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Abstract15

We prove PSPACE-completeness of the well-studied pushing-block puzzle Push-1F, a theoretical16

abstraction of many video games (first posed in 1999). We also prove PSPACE-completeness of two17

versions of the recently studied block-moving puzzle game with gravity, Block Dude — a video game18

dating back to 1994 — featuring either liftable blocks or pushable blocks. Two of our reductions are19

built on a new framework for “checkable” gadgets, extending the motion-planning-through-gadgets20

framework to support gadgets that can be misused, provided those misuses can be detected later.21
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1 Introduction25

In the Push family of pushing-block puzzles, introduced by O’Rourke in 1999 [14], a 1× 126

agent must traverse a unit-square grid, some cells of which have a “block”, from a given start27

location to a given target location. Refer to Figure 1. In Push-k [7,8]), the agent’s move28

(horizontal or vertical by one square) can push up to k consecutive blocks by one square,29

provided that there is an empty square on the other side. In the -F variation (described30

in [8, 14] but first given notation in [10]), some of the blocks are fixed in the grid, meaning31

they cannot be traversed or pushed by the agent or other blocks. Push-1F has the same32

allowed moves as the famous Sokoban puzzle video game, invented in 1982 and analyzed at33

FUN 1998 [6], but crucially Push-1F’s goal is for the agent to reach a target location, which34

is much simpler than Sokoban’s “storage” goal where the blocks must be pushed to certain35

locations.36

In this paper, we prove that Push-1F is PSPACE-complete, settling an open problem37

from [8, 10], and complementing previous PSPACE-hardness for Push-kF for k ≥ 2 from 2038

years ago [10].39

To gain some intuition about why Push-1F is so difficult to prove PSPACE-hard, and40

how we surmount that difficulty, consider the attempt at a “diode” gadget in Figure 2. The41

goal of this gadget is to allow repeated traversals from the left entrance to the right (as in42

Figure 2b), while always preventing “backward” traversal from the right to the left (as in43
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2:2 Pushing Blocks via Checkable Gadgets

(a) (b) (c) (d) (e) (f)

Figure 1 Sample Push-1F puzzle and solution sequence. In steps (c) and (e), for example, the
agent cannot push right again. The agent is drawn as a robot head; the traversed path between
steps is drawn as a gray line; pushable blocks are drawn as boxes; fixed blocks are drawn as brick
walls; and the goal location is drawn as a flag. Robot and flag icons from Font Awesome under CC
BY 4.0 License.

(a) Gadget (b) Intended forward traversal (c) Backward
traversal
impossible

(d) Breaking the
gadget

Figure 2 A broken Push-1F diode gadget.

Figure 2c). But given the opportunity for forward traversal, the agent can instead “break”44

the gadget to allow future forward and backward traversal (as in Figure 2d).45

To solve this problem, we introduce the idea of a checkable gadget where, after the46

agent completes the “main” gadget traversal puzzle, the agent is forced (in order to solve47

the overall puzzle) to do a specified sequence of checking traversals of every gadget, all48

of which must succeed in order to solve the overall puzzle. If designed well, these checking49

traversals can detect whether a gadget was previously “broken”, and allow traversal only50

if not. In the case of Figure 2, one can think of the gadget as a four-location gadget (the51

top three rows) which has its bottom two locations connected. This four-location gadget52

is “checkable”: we will demand that, after completing the main puzzle, the agent follows53

the two checking traversals shown in Figure 3. In order for these checking traversals to54

both be possible, the agent cannot push the block into either corner, preventing the agent55

from breaking the gadget during the main gadget traversal puzzle. We call this process of56

removing broken states from a gadget by demanding that the checking traversals remain57

legal postselection.158

We develop a general framework of checkable gadgets that enable a reduction to focus on59

the main gadget traversal puzzle, assuming all gadgets remain unbroken (i.e., the checking60

traversals remain possible at the end), while the framework ensures that the agent makes61

these checking traversals at the end (without other unintended traversals). This framework62

builds upon the motion-planning-through-gadgets framework introduced at FUN 2018 [9]63

and developed further in [2, 3, 11–13] to handle checkable gadgets.64

We also apply our framework to resolve the complexity of Block Dude, a puzzle video65

