an example similar to Figure 2, and then attempts to prove Theorem 1.1.
Unfortunately, we found that the attempted proof makes a fatal mistake in one su-
perficially believable sentence arguing that the limit of any potentially infinite flip
sequence is convex; see Section 3.1 for the details. (Amusingly, the one incorrect
sentence uses the word “obviously.”) The proofs by Grünbaum [Grü95] and Tou-
ssaint [Tou99, Tou05] are both modifications/simplifications of Nagy’s “proof.”
Interestingly, both replace the one incorrect sentence with a different argument,
but we found that argument to be either unjustified (in the case of [Grü95]) or
incorrect for a different reason (in the case of [Tou99, Tou05]).

The surveys of Grünbaum [Grü95] and Toussaint [Tou99, Tou05] uncover
four other purported proofs of Theorem 1.1; refer to Table 1. Three proofs are
in Russian. The first two, by Reshetnyak [Res57] and Yusupov [Yus57], seem to
be discovered independently of each other and of Erdős and Nagy. Reshetnyak’s
proof seems to be the first correct proof of Theorem 1.1. In contrast, we show
Yusupov’s argument to be incorrect, in particular making one of the mistakes of
Toussaint’s argument. The next proof, by Bing and Kazarinoff [KB59, BK61,
Kaz61a], was developed just two years later; the proof was also translated into
English in Kazarinoff’s Analytic Inequalities book [Kaz61a]. The latter is the only
correct proof of Theorem 1.1 to appear in English (prior to the present paper).
Interestingly, the Russian version [BK61] mentions Reshetnyak’s proof as well as
Nagy’s work, stating in particular that Nagy’s argument is incorrect. Unfortunately,
they do not justify their claim, so it went relatively unnoticed, aside from a mention
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Reference Genesis Flaws, omissions, comments

Nagy [dSN39] §3.1 Erdős [Erd35] Flawed: Ck 6⊆ P k+1.

Reshetnyak [Res57] §3.2 independenta Correct though somewhat imprecise.

Yusupov [Yus57] §3.3 independenta Flawed: P ∗ might have pockets,
and only some vertices might flatten.

Bing & Kazarinoff §3.4 Erdős [Erd35], Correct though somewhat terse.
[KB59, BK61, Kaz61a] Nagy [dSN39], Claims Nagy’s proof is incorrect.

Reshetnyak [Res57] False conjecture: 2n flips suffice.

Wegner [Weg93] §3.6 Kaluza [Kal81] Flawed: Area increase can be small.

Grünbaum [Grü95] §3.7 all of above Omission: Why P ∗ is convex.
Based on Nagy’s argument.
Requires specific flip sequence.

Toussaint [Tou99, Tou05] §3.8 all of above Flawed: P ∗ might have pockets.
Based on Nagy’s argument.

Table 1. A chronological summary of the purported proofs of Theo-
rem 1.1.
aThese papers have no bibliography and make no explicit references to
prior work.

by Grünbaum [Grü95]. The last proof is by Wegner [Weg93], who learned of
the problem from an independent posing by Kaluza [Kal81]. This proof differs
substantially from all other proofs, using several sophisticated mathematical tools;
unfortunately, it too makes a critical mistake. In Section 3, we describe all of these
arguments and discuss their weaknesses, gaps, and errors.

Our story. The genesis of this paper is a graduate class at MIT on “Folding
and Unfolding in Computational Geometry,” taught by the first author and taken
by the second author. The fifth lecture, on Wednesday, September 22, 2004, pre-
sented Theorem 1.1 and the latest argument [Tou05]. The first author was a little
hesitant about one step in the proof, and mentioned the worry; by the end of the
presentation, one of the students found a reason why that step was indeed flawed.
Over the weekend, the first, third, and fourth authors discussed the error, and de-
cided to go back to the classic original argument by Nagy [dSN39], after whom the
Erdős-Nagy Theorem is named. Nagy’s argument differed precisely in the trouble-
some step, and seemed to offer a perfect replacement. What a beautiful argument,
and from 1939 no less! So the first author presented it in the next class, on Monday,
September 27, 2004. But by the end of the presentation, several students raised
their hands and questioned this new step. Soon we had a counterexample. Sud-
denly the beautiful argument was also wrong—a 65-year old error! Two proofs dead
in two weeks! Was the “Erdős-Nagy Theorem” even true? Fortunately, when the
flaw in [Tou05] was found, the second author had found an idea for a fix, and after
the flaw in [dSN39] was found, this idea was quickly solidified into a full proof. Its
presentation in the next lecture, Wednesday, September 29, went without a hitch,
and it appears in the conference version of this paper [DGOT06] and in a book
by the first and third authors [DO07].

We then decided to review the various other purported proofs of the theorem,
and found even more errors, but also discovered that our fixed proof was essentially
identical to the proof of Bing and Kazarinoff [KB59, BK61, Kaz61a]; the latter
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was only more terse. So this proof feels quite “natural”—but it is not the only
one, as we discovered the correct proof by Reshetnyak [Res57] which employs a
different set of clever ideas. However, these seem to be the only two completely
correct proofs in the literature, surprisingly few compared to the five flawed proofs.

Nonsimple polygons. More recently, we considered the generalized scenario in
which the polygon is not necessarily simple. Here flips can be defined in terms of
subchains instead of pockets. Specifically, consider any two distinct vertices of the
polygon intersecting a line of support (either two overlapping vertices on the convex
hull, or two distinct points on an edge of the convex hull). These vertices divide the
polygon into two subchains. If neither of these chains lies collinearly along the line
of support, a pocket flip corresponds to reflecting one of these subchains through
the line of support. For simple polygons, this definition is equivalent to standard
pocket flips. But does every nonsimple polygon convexify after a finite number of
flips, no matter how those flips are chosen? Figure 3 shows an example.

Figure 3. Flipping a nonsimple polygon to convexity. Lids are dashed,
dark before the flip and light afterward.

Tantalizingly, the Russian paper by Bing and Kazarinoff [BK61] claims, with-
out proof: “Observation. The polygon need not be a simple polygon.” However,
this claim remains unproved in the literature, and indeed we show it to be false
under its most natural interpretation. On the positive side, Wegner [Weg00],
Grünbaum and Zaks [GZ98], and Toussaint [Tou99, Tou05] all proved a slightly
weaker theorem: there exists a finite sequence of flips that convexifies a given
nonsimple polygon. (Here the notion of “convexification” is somewhat weaker
than usual; see Section 4.2.) Toussaint’s flip sequence is faster to compute than
Grünbaum and Zaks’s—Θ(n) time per operation instead of Ω(n2)—but what about
arbitrary flip sequences as in Erdős’s original problem? This question was partially
resolved in an unpublished proof [BCC+01] which uses Theorem 1.1 as a black box
and argues that flipping a nonsimple polygon monotonically decreases the number
of crossings until some time, after which the polygon behaves essentially the same
as a simple polygon. However, this proof handles only “proper crossings” at single
points in the relative interiors of edges; it does not handle arbitrary polygons, e.g.,
with edges that overlap along a segment.

