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1 Linkage Reconfiguration. Consider a planar
linkage of rigid bars joined at flexible joints to form a
collection of tangled but noncrossing arcs and cycles
(polygonal chains). The linkage is free to move in any
way that preserves the bar lengths and causes no two
bars to cross. The Carpenter’s Rule Theorem [3, 4]
says that such a linkage can be continuously folded
into every possible configuration, or equivalently, that
any configuration can be folded to straighten the arcs
and convexify the polygons.
The algorithmic side of this theorem remains rel-

atively open. The original proof of [3] is algorith-
mic but requires solving an ordinary differential equa-
tion defined by a convex optimization. This motion
has the advantage of being “canonical”, in particu-
lar preserving any symmetries present in the original
linkage and expanding all distances between pairs of
vertices. The alternative approach of [4] leads to
a more-efficient algorithm, involving the computa-
tion of polynomially many algebraic motions of de-
gree Θ(n). On the other hand, this motion does not
preserve symmetries in the linkage. Neither of these
motions can ever be computed explicitly because of
their inherent complexity; rather, a desired number
of snapshots along the motion can be computed to
desired accuracy, and the precise behavior between
these snapshots remains opaque.

2 Our Results. In this paper, we introduce a
new energy-driven approach to straightening arcs and
convexifying cycles that establishes stronger mathe-
matical, algorithmic, and practical results.
On the mathematical side, we obtain a completely

smooth (C∞) motion. In contrast, the motions of [3]
are piecewise-C1 and the motions of [4] are piecewise-
C∞, with polynomially many pieces; so neither is
even C1. In this sense, the motions produced by our
energy-based approach are particularly natural and
canonical, also preserving symmetries in the linkage,
and proving contractibility of the configuration space
in many cases. The motions are not expansive, but
this relaxation seems key to achieving our results.
On the algorithmic side, we obtain the first algo-

rithm that constructs an explicit motion. This mo-
tion is piecewise-linear (the simplest possible type of
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motion) and approximates the smooth motion arbi-
trarily closely. Furthermore, the motion can be com-
puted exactly on a machine supporting real arith-
metic, in contrast to all previous approaches. Each
piece of the motion is computed in O(n2) time, while
the number of pieces in the motion depends on the ge-
ometric complexity of the instance in addition to n.
This geometric dependence is necessary for any ex-
plicit construction of a motion. In comparison, the
approach of [3] depends on similar parameters, but
the running time is significantly larger. The approach
of [4] only depends on n, plus the desired “snapshot
rate” of the motion, but the running time is exponen-
tial in n (from the manipulation of algebraic curves
of degree Θ(n)).

On the practical side, our algorithm is easy to im-
plement, involving a straightforward computation of
the gradient of an energy function. We have imple-
mented the algorithm as a Java applet [1]. In addi-
tion, the algorithm corresponds to a natural physical
process, in which vertices repel bars (and vice versa)
as if they all were objects with similar electrostatic
charges, and the system evolves in the usual model
of physics.

3 Overview. The basic idea of our approach is to
define an energy function on the configurations of the
linkage, satisfying three properties:

1. the energy is infinite when the linkage crosses
itself;

2. the energy is minimum when the linkage is in the
desired configuration (straight or convex); and

3. expansive motions decrease energy.

The third property, together with the existence of ex-
pansive motions [3], establishes the existence of mo-
tions that decrease energy. We apply gradient de-
scent to follow the motion that decreases energy most
steeply. The first property implies that this energy-
decreasing motion will avoid self-intersection, and the
second property implies that we eventually reach the
desired configuration. The formalization of this ar-
gument requires much more detail and care; refer to
the full paper.

4 Experiments. We compared an implementa-
tion of [3] based on the CPLEX barrier solver for
quadratic programs to a C++ implementation of our
energy approach, on two examples of closed chains.
One example of the resulting animations is shown in
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(a) Doubled tree with energy method.

(b) Doubled tree with CDR method.

Figure 1: A comparison of convexification by our method and by CDR. To maximize visibility, the animation zooms as

time proceeds; in fact, all edge lengths remain constant. This example has 50 vertices.

(a) Tentacle.

(b) Spider.

Figure 2: Other examples of straightening and convexification computed with our method. To maximize visibility, the

animation zooms as time proceeds; in fact, all edge lengths remain constant. These examples have 380 vertices.

Figure 1. We omit details of the running time here.
A short summary is that the energy method is much
faster, in each step requiring only O(n2) time instead
of solving a quadratic program, as well as more ac-
curate, avoiding the approximation inherent in the
solution to the differential equation. To illustrate the
scalability of the energy approach, we show some ad-
ditional examples in Figure 2.

5 Conclusion. We have presented a simpler, more
efficient, and practical method to unfold linkages
made up of arcs and cycles. While the motion is
not globally expansive, its minimization of energy at-
tempts to balance distances and reconfigure the link-
age more “organically.” In the formal sense, this mo-
tion is the first that is completely smooth (C∞) in
the limit.

One interesting question about our motion is to de-
termine the shape of the final minimum-energy con-
figuration of a cycle. In contrast to [3] or [4], which
have unpredictable final configurations, we might ex-
pect that our energy method results in a cycle that

best approximates a regular polygon, that is, causes
the joints to lie on a common circle. See [2] for other
results along these lines. From our experiments, this
expectation seems false, but a combination of our en-
ergy function with a term involving the area of the
polygon may lead to such a result.
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