1 In quantum computing, for example, “postselection is the power of discarding all runs of a computation in
which a given event does not occur” [1]. In probability theory, postselection is equivalent to conditioning
on a particular event.
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check
1 in

check
1 out

check
2 out

check
2 in

(a) Checkable
gadget

(b) Successful checks (c) Failed checks

Figure 3 The top three rows of the Push-1F diode gadget of Figure 2, as a checkable gadget.
The checking traversals are “check 1 in → check 1 out” and “check 2 in → check 2 out”, denoted by
the hollow arrows.

game made over a dozen times on many platforms, originally under the name “Block-Man 1”66

(Soleau Software, 1994); see [5] for details. Barr, Chung, and Williams [5] recently formalized67

this game’s mechanics, along with several variations, and proved them all NP-hard. In this68

paper, we prove PSPACE-completeness of three of these variations, including the original69

video game mechanics:70

1. BoxDude is like Push-1 but where all pushable blocks and the agent experience gravity,71

falling straight down whenever they have blank spaces below them. In addition to moving72

horizontally left or right, the agent can “climb” on top of horizontally adjacent blocks73

(be they pushable or fixed), provided the square above the agent is empty. See Figure 4.74

(a) Pushing (b) Climbing

Figure 4 Mechanics for BoxDude, with pushable boxes shown in red. Squares marked with a
red × must be empty for the move to be possible.

2. In BlockDude (as in the Block Dude video games), blocks cannot be pushed; instead,75

nonfixed blocks can be “picked up” by the agent from a horizontally adjacent position to76

the position immediately above the agent, provided that that position and the intermediate77

diagonal position are empty. See Figure 5. The agent can then carry one such block to78

another location (provided the ceiling offers height-2 clearance), and then drop the block79

in front of them, again provided that that position and the intermediate diagonal position80

are empty.2 They can also stack the block on top of another block. If the agent tries to81

move past a low ceiling while carrying a block, the block will be dropped behind them.82

3. In BloxDude, nonfixed blocks can be pushed (as in BoxDude) and/or picked up (as in83

BlockDude).84

The other variations described in [5], called · · ·Duderino instead of · · ·Dude, change85

the goal of a puzzle to place the k nonfixed blocks into k specified storage locations, as in86

Sokoban. We leave open the complexity of BoxDuderino, BlockDuderino, and BloxDuderino.87

2 A complication in some implementations of the game is that the agent can only pick up or drop the block
in front of them, with the agent’s orientation determined by their previous move. (Some implementations
allow turning around in place.) This detail will not affect our results.
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2:4 Pushing Blocks via Checkable Gadgets

(a) Lifting a block (b) Carrying a lifted block (c) Low clearance when carrying

(d) Climbing with a block (e) Dropping a lifted block (f) Stacking a lifted block

Figure 5 Mechanics for BlockDude, with liftable blocks shown in blue. Squares marked with a
red × must be empty for the following move to be possible.

All of the games we consider can easily be simulated in polynomial space, and thus are88

in NPSPACE = PSPACE by Savitch’s Theorem. Proving PSPACE-hardness is much more89

complicated, and is the goal of this paper.90

The rest of this paper is organized as follows. In Section 2, we review the motion-91

planning-through-gadgets framework. In Section 3, we prove that BlockDude and BloxDude92

are PSPACE-complete using standard reductions from motion-planning-through-gadgets. In93

Section 4, we develop our checkable gadget framework. In Section 5, we prove that BoxDude94

is PSPACE-complete using our checkable gadget framework. In Section 6, we prove that95

Push-1F is PSPACE-complete via a much more involved application of our checkable gadget96

framework.97

2 Gadgets Framework98

Themotion-planning-through-gadgets framework is an abstract motion planning model99

used for proving computational hardness results. Here we give the definitions and results we100

need for this paper; see [11–13] for more details.101

A gadget G consists of a finite set Q(G) of states, a finite set L(G) of locations102