We show that the finiteness of arbitrary flip sequences depends on the existence
of hairpin vertices: vertices whose two incident edges overlap, forming a turn angle
of 180◦. When there are hairpin vertices, we show in Section 4.4 that a poorly
chosen flip sequence can go on forever in the worst case. Without hairpin vertices,
however, we obtain the desired positive result in Section 4.3:
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Theorem 1.2. Every polygon, not necessarily simple but having no hairpin
vertices, convexifies after finitely many flips, no matter which flip is chosen at each
step.

Our proof of this theorem also serves as a new, self-contained, and fully detailed
proof of Theorem 1.1.

On errors in geometry. Given the plethora of errors concerning the geometric
problem considered in this paper, the question naturally arises whether this is an
isolated event. So it seems appropriate to add a word about the frequency of
mistakes in geometric research in general, and its role in the discovery process.
Indeed, psychologists, mathematicians, and physicists have been interested for over
a hundred years in the nature of discovery, in mathematics in general [Had45],
and geometry in particular [Ein83, Lak76, Mac06, Pap80, Tou93, ST03]. For
example, Lakatos [Lak76] traces nearly two hundred years of history concerning
the errors made in the evolution of the definition of polyhedra. More recently,
Toussaint [Tou93] traces nearly two thousand years of history concerning errors
made in proving Euclid’s second proposition, and then argues that Euclid’s original
proof had no errors at all.

The literature suggests that there is a greater frequency of errors in geometry
than in other fields of mathematics. One reason for these errors, including the
errors on the polygon-flipping problem considered here, seems to boil down to this
fact: geometry often deals with a space of infinite size where there are an infinite
number of cases (sometimes unwittingly created by the mathematician) that must
be reduced by the human mind into a finite number of cases (or none at all), with
the aid of our visual system which is fraught with its own visual illusion traps. This
situation appears to be different from many other branches of mathematics, such
as combinatorics or algebra, that do not have a strong visual component and that
often need to consider only a finite number of cases.

For a concrete example of this issue, consider the original pocket-flipping prob-
lem formulation posed by Erdős. Polygons with their pockets have an infinite
number of possible shapes. Erdős probably tried some examples to conclude that,
in all infinitely many cases, simultaneously flipping several pockets yields a new
simple polygon (so that we may “repeat the process”). Nagy clearly explored more
“unusual” shapes in this infinite space, leading him to a counterexample along the
lines of Figure 2.

Geometric infinite-case analyses are exacerbated by the visual thinking com-
ponent inherent in geometry, which has a tendency to derail logical thinking.
In [Pap80] and [ST03], the authors distinguish between two types of thinking:
logico-mathematical and kinesthetic. The latter type is also referred to as body-
syntonic, a term used by Papert [Pap80] for a similar notion, and makes use of
kinesthetic heuristics. A kinesthetic heuristic is where cognition, understanding,
and learning take place through perceptible results of dynamic manipulation of ob-
jects to support useful insights on the problem being studied. Kinesthetic heuristics
emphasize the experimental aspects in front of logico-mathematical deductions as a
primary tool of understanding. More powerful kinesthetic heuristics tend to create
stronger geometric illusions and therefore call for extra care in logical thinking to
determine whether the resulting proofs of a theorem are correct. Flipping a pocket
of a simple polygon is a perfect example of such a kinesthetic heuristic.

For a more detailed discussion of this topic, see [Tou93, ST03].
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2. Notation

We begin the technical part of this paper by introducing some notation used
throughout our descriptions of old and new arguments about pocket flipping.

Let P = P 0 = 〈v0, v1, . . . , vn−1〉 denote the initial polygon and its vertices in or-
der, forming the n edges v0v1, v1v2, . . . , vn−2vn−1, vn−1v0. Let P k = 〈vk

0 , vk
1 , . . . , vk

n−1〉
denote the resulting “descendant” polygon after k arbitrary pocket flips; if P k is
convex for some k, then we define P k = P k+1 = P k+2 = · · · . Let Ck denote the
convex hull of P k. When we talk about convergence, it is always with respect to
k →∞. When the limit of P k exists, we denote it by P ∗, its vertices by v∗i , etc.

The (directed) turn angle τk
i ∈ (−180◦, 180◦] at vertex vk

i is the signed angle
between the two vectors before and after vk

i : the angle that turns vk
i − vk

i−1 to
vk

i+1−vk
i . Call a vertex vk

i flat if its turn angle τk
i is 0, and pointed otherwise. If the

absolute value of the turn angle τk
i has a limit, then we call vertex vi asymptotically

flat if the limit angle is zero and asymptotically pointed otherwise.
We use ‖x− y‖ to denote the Euclidean distance between two points x and y,

or equivalently, the Euclidean length of the vector x− y,

3. Previous Arguments

Next we turn to the purported proofs of Theorem 1.1, that simple polygons al-
ways flip finitely, as summarized in Table 1. We describe the arguments in chrono-
logical order along with any errors or omissions they make.

3.1. Nagy. The first claimed proof of Theorem 1.1, published by Béla de
Sz.-Nagy in 1939 [dSN39], is brilliant in overall design, but unfortunately has a
fatal flaw that has gone largely undetected until now. Previously, the Russian
paper by Bing and Kazarinoff [BK61] (but not the English book [Kaz61a] or talk
abstract [KB59]) remarked that “The proof of this theorem, given by B. Sz. Nagy,
is incorrect.” Grünbaum [Grü95] noticed this claim, but pointed out that “there
is no basis for this claim.” Whether Bing and Kazarinoff found the (same) flaw is
unclear, but at the least, Nagy’s argument was widely believed until now.

Nagy’s argument consists of four main steps:

(1) The sequence P k converges to a limit P ∗.
(2) The limit P ∗ is convex.
(3) Asymptotically pointed vertices converge in finite time.
(4) The sequence P k converges in finite time.

The flaw is in Step 2, where Nagy claims that P 0 ⊆ C0 ⊆ P 1 ⊆ C1 ⊆ · · · .2
This claim implies that P k and Ck converge to the same, necessarily convex limit.
As illustrated in Figure 4, however, the claim is incorrect. When there are multiple
pockets to choose from, Ck 6⊆ P k+1.

Despite most later arguments being based on Nagy’s, this flaw seems unique
to Nagy’s argument. Many later arguments use the other, correct steps of Nagy’s
argument, to which we now turn.

In Step 1, Nagy observes that the perimeter of P k is constant. Because P 0 ⊆
P 1 ⊆ P 2 ⊆ · · · (a true half of the false claim), the fixed perimeter bounds the

2Specifically, he states: “Each polygon in the sequence P 0, C0, P 1, C1, P 2, C2, · · · contains
obviously the foregoing ones in its interior.” [dSN39].
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C1

⊆

⊆ ⊆

⊆

6⊆

P0 P1

C0

Figure 4. Nagy’s error: P 0 ⊆ C0 6⊆ P 1 ⊆ C1.

possible reach of vertices in P k. Thus Nagy concludes that each vk
i has a point of

accumulation. Then he observes that, for any point x inside or on the boundary
of P k, ‖x−vm

i ‖ ≤ ‖x−vm+1
i ‖ for all m ≥ k. This nondecreasing-distance property

holds because the line extending the pocket lid of this flip is the Voronoi diagram of
vm

i and vm+1
i , and because the Voronoi cell of vm

i contains P and thus x; however,
Nagy simply asserts the property. Nagy applies the property to conclude that
‖vm

i − vp
i ‖ ≤ ‖vm

i − vp+1
i ‖ for all p ≥ m, which prevents the existence of multiple

points of accumulation, thus proving convergence.
To prove Step 3, Nagy uses an argument illustrated in Figure 5 to show that

asymptotically pointed vertices of the limit polygon converge in finite time. This
argument is easy to illustrate, but requires some care to justify in detail, while
Nagy’s presentation is terse.

vi+1

vi

vi−1

Figure 5. For an asymptotically pointed vertex vk
i , once all the vertices

are within a small enough disk around their limit, there is a line that
separates the disk of vk

i from all the other disks. Thus vk
i subsequently

remains on the convex hull of P k and cannot be flipped again.

Finally, in Step 4, once all the asymptotically pointed vertices have converged,
no more flips are possible, because they would cause the convex hull to increase
beyond its limit, namely, the convex hull of the converged locations of the asymp-
totically pointed vertices.

3.2. Reshetnyak. In 1957,3 a paper in Russian by Reshetnyak [Res57] re-
discovers the problem and gives a proof that is somewhat hand-wavy, but quite
original and correct. It consists of two main steps:

(1) Vertices that move an infinite number of times are asymptotically flat.
(2) Once the asymptotically pointed vertices have converged, the asymptoti-

cally flat vertices cannot move.

3The publication states that the paper was “Submitted to the editors 24 January 1956.”
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Thus, Reshetnyak’s Steps 1 and 2 essentially establish Nagy’s Steps 3 and 4
directly, without establishing that the polygons actually have a limit, and thus
bypassing Nagy’s Step 1 and troublesome Step 2.

Step 1 considers a vertex vj that moves infinitely many times, and uses Nagy’s
“constant perimeter” argument to extract an infinite sequence n1, n2, . . . such that
vnm

j−1, vnm
j , vnm

j+1, vnm+1
j−1 , vnm+1

j , and vnm+1
j+1 all converge as m → ∞, and such

that vnm
j 6= vnm+1

j for all m. The latter property implies that vnm
j and vnm+1

j are
reflections of each other through a line of support, call it Lnm , and similarly for
vertices vj−1 and vj+1. A further subsequence extraction leads to a sequence v

n′
m

j

for which Ln′
m converges to a limit L∗. The limit of v

n′
m

j must lie on L∗ because

of the reflection property, and likewise for vj−1 and vj+1, so the turn angle τ
n′

m
j

must converge to either 0 or 180◦. By Nagy’s “nondecreasing distances” argument,
the distance between any two polygon vertices is nondecreasing, so the absolute
turn angles are nonincreasing, and therefore the sequence of turn angles τ

n′
m

j must
converge to 0.

Step 2 can be seen as a more involved version of our Lemma 4.2 described in
Section 4.3. Reshetnyak considers an arbitrary line L of support of P k0 at the time
k0 at which all asymptotically pointed vertices have converged. He shows that, for
all k ≥ k0, no vertex of P k can lie on the opposite side of L from P k0 . Specifically,
if some vertex were to go some distance h > 0 on the other side of L, then there
would always be a vertex of distance at least h on that side of L. But by Step 1,
for large enough k, the turn angles of the vertices on that side of L get to within
ε of flat. This straightening leads to an upper bound of εpn on h, where p is the
perimeter of P and n is the number of vertices. Because this upper bound holds
for all ε > 0, h must in fact be zero, a contradiction.

Reshetnyak’s argument in Step 2 is a bit of a “proof by picture,” and therefore
lacks precision, but in the end it is correct. As such, Reshetnyak’s proof is likely
the first correct proof of Theorem 1.1.

Reshetnyak’s paper has no references. Indeed, the author states that “No other
proof of this theorem is known to us.” The only indication of where the problem
might have arisen is that the “result would help in solving some extremal problems.”
This statement is motivated later in the literature by Bing and Kazarinoff; see
Section 3.4 below.

3.3. Yusupov. Perhaps coincidentally, another 1957 paper in Russian, by
Yusupov [Yus57], rediscovers the problem and claims a proof of Theorem 1.1.
Yusupov’s argument follows roughly the same outline as Nagy’s argument, although
most steps are argued differently, so the similarity seems to be coincidence. Unfor-
tunately, Yusupov’s argument has two distinct flaws: a different flaw from Nagy’s
in Step 2, and a new flaw in Step 3. To our knowledge, neither flaw was noticed
previously.

For Step 1, Yusupov argues that the polygons have a limit if they are treated
as sets. Here he uses that the sets are “monotonically nondecreasing” (P 0 ⊆ P 1 ⊆
P 2 ⊆ · · · ), and that the sets are bounded by the usual perimeter argument. This ar-
gument does not imply that any particular vertex converges, but this stronger claim
seems unnecessary (though implicitly assumed) in the rest of Yusupov’s argument.

For Step 2, Yusupov simply claims that “The limit polygon is convex, because,
otherwise, a part of it would admit a . . . [pocket flip] and the polygon would not be
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the limit.” In other words, any limit polygon must have all possible flips already
made. This reasoning is incorrect in general. For some intuition why, imagine that
there are two portions of the polygon that each can flip infinitely often (hypothet-
ically, of course). If we choose an infinite flip sequence that visits pockets in just
one of those portions, then the other portion never gets flipped, so the resulting
limit polygon is nonconvex. There are specific flip sequences that would provably
avoid this problem (for example, visiting the pockets in round-robin order; see also
Grünbaum’s proof in Section 3.7), but this would necessarily weaken the claim to
convexification after finitely many properly chosen flips.

For Step 3, Yusupov uses the lemma that, if the shortest edge length is `min,
then a flip increases the area of the polygon by at least 1

2`2min sin τ where τ is the
turn angle of “one of the flipped vertices.” Although unjustified in the paper, this
lemma is true: triangulate the pocket, take a triangle (“ear”) with two polygon
edges as sides, use the 1

2`1`2 sin θ area formula for a triangle with side lengths `1
and `2 and incident angle θ, and observe that sin θ = sin(180◦ − τ) = sin τ . By the
polygon limit argument of Step 1, the polygon area is bounded, so the area increase
per flip must converge to 0. Also, Yusupov observes that absolute turn angles only
decrease by flips, as they change only when a vertex is an endpoint of the pocket
lid. Yusupov then claims that the turn angles of vertices flipped infinitely often
must therefore converge to 0. This argument is flawed: all we know is that some
turn angle in each infinitely flipped subchain must converge to 0 (corresponding to
an ear), but we have little control over which turn angle.4

If we assume Steps 2 and 3, then Step 4 is not difficult, as in Nagy’s argument.
At least three vertices stop moving after finitely many flips, because the limit
polygon cannot be flat (as it contains P 0), so it must have at least three nonflat
vertices. (Like the general form of Step 3, it seems difficult to deduce just these three
converging vertices directly from the lemma above.) Then the infinitely flipped
vertices between these converging vertices must be asymptotically flat (again by
Step 3), but then they must actually be flat once the converging vertices converge,
just to reach the desired distance. Thus ends Yusupov’s argument.