(entrances/exits), and a finite set T (G) of transitions of the form (q, a) → (r, b) where103

q, r ∈ Q(G) are states and a, b ∈ L(G) are locations. The transition (q, a)→ (r, b) ∈ T (G)104

means that an agent can traverse the gadget when it is in state q by entering at location105

a and exiting at location b which changes the state of the gadget from q to r. We use106

the notation a → b for a traversal by the agent that does not specify the state of the107

gadget before or after the traversal. A traversal sequence [a1 → b1, . . . , ak → bk] on the108

locations L(G) is legal from state s0 if there is a corresponding sequence of transitions109

[(a1, s0) → (b1, s1), . . . , (ak, sk−1) → (bk, sk)], where each start state of each transition110

matches the end state of the previous transition (s0 for the first transition). We define111

gadgets in figures using a state diagram which gives, for each state q ∈ Q, a labeled112

directed multigraph Gq = (L(G), Eq) on the locations, where a directed edge (a, b) with label113

r represents the transition (q, a)→ (r, b) ∈ T (G).114

Figure 6 shows the state diagram of a key gadget called the locking 2-toggle [11]. This115

gadget has four locations (drawn as dots) and three states 1, 2, 3. The central state, 2, allows116

for two different transitions. Each of those transitions takes the gadget to a different state,117
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21 3

2 21 3

Figure 6 State diagram for the locking 2-toggle gadget. Each box represents the gadget in a
different state, in this case labeled with the numbers 1, 2, 3. Dots represent the four locations of
the gadget. Arrows represent transitions in the gadget and are labeled with the states to which
those transitions take the gadget. In state 2, the agent can traverse either tunnel going down, which
blocks off both downward traversals until the agent reverses that traversal.

from which the only transition returns the agent to the prior location and returns the gadget118

to state 3.119

A system of gadgets S consists of a set of gadgets, an initial state for each gadget,120

and a connection graph on the gadgets’ locations. If two locations a, b of two gadgets121

(possibly the same gadget) are connected by a path in the connection graph, then an agent122

can traverse freely between a and b (outside the gadgets).3 We call edges of the connection123

graph hallways, and for clarity in figures, we add extra vertices to the connection graph124

called branching hallways, which we can equivalently think of as a one-state gadget that125

has transitions between all pairs of locations. A system traversal is a sequence of traversals126

a1 → b1, . . . , ak → bk, each on a potentially different gadget in S, where the connection127

graph has a path from bi to ai+1 for each i. We write such a traversal as a1 →∗ bk, ignoring128

the intermediate locations. A system traversal is legal if the restriction to traversals on a129

single gadget G is a legal traversal sequence from the initial state of G assigned by S, for130

every G in S. Note that gadgets are “local” in the sense that traversing a gadget does not131

change the state (and thus traversability) of any other gadgets.132

The reachability or 1-player motion planning problem with a finite set of gadgets133

G asks whether there is a legal system traversal s →∗ t from a given start location s to a134

given goal location t (by a single agent) in a given system of gadgets S, which contains only135

gadgets from G.136

Because we are working with 2D games, we also consider planar motion planning,137

where every gadget additionally has a specified cyclic ordering of its vertices and the system138

of gadgets is embedded in the plane without intersections. More precisely, a system of139

gadgets is planar if the following construction produces a planar graph: (1) replace each140

gadget with a wheel graph, which has a cycle of vertices corresponding to the locations on141

the gadget in the appropriate order, and a central vertex connected to each location; and142

(2) connect locations on these wheels with edges according to the connection graph. In143

planar reachability, we restrict to planar systems of gadgets. Note that this definition144

allows rotations and reflections of gadgets, but no other permutation of their locations.145

3 Equivalently, we can think of identifying locations a and b topologically, thereby contracting the
connected components of the connection graph. Alternatively, if we think of the gadgets as individual
“levels”, then the connection graph is like an “overworld” map connecting the levels together.
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2:6 Pushing Blocks via Checkable Gadgets