Like Reshetnyak, Yusupov’s paper has no references, and the two contempo-
raries seem unaware of each other. Yusupov’s paper also lacks any context for the
problem, jumping directly into definition, theorem, and attempted proof.

3.4. Bing and Kazarinoff. At the AMS Annual Meeting in 1960, Kazarinoff
and Bing [KB59] presented the pocket-flipping problem and a solution. In 1961, full
proofs appear in a paper by Bing and Kazarinoff [BK61] and also in Kazarinoff’s
Analytic Inequalities book [Kaz61a].

Bing and Kazarinoff’s proof, as described in both [BK61] and [Kaz61a], has
no missing steps, and suffers only from being terse. In fact, the journal editor
of [BK61], presumably having found the proof too terse, added some explanatory
footnotes, without which the proof would indeed be rather incomplete. The proof
consists of three main steps:

(1) The sequence P k converges to a limit P ∗.
(2) Pointed vertices of the convex hull of P ∗ converge in finite time.

4Another possible interpretation of the lemma is that τ measures one of the turn angles at
an endpoint of the pocket lid. This alternative makes the use of the lemma more plausible, but
makes the lemma false, by examples like those in Figure 7.
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(3) The sequence P k converges in finite time. (Same idea as Nagy.)

For Step 1, Bing and Kazarinoff use Nagy’s “constant perimeter” and “nonde-
creasing distances” arguments to conclude that, for x interior to C0, the sequence
‖x − vk

i ‖ is bounded and nondecreasing, and thus it converges. Applying this ar-
gument for three noncollinear points x1, x2, and x3 shows that each vk

i converges
to the unique intersection of three circles.

In Step 2, they argue that, because P k converges, the interior angles of its
vertices must also converge. Thus, any vertex that converges to a pointed vertex in
the convex hull of P ∗ has an interior angle less than 180◦ after a finite number of
steps. Because a vertex moves only when it is flipped, and a flip changes an interior
angle α into the angle 360◦ − α, the vertex can no longer move.

As mentioned by Grünbaum [Grü95], “In all three publications by Bing and
Kazarinoff it is conjectured that the convexification of every polygon with n sides is
achieved after at most 2n flips.”5 Kazarinoff’s book [Kaz61a] goes on to ask: “Can
you prove or disprove this conjecture? Paul Erdős did.” Grünbaum [Grü95] writes:
“I am not aware of the reason for this statement, and I do not know what Erdős
did in this context; there appears to be no further mention of the convexification
question in Erdős’ writings after [Erd35].” In any case, the conjecture has since
been shown to be false, by Joss and Shannon; see Section 3.5.

Bing and Kazarinoff end their Russian paper [BK61] with two revelations:
(1) “Observation: the polygon need not be a simple polygon.” (2) “The proof of
this theorem, given by B. Sz. Nagy, is incorrect.” They do not provide further
explanation for either claim. Now we know that Nagy’s “proof” is indeed incorrect,
but it remains a mystery what exactly Bing and Kazarinoff had in mind. Bing
and Kazarinoff were also aware of Reshetnyak’s proof, stating in an early footnote
that “A somewhat different proof of the same theorem is presented by Yu. G.
Reshetnyak” (including a full reference to [Res57]). As for nonsimple polygons, we
will see in Section 4 that so far only less-general forms of this claim have been proved
[GZ01, Tou05, Weg00, BCC+01], and that the most general interpretation of
this claim is in fact false. In particular, Bing and Kazarinoff’s proof fails in Step 1
for nonsimple polygons, where it is no longer guaranteed that P k ⊆ P k+1, so we
cannot easily choose three noncollinear points that remain interior to the polygon.

Another book by Kazarinoff, Geometric Inequalities [Kaz61b], mentions The-
orem 1.1 without proof. What makes this reference interesting is that Kazarinoff
uses Theorem 1.1 in the proof of another theorem, on isoperimetry: given any n-gon
whose edge lengths are not all equal, one can construct another n-gon with the same
perimeter, with all sides of equal length, and with larger area. His proof of this
theorem first convexifies the polygon using pocket flips, mentioning Theorem 1.1
without proof. Then he re-orders the edge-length sequence by reflecting a two-edge
chain vi−1, vi, vi+1 through the perpendicular bisector of vi−1 and vi+1. This reflec-
tion operation enables him to bring two different-length edges next to each other

5The situation is actually a little more subtle than this: the talk abstract [KB59] phrases
the conjecture as follows: “For fixed n, N [the number of flips] is bounded by at least 2n for all
P and all choices of rm’s [the flips].” We assume that the phrase “at most” was intended instead
of “at least,” given the phrasings in [BK61, Kaz61a], but it is plausible that something more
subtle was intended.
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Figure 6. Quadrangles similar to the one shown at the bottom can
require arbitrarily many flips to convexify.

and perform a local improvement. The initial convexification is necessary to ensure
that the reflection operation preserves simplicity of the polygon.6

This application seems to be the motivation for Bing and Kazarinoff’s statement
in [BK61] that the “theorem allows us to reduce a host of extremal problems for
simple polygons to simpler problems on convex polygons,” as well as Reshetnyak’s
similar earlier statement.

3.5. Joss and Shannon. In 1973, two students of Grünbaum at the Univer-
sity of Washington, R. R. Joss and R. W. Shannon, worked on pocket flipping but
did not publish their results. Grünbaum [Grü95] gives an account of the unfor-
tunate circumstances surrounding this event. They found a counterexample to the
conjecture of Bing and Kazarinoff, though they were unaware of the conjecture.
Specifically, they showed that, given any positive integer k, there exist simple poly-
gons of constant size (even quadrilaterals) that cannot be convexified with fewer
than k flips. Figure 6 shows their counterexample. See [Grü95, Tou05] for more
details about their work and their story.

3.6. Wegner. In 1981, Kaluza [Kal81], apparently unaware of the previous
work, posed the pocket-flipping problem again and asked whether the number of
flips could be bounded as a function of the number of polygon vertices. In 1993,
Bernd Wegner [Weg93] took up Kaluza’s challenge and claims solutions to both
problems again. His proof of convexification in a finite number of flips is quite
different from the others, but his example of unboundedness is the same as that of
Joss and Shannon. More recently, Wegner has extended his work to polygons on
the sphere [Weg96a, Weg96b, Weg96c] and to more general curves [Weg96c,
Weg99, Weg00].