2.1 Simulation146

To define a notion of gadget simulation, we can think of a system of gadgets as being147

characterized by its set of possible traversal sequences (as formalized by the related gizmo148

framework of [12]).149

I Definition 1. A (local) simulation of a gadget G in state q consists of a system S of150

gadgets, together with an injective function m mapping every location of G to a distinct151

location in S, such that a traversal sequence [a1 → b1, . . . , ak → bk] on the locations in G152

is legal from state q if and only if there exists a sequence of system traversals m(a1) →∗153

m(b1), . . . , m(ak)→∗ m(bk) that is legal in the sense that the concatenation of the restrictions154

of the system traversals m(ai)→∗ m(bi) to traversals on a single gadget G is a legal traversal155

sequence for G from the initial state of G assigned by S, for every G in S.156

A planar simulation of a gadget G in state q is a simulation (S, m) where S is157

furthermore a planar system of gadgets, and the cyclic order of locations of G must map via158

m to locations in cyclic order around the outside face of S.159

A [planar] simulation of an entire gadget G consists of a [planar] simulation of G in state160

q, for all states q ∈ Q(G), that differ only in their assignments of initial states. A finite set161

G of gadgets [planarly] simulates a gadget G if there is a [planar] simulation of G using162

only gadgets in G.163

These definitions of simulation imply that, if we take a larger system of gadgets and replace164

each instance of gadget G with the system S using the appropriate initial states (matching up165

locations that correspond via m), then the entire system behaves equivalently. In particular,166

this substitution preserves reachability of locations from one another. Furthermore, if the167

larger system and the simulation are both planar, then the full resulting system is planar.168

More formally:169

I Lemma 2. Let H be a gadget, and let G and G′ be finite sets of gadgets. If G [planarly]170

simulates H, then there is a polynomial-time reduction4 from [planar] reachability with171

{H} ∪ G′ to [planar] reachability with G ∪ G′.172

2.2 Known Hardness Results173

We can now formally state the problems we will reduce from in this paper.174

In Section 3, we use the locking 2-toggle to show PSPACE-completeness of BlockDude175

puzzles.176

I Theorem 3. [11, Theorem 10] Planar reachability with any interacting-k-tunnel reversible177

deterministic gadget is PSPACE-complete.178

The locking 2-toggle is an example of an interacting-k-tunnel reversible deterministic gadget179

[11] and thus we obtain PSPACE-completeness of planar reachability with the locking 2-toggle.180

We recommend readers interested in this more general dichotomy to refer to [11].181

We also use the nondeterministic locking 2-toggle shown in Figure 7. This is used in182

Section 5 to show PSPACE-completeness of BoxDude puzzles. Its behavior resembles that of183

the locking 2-toggle, but because it is not deterministic it is not covered by the prior theorem.184

185

4 Throughout this paper, reductions are many-one/Karp: a reduction from A to B maps an instance of
A to an equivalent (in terms of decision outcome) instance of B.
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2

1 3

4

1

2, 42, 4

3

Figure 7 State diagram for a nondeterministic locking 2-toggle. From state 1, the left tunnel
can be traversed so as to leave the gadget in either state 2 or state 4. Formally, in the multigraph
for state 1 there are two different edges, one labeled 2 and the other labeled 4.

I Theorem 4. [2, Theorem 3.1] Planar reachability with the nondeterministic locking 2-toggle186

is PSPACE-complete.187

The final main gadget we will make use of is a type of self-closing door shown in Figure 8.188

This gadget will be used in our result on Push-1F in Section 6.189

I Theorem 5. [3, Theorem 4.2] Planar reachability with any normal or symmetric self-closing190

door is PSPACE-hard.191

1 2

2 1

Figure 8 State diagram for the directed open-optional self-closing door. The door must be
opened by visiting its opening location before every traversal.

3 BlockDude and BloxDude are PSPACE-complete192

In this section, we show that BlockDude and BloxDude are PSPACE-complete using a193

reduction from planar reachability with locking 2-toggles, shown in Figure 6, which is194

PSPACE-complete by Theorem 3. Recall from Section 1 in this model blocks can be picked195

up by BlockDude from an adjacent square. BloxDude allows both picking up and pushing196

blox, and the reduction will be a small modification to the BlockDude proof.197
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2:8 Pushing Blocks via Checkable Gadgets

We will build hallways allowing the player to move between connected locations on198

gadgets. To connect more than two locations, we need a branching hallway, which is shown199

in Figure 9. This allows the player to freely move between any of the three entrances.200

Figure 9 A branching hallway for BlockDude. Blue squares represent blocks (which can be
picked up).