Wegner’s argument [Weg93] is certainly the most intricate of the proofs we
have seen. His argument is very technical—for example, using convergence results

6In fact, Kazarinoff first proposes a modified reflection operation that works as described at
convex vertices vi, while for reflex vertices vi, it first reflects the chain through the line vi−1vi+1

and then reflects through the perpendicular bisector. Interestingly, this operation is essentially
a simple form of “flipturns,” previously thought to have been invented by Joss and Shannon
[Grü95]. Then Kazarinoff notes that these reflection operations can lead to self-intersection in a
nonconvex polygon, so he introduces pocket flipping for initial convexification.
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from the theory of convex bodies—and difficult to summarize. To his credit, Weg-
ner carefully details his reasoning, unlike many other authors. Unfortunately, his
argument is flawed.

Wegner’s approach most closely resembles Yusupov’s. For example, both ob-
serve that the absolute turn angles are monotonically nondecreasing. The exclusive
use of absolute turn angles makes Wegner’s argument stand out, but prevents the
use of angles to show convergence in finite time as in Bing and Kazarinoff’s proof.

Instead, Wegner introduces the area Ak of P k and tries to show that, after a
finite number of flips, performing an additional flip would cause Ak to exceed the
area A∗ of the limit polygon P ∗. He lower-bounds the increase in area during a
flip that moves any vertex vk

i by considering the area a of the triangle vk
i−1v

k
i vk

i+1.
Wegner argues that, during such a flip, Ak will increase by at least 2a, and uses this
fact to force Ak beyond its limit. Figure 7(a) shows the presumed motivation for
this claim, a simple reflex vertex vk

i . Unfortunately, Figure 7(b–c) shows examples
of convex and reflex vertices where the area Ak increases by an arbitrarily small
amount relative to a.7 To our knowledge, this flaw was not noticed previously.

a

(a)

a

a

a

a

a

(c)(b)

Figure 7. Flipping a simple reflex vertex increases the polygon area
by twice the area a of the incident triangle (a), but this property is not
true of a convex vertex (b), nor for a more complicated reflex vertex (c).

3.7. Grünbaum. Branko Grünbaum [Grü95] described some of the intricate
history of this problem following the appearance of Nagy’s paper [dSN39], uncov-
ering the aforementioned rediscoveries of the theorem. He also provided his own
argument, “essentially the one” by Nagy, but somewhat more terse. One main dif-
ference is that, at each step, he flips the pocket that has maximum area (if there is
more than one pocket to choose from). Therefore Grünbaum [Grü95] actually ar-
gues a weaker theorem: there exists a (well-chosen) sequence of flips that convexifies
after finitely many flips.

Grünbaum’s argument has a similar four-step structure to Nagy’s:

(1) A subsequence of the sequence P k converges to a convex limit.
(2) The whole sequence converges.
(3) Asymptotically pointed vertices converge in finite time. (Same as Nagy.)
(4) The sequence converges in finite time. (Same as Nagy.)

For Step 1, Grünbaum invokes Nagy’s “constant perimeter” argument to show
that a subsequence converges. He then claims that “Due to the choices of the

7We originally thought [DGOT06] that this flaw arose only with convex vertices, which
would be easy to fix, because a convex vertex becomes reflex after one flip, so the next time it
moves, Wegner’s argument would indeed apply. Then we found Figure 7(c).
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exposed pairs [pocket lids] as maximizing the area, the polygon P ∗ is convex,”
without further explanation. We view this unjustified claim as a gap in the proof,
because the convexity of P ∗ has been a stumbling block in most claimed proofs of
the theorem (particularly Nagy’s and Toussaint’s).

In Step 2, Grünbaum invokes a nondecreasing-distance argument: “since each
flip either increases or leaves unchanged the distance from a vertex to any point
inside the polygon, it follows that P ∗ is, in fact, the limit of the complete sequence
of polygons Pi, without the need to select a convergent subsequence.” We view
this argument as also requiring more justification: either it requires the selection
of three noncollinear interior points from which to measure distances, as in Bing
and Kazarinoff’s proof, or it requires concluding the nondecrease of ‖vm

i − vp
i ‖, as

in Nagy’s proof.

3.8. Toussaint. Motivated by the desire to present a simple, clear, elemen-
tary, and pedagogical proof of such a beautiful theorem, Toussaint [Tou99] pre-
sented a more detailed and readable argument in 1999. He combined Bing and
Kazarinoff’s approach to proving the convergence of P k with Nagy’s approach of
proving that convergence occurs in finite time.

The original argument that appeared in [Tou99] uses one instead of three non-
collinear points x1, x2, and x3 to conclude that the vertices vk

i converge. However,
without further justification, it is possible that vk

i circles around x and thus has
multiple accumulation points. Because Toussaint’s argument is explicit in the de-
tails, this is a clear oversight. This led the first and third authors of this paper to
point out the problem, and propose the three-point solution (at the time, unaware
of Bing and Kazarinoff’s proof). This correction appeared in the journal version of
Toussaint’s argument [Tou05].

Unfortunately, both arguments [Tou99, Tou05] make an invalid deduction for
establishing the convexity of the limit polygon P ∗ in general: “we note that the
limit polygon . . . must be convex, for otherwise, being a simple polygon, another
flip would alter its shape contradicting that it is the limit polygon.” This flaw
is coincidentally the same as one of the errors made by Yusupov. (At the time,
however, Toussaint was unaware of Yusupov’s proof.) As described in Section 3.3,
this flaw is easy to repair for specific flip sequences, but this would weaken the
claim.

4. New Proof, for Nonsimple Polygons

We now turn to present a new proof that polygons always convexify after finitely
many flips. Our initial motivation for such a proof was to have one fully detailed,
correct, and accessible proof of Theorem 1.1, whereas previously the only correct
proof in English was [Kaz61a]. This motivation led to the proof in the conference
version of this paper [DGOT06], which was essentially a somewhat more detailed
version of the proof by Bing and Kazarinoff [BK61, Kaz61a]. Instead of presenting
this proof, however, we present a new proof that establishes a stronger theorem,
allowing certain kinds of nonsimple (self-crossing) polygons. To our knowledge, our
Theorem 1.2 is a new result, which has only been approached up to now.
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4.1. Previous Results for Nonsimple Polygons. Wegner [Weg00], Grünbaum
and Zaks [GZ01], and Toussaint [Tou05] each show that, for any polygon (possi-
bly nonsimple), there exists a particular way of selecting flips so that the polygon
convexifies in a finite number of steps.

Wegner [Weg00] deals with the case of nonsimple polygons but concentrates on
proving the result for curves more general than polygons. For the case of polygons
[Weg00, Section 3], he provides only a rough outline. He assumes throughout
that all self-intersections are transversal, i.e., that there are only a finite number
of intersection points. But he adds that the general case of “self-intersections with
equal tangents” can be handled also, but “the arguments are quite lengthy” and
omitted. He states in the section on curves that it is obvious that the flips must be
chosen in a special way. Otherwise, flipping with arbitrary choices, one may enter
an infinite sequence of iterations never ending at a simple closed curve. However, his
arguments do not appear to apply to polygons. Finally, he generalizes the results
to polygons and curves embedded on other surfaces such as the sphere.

Grünbaum and Zaks [GZ01] handle arbitrary nonsimple polygons, putting
great care into precise definitions of pocket flips and weakened forms of convexity
that are required when vertices lie on nonincident edges. They introduce a potential
function, the sum of pairwise distances between polygon vertices, and at each step
choose the flip that maximizes the increase in this potential. Then they prove
finiteness of this flipping process with a new argument. Computing the potential
function requires Θ(n2) time, so determining the next flip to perform requires Ω(n2)
time.

Toussaint [Tou99, Tou05] handles arbitrary nonsimple polygons as well. His
construction is a clean inductive argument that uses Theorem 1.1 purely as a black
box, applied to a specifically constructed flip sequence. The construction is also
easier to compute, requiring only Θ(n) time to determine the next flip (the same
time required to execute a flip).

Another, unpublished approach to the nonsimple case is by Biedl et al. [BCC+01].
In this inductive proof, the nonsimple case with a finite number of crossings is re-
duced to the simple case by a black-box reduction. The first observation is that
the number of crossing pairs of edges never increases by flips. If all the crossings
get removed, we are done. Otherwise, the polygon can be transformed by replacing
each crossing with a small construction as in Figure 8. This transformation does
not change the effect of flips that are applied to the polygon (because we assume
the crossing is never removed), so by induction the transformed polygon convexifies
in a finite number of steps. This argument applies to any flip sequence, but it only
allows proper crossings that occur away from vertices.

In contrast to these results, our proof works for any flip sequence and for any
polygon that has no hairpin vertices, i.e., no turn angle of 180◦. The hairpin
limitation is necessary in the worst case: some polygons with hairpin vertices can
flip an infinite number of times, as we will see in Section 4.4.

4.2. Definitions. Before proceeding to our proof, we define the generalized
notions of pocket flips and convexity.

As in Section 2, a polygon is defined by a finite circular sequence of vertices
v0, v1, . . . , vn−1. Such a polygon may now self-intersect in a variety of ways: two
nonadjacent edges might properly cross, a vertex could lie on the relative interior of
an edge, two nonadjacent vertices might coincide, and/or two edges could overlap
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vi

vi+1vj

vj+1 vi

vi+1vj

vj+1 vi

vi+1

vj

vj+1

vi

vi+1

vj

vj+1

(a) (b)

Figure 8. Replacing crossing edges with noncrossing edges.

collinearly. We may, however, assume without loss of generality that no two vertices
adjacent in the sequence are identical, i.e., the polygon has no zero-length edges.
Such edges can be added or removed without affecting pocket flips.

A pocket lid of a polygon P is a triple (vi, vj , L), where vi and vj are vertices
of P , i 6= j, and L is a line through vi and vj that is a line of support for P .
Moreover, vi and vj split P into two subchains, vi, vi+1, . . . , vj and vj , vj+1, . . . , vi,
neither of which may be entirely contained in the line L. We permit vi and vj to
be overlapping. In this degenerate case, there may be an infinite family of pocket
lids through the same two vertices vi and vj , as illustrated in Figure 9. All of these
possibilities need to be considered in our proof of Theorem 1.2.

(a) (b)

(c) (d)

(e) (f)

v1 v2

v1=v2

L

L

v1

v2

L

v1

v2

Figure 9. (a, b) Pocket lid and flip. (c) A degenerate pocket lid with
v1 = v2. (d) After one of the possible flips. (e) A twice-cycled triangle
forming a hexagon. (f) Details of flip of one subchain delimited by v1

and v2, with overlapping edges separated for clarity.
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A pocket flip of a polygon P around pocket lid (vi, vj , L) is the polygon obtained
by reflecting one of the subchains of P defined by vi and vj through line L. The
requirement that each subchain not be contained in L implies that a pocket flip is
never a trivial motion (doing nothing or globally reflecting the whole polygon).

As in Theorem 1.1, a polygon P is convex when it is simple and contained
in the boundary of the convex hull of P . (In Grünbaum and Zaks’s terminology
[GZ01], this notion of convexity is called “weakly convex” because it allows flat
vertices.)

Grünbaum and Zaks’s results [GZ01] use an even weaker notion of convexity,
called exposed, in which the polygon edges are contained in the boundary of the
convex hull of P and each vertex of the convex hull contains only one vertex of P .
We can avoid this weaker notion in the case of no hairpin vertices, but we will
consider it when discussing possible generalizations.

4.3. Proof. Our proof of Theorem 1.2 divides into two major parts:

Part 1. Every polygon, not necessarily simple but having no hairpin vertices,
admits only finitely many flips, no matter which flip is chosen at each step.

Part 2. Any polygon P having no hairpin vertices and no valid flips is convex.

We start with two lemmas that will be used in the proof of Part 1. The first
lemma gives us a tool to compare the relative orientation of two turn angles using
just inter-vertex distances. A turn angle has the same sign as the signed area
of the triangle formed by the vertex and its two neighbors (positive if oriented
counterclockwise, negative if oriented clockwise). Inconveniently, the sign of this
area cannot be computed using just the inter-vertex distances in the triangle, as
these distances are the same for the triangle and its mirror image. Fortunately,
given two triangles and given the inter-vertex distances between all six vertices, we
can calculate the relative signs of the signed areas (and hence the turn angles) of
the two triangles.

Lemma 4.1. Given two triangles ABC and DEF , the product of their signed
areas is a continuous function of just the inter-vertex distances.

Proof: First, dot products of vectors connecting vertices are continuous functions
of the inter-vertex distances: for arbitrary A,B, C, D,

2 (A−B) · (C −D)
= 2 A · C − 2 B · C − 2 A ·D + 2 B ·D
= − (A ·A− 2 A · C + C · C) + (B ·B − 2 B · C + C · C)

+ (A ·A− 2 A ·D + D ·D) − (B ·B − 2 B ·D + D ·D)
= − (A− C) · (A− C) + (B − C) · (B − C)

+ (A−D) · (A−D) − (B −D) · (B −D)
= −‖A− C‖2 + ‖B − C‖2 + ‖A−D‖2 − ‖B −D‖2.

Second, introducing vectors b = B−A, c = C−A, e = E−D, and f = F −D,
the product of the signed triangle areas is proportional to (one quarter of)

(b× c) · (e× f),

where × denotes the 3D cross product and · denotes the dot product. Lagrange’s
identity (also known as the quadruple vector product [Wei06]) shows that this
expression is the same as

(b · e)(c · f)− (b · f)(c · e),
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which can be computed from inter-vertex distances using the dot-product formula
above. The purely algebraic expression for calculating signed area products is
clearly continuous with respect to the inter-vertex distances. 2

The second lemma says that, essentially, if a chain spans a fixed-length gap
while its angles flatten, then in fact it is already completely straight.

Lemma 4.2. Let 〈vk
p , vk

p+1, . . . , v
k
q 〉, k ≥ c, be an infinite sequence of configu-

rations of a polygonal chain such that (1) vk
p and vk

q are a fixed distance d apart,
and (2) the intermediate turn angles converge to zero: τk

i → 0 as k → ∞, for
i = p + 1, p + 2, . . . , q − 1. Then, in fact, all the configurations in the sequence are
identical, with the intermediate vertices lined up along the segment from vk

p to vk
q

with zero turn angles.

Proof: We introduce a reference frame centered at vk
p and with the x axis directed

towards vk
p+1, as shown in Figure 10. The directed angle βk

i between the x axis and
the edge vk

i vk
i+1 is given by βk

i =
∑i

j=p+1 τk
j , where we stipulate that βk

p is zero.
Let `i denote the (fixed) edge length ‖vk

i − vk
i+1‖. This allows us to calculate the

coordinates of vk
q as

(∑q−1
i=p `i cos βk

i ,
∑q−1

i=p `i sinβk
i

)
. The Pythagorean Theorem

now tells us that the distance d between vk
p and vk

q satisfies d2 =
(∑q−1

i=p `i cos βk
i

)2

+(∑q−1
i=p `i sinβk

i

)2

. As k → ∞, τk
i → 0, so βk

i → 0 also, and we obtain that

d =
∑q−1

i=p `i. Thus the chain is just long enough to span the distance d, so for all
k ≥ c, the vertices between vk

p and vk
q are lined up between the two endpoints, and

the angles are flat all along. 2

βi

vi

vi +1

vp +1

vq

vp
d

x

Figure 10. A “flat” chain with endpoints vp and vq at a fixed distance d.

We now turn to the proof of Part 1, which consists of four main steps:

(1) Distances between vertices converge, are nondecreasing, and only increase
for vertices on different subchains.

(2) The absolute turn angles |τk
i | are nonincreasing and converge.

(3) After a finite number of steps, asymptotically pointed vertices no longer
move relative to each other.

(4) After a finite number of steps, asymptotically flat vertices no longer move
relative to the asymptotically pointed vertices.
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Proof of Part 1: Assume for contradiction that there is an infinite sequence of
pocket flips that can be successively applied to a polygon P = P 0, leading to the
polygon sequence P 0, P 1, P 2, . . . .

Step 1. First we introduce the distance matrix Dk with entries Dk
i,j = ‖vk

i −vk
j ‖,

and show that this matrix has a limit D∗. We claim that each entry Dk
i,j is a

nondecreasing function of k. Moreover, Dk
i,j is bounded by the perimeter of the

polygon P (which equals the perimeter of P k). Thus it follows that Dk converges
to a limit D∗.

To see the claim, consider an arbitrary pocket flip. Two vertices vk
i and vk

j can
be either on the same subchain or on different subchains. If they are on the same
subchain, or if one of them is an endpoint of both subchains, their relative distance
Dk

i,j is unchanged by the flip. Now suppose that they are interior to opposite
subchains so that, say, vk

i reflects across the pocket’s line of support L to vk+1
i ,

while vk+1
j coincides with vk

j . If either vk
i or vk

j is on L, then the distance is still
unchanged. Otherwise, vk

i and vk
j are strictly on the same side of L, because L is a

line of support of P k. Refer to Figure 11. Because L is the perpendicular bisector
of the segment vk

i vk+1
i , i.e., the Voronoi diagram of vk

i and vk+1
i , we conclude that

vk
j is closer to vk

i than to vk+1
i , i.e., Dk+1

i,j > Dk
i,j .

vk
i

vk
j

L

vk+1
i

Figure 11. The distance from vj to vi increases during a flip.

Step 2. Next we analyze the absolute turn angles |τk
i |. Because Dk

i−1,i+1 is
monotonically nondecreasing, |τk

i | is monotonically nonincreasing. Being also non-
negative, |τk

i | converges. It now makes sense to label each vertex as either asymptot-
ically flat or asymptotically pointed. Moreover, because P 0 has no hairpin vertices,
i.e., |τ0

i | < 180◦, no descendant polygon P k has hairpin vertices either.
Step 3. Next we show that, after a finite number of pocket flips, all asymptot-

ically pointed vertices are in the same pocket subchain of every flip, and thus no
longer move relative to each other.

First we introduce the signed-area-product matrix Tk where entry Tk
i,j is

the product of the signed areas of the triangles vk
i−1v

k
i vk

i+1 and vk
j−1v

k
j vk

j+1. By
Lemma 4.1, Tk is a continuous function of Dk. Thus it has a limit T∗, so there
exists a k0 such that, for any k ≥ k0, all entries of Tk with nonzero limits already
have the same sign as in T∗.

Now consider two asymptotically pointed vertices vk
i and vk

j . Then Tk
i,j must

have a nonzero limit just like the two signed areas in the product (because the
vertices are not hairpins). If vk

i and vk
j are interior to opposite subchains in a pocket

flip, then one of the areas in Tk
i,j changes sign while the other does not, leading

to Tk+1
i,j = −Tk

i,j . For k ≥ k0, Tk
i,j cannot change sign, so we must conclude that
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vk
i and vk

i are on the same subchain in the kth flip. Thus, for k ≥ k0, there is no
longer any relative motion between asymptotically pointed vertices.

Step 4. Finally we show that, for k ≥ k0, asymptotically flat vertices do not
move relative to the asymptotically pointed vertices. Consider a maximal chain
vk

p+1, v
k
p+2, . . . , v

k
q−1 of asymptotically flat vertices, surrounded by asymptotically

pointed vertices vk
p and vk

q . (Such asymptotically pointed vertices exist because
every polygon, and hence P ∗, has at least two pointed vertices.) By Step 3, vk

p and
vk

q do not move relative to each other for k ≥ k0. By Lemma 4.2, τk
p+1 = τk

p+2 =
· · · = τk

q−1 = 0 for k ≥ k0, and thus the asymptotically flat vertices are immobile
relative to the asymptotically pointed vertices. Therefore, for k ≥ k0, the polygon
undergoes only rigid motion, which contradicts the assumption that it undergoes
an infinite sequence of pocket flips. 2

All that remains is to prove Part 2: polygons without hairpins and without
flips are already convexified.

Proof of Part 2: Consider a polygon P with no pocket lids and no hairpin vertices.
We assume that P has no flat vertices because flat vertices make no difference to
the existence of pockets. We prove that P is identical to the boundary H of its
convex hull by showing (1) each vertex of H is collocated with exactly one vertex
of P , (2) every edge of H has a corresponding edge in P , and (3) every vertex of
P is collocated with a vertex of H. These properties imply that P is identical to
H, and hence convex, because P and H have the same vertices by (1) and (3), and
they have the same edges by (2).

To show (1), we suppose for contradiction that there exist vertices vi and vj of
P collocated at a vertex hk of H. We claim that (vi, vj , L), where L is any line of
support that intersects H only at hk, is then a valid pocket lid. Indeed, the pocket
subchains defined by vi and vj are contained in the convex hull, and must leave hk

because there are no zero-length edges. Thus neither subchain can be contained
in L. We conclude that each vertex of H is collocated with exactly one vertex of P .

To show (2), we consider vertices vi and vj at two consecutive corners of H, and
the line of support L connecting them. These vertices define two pocket subchains,
one of which has to be contained in L to avoid creating a pocket. That subchain is
contained in a line and has no hairpins or flat angles, so the subchain must be just
one edge. Thus every edge of H is an edge of P .

To show (3), suppose for contradiction that there is a vertex vi of P that is
not vertex of H. We can pick i so that vi+1 = hk is a corner of H. Because P has
no hairpins, H has at least three vertices, so hk has two distinct adjacent vertices
in H. By (1) and (2), these vertices must be collocated with vi and vi+2, which
thus are vertices of H, contradicting the choice of i. Therefore every vertex of P is
collocated with a vertex of H. 2

To summarize, starting from any polygon without hairpin vertices, Part 1 lim-
its any flip sequence to be finite. Once we run out of flips, Part 2 guarantees
the polygon is convex. Thus any polygon without hairpins convexifies in a finite
number of pocket flips, regardless of the sequence of flips, concluding the proof of
Theorem 1.2.
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4.4. Polygons with Hairpins. Our new result, Theorem 1.2, forbids hair-
pin vertices. Here we explain this exclusion and discuss the nuances of how the
definitions treat hairpins.

First, can Part 2 be strengthened to allow hairpin vertices? Figure 12 shows a
nonconvex polygon with two hairpin vertices. Our definition of pocket lid forbids
either chain from lying entirely along the line of support, so this polygon has no
pocket lid. Forbidding collinear chains is also necessary: flipping one of the “zero-
area pockets” in this or any other polygon does not change the polygon except
possibly by a global reflection, leading to an infinite sequence of flips. To handle
this issue, Grünbaum and Zaks [GZ01] replace convexity with the notion of exposed
polygons, which are contained in the boundary of their convex hull, and for which
each vertex of the convex hull corresponds to only one polygon vertex. The polygon
in Figure 12 is already exposed. More generally, Part 2 can allow hairpin vertices
if we replace “convex” with “exposed.” (This fact is implicit in [GZ01].)

Figure 12. A polygon with two hairpin vertices. All three bottom
horizontal segments are collinear. No flips are possible, but this polygon
is not convex.

Second, can Part 1 be extended to allow hairpin vertices? Unfortunately, Fig-
ure 13 shows that the answer is no. In this degenerate quadrilateral, choosing a
shallow angle ε between L and ab allows any decreasing sequence of turn angles to
be generated by successive pocket flips. Indeed, our definition of flips allows the
lid to form an angle of ε = 0, causing a cyclic flip sequence. Thus some polygons
flip infinitely under poor choices of the pocket lids. Grünbaum and Zaks [GZ01]
avoid this problem by selecting a particular sequence of flips that convexifies the
polygon.

(a) (b) (c)
a c

bd

c'

L90°ε

90°+2ε

ε/2

Figure 13. (a) Degenerate quadrilateral abcd before, angle 90◦; (b) De-
tails: vertices b and d coincide; L makes angle ε with ab. (c) After flip,
quadrilateral angle 90◦+2ε. Successive flips tilt L at angles ε/2, ε/4, . . . .

Although excluding hairpins is necessary in the worst case, there are polygons
with “safe” hairpins that nevertheless always flip finitely. Figure 14 illustrates the
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difference between an “unsafe” and a “safe” hairpin attached to the same polygon.
In both cases, abcde is a sequence of vertices containing a hairpin bcd. In (a),
choosing L poorly leads to a new polygon that again permits a similar flip, leading
to an infinite flip sequence. However, any flip in (b) prevents further “access” to
the coincident vertices b and d, so the hairpin is removed in a future flip. This idea

a

c

b,d

e

c'

L

a

c

e

c'

b,d

L

(a) (b)

Figure 14. (a) An unsafe hairpin bcd. Flipping across a line L nearly
parallel to ab produces a new hairpin bc′d which can again be flipped
across a line nearly parallel to bc′. (b) A safe hairpin bcd. Flipping
across L leads to removal of the hairpin at the next flip.

leads to our first open problem below.

5. Open Problems

Safe hairpins. Characterize which polygons with hairpins always flip finitely,
under our definition of pocket flips. Although we can show that only hairpins
attached to the rest of the polygon by two coincident vertices could lead to infinite
sequences of flips, distinguishing precisely between “safe” and “unsafe” hairpin
configurations remains open.

Definition of pocket flips. We have crafted our definition of a pocket lid and
pocket flip to be the most general subject to avoiding certain degenerate pitfalls
illustrated in Section 4.4. However, it is possible that polygons always flip finitely
under some narrower definition of a flip, e.g., restricting the line of support to bisect
the range of possible lines of support when it is ambiguous.

Simultaneous flips. Perhaps the most intriguing challenge is to revisit the orig-
inal problem posed by Erdős, in which all pockets are flipped simultaneously. With
our extension to nonsimple polygons, Figure 2 is no longer an impediment. How-
ever, in the nonsimple case, it might not be possible to flip all pocket lids, because
some edge might be flipped by two different pocket flips. (This situation happens,
for example, in the next step of Figure 2.) We are therefore limited to applying
some maximal set of compatible pockets flips. It remains open to specify which set
of pockets should be flipped together, and to characterize the polygons that flip
finitely under this specification.

The counterexample in Figure 15 shows a nonsimple polygon for which flipping
a maximal set of pockets leaves the polygon unchanged up to a reflection. This
example is somewhat degenerate because both pocket flips share the same line of
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support. We do not know whether there are any infinitely flipping examples with
two different lines of support, or where the line of support does not contain all
unflipped edges. Moreover, were such examples to exist, we do not know whether
they are reachable by a sequence of pocket flips from a simple polygon. Thus
Erdős’s original problem, suitably modified, is still very much alive.

a

c

b

d

f

c'f '

e

Figure 15. A polygon abcdef that is unchanged other than a reflec-
tion by applying two simultaneous flips. Vertices b and e coincide, and
{a, b, d, e} are collinear. The flipped vertex positions are denoted c′

and f ′.

Curiously, Grünbaum and Zaks [GZ01] mention as a comment that, in the
context of simultaneous flips, “it is possible to establish an affirmative solution to
Erdős’s problem, even without restriction to simple polygons.” However, this claim
remains unjustified.

Bounding flips. In closing, we repeat an open problem posed by Mark Overmars
in 1998: is there a reasonable upper bound on the number of flips admitted by a
given polygon? For example, can such an upper bound be computed in polynomial
time (thus forbidding an explicit execution of the flip sequence)? Is there an upper
bound in terms of the number n of vertices and the ratio r between the largest
and smallest distances between a vertex and an edge? A pseudopolynomial bound
(polynomial in n and r) would be particularly interesting.
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[Tou99] , The Erdős-Nagy theorem and its ramifications, Proceedings of the 11th
Canadian Conference on Computational Geometry, August 1999, Vancouver, Canada,
pp. 9–12.
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