We now describe how the player can use the branching hallway in a way that always201

lets them move between any of its entrances. Whenever the player is outside the branching202

hallway, both bottom blocks will be in their original positions, and the top block will be203

somewhere on the middle platform, depending on the most recently taken exit. When the204

player arrives at the branching hallway, they will first move the top block to the right side of205

the middle platform (the position in Figure 9). The only case where this is nontrivial is when206

the player enters at the bottom with the top block on the left. In this case, the player can207

go under the middle platform and climb up from the right by moving both bottom blocks.208

Then they can pick up the top block and step back down on the right, causing the carried209

block to fall onto the right end of the middle platform. Finally, they can reset the bottom210

blocks and return to the bottom entrance. Once the top block is on the right, the player can211

take whichever exit they need. If they take the top left exit, they will move the top block to212

the left first.213

To embed an arbitrary planar graph in BlockDude, we also need to be able to turn214

hallways and in particular to make vertical hallways despite gravity. Fortunately, the215

branching hallway in Figure 9 can achieve both goals. If we ignore the top-right entrance,216

the agent can turn around and make some vertical progress. By chaining these switchbacks217

in alternating orientation, we can build an arbitrarily tall vertical hallway.218

To complete the proof of PSPACE-hardness, we only need to build a locking 2-toggle. We219

will construct the locking 2-toggle out of simpler pieces, as shown in Figure 11. The simpler220

pieces are two kinds of 1-toggle: one just for the player, and one that the player can carry221

a block through. The state diagram for a 1-toggle is given in Figure 10. When the player222

arrives at (say) the bottom left entrance, they can grab the block in the middle and bring it223

to the left side, and use it to reach the top left entrance. With the block stuck on the left,224

the right side cannot be traversed until the player returns to the top left, puts the block225

back, and exits the bottom left. The player cannot move through this gadget in any way not226

allowed by a locking 2-toggle. They may leave the block on the left side when the exit the227

bottom left, but this does not achieve anything; it only prevents them from traversing the228
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21
12

Figure 10 Icon and state diagram for the 1-toggle. Leftwards and rightwards traversals must
alternate.

Figure 11 The schematic for our locking 2-toggle for BlockDude. Arrows with a faded backward
arrowhead are 1-toggles. Only the player can go through the 1-toggle unless it has a block icon
above the arrow, in which case the player can carry a block through.

right side.229

Our 1-toggle for just the player is shown in Figure 12. In the state shown, the player230

can not enter on the right. If they enter on the left, they can move the blocks to exit on231

the right, but in doing so must block the left entrance. Because of the 1-high hallways, the232

player can not bring a block through this gadget.233

The 1-toggle that lets the player carry a block through is more complicated, and is shown234

in Figure 13. If the player enters on the left with or without a block, they can get to the235

right as follows:236

Move the top staircase to the right, so they can climb all the way down.237

Move the top staircase and then the bottom staircase to a single pile in the bottom left238

corner.239

Move the single pile to the bottom right corner.240

Use three blocks to build a staircase to the middle platform on the right, and move the241

rest of the blocks up to that platform.242

Use another three blocks to build a staircase to the right exit.243

To reach either exit, there must be at least three blocks on the bottom level to form a244

staircase to the middle platform, and three blocks on the middle platform to form a staircase245

to the exit. In particular, six blocks must stay inside the gadget, so the player can leave with246

a block only if they brought one with them. If the player tries to enter the side opposite247

the one they most recently exited, they will be blocked by both staircases and unable to get248

across the gadget.249

This 1-toggle might break if the player brings several additional blocks to it, but it will250

never be possible to bring more than one additional block because of the structure of our251

locking 2-toggles.252

With these components, we can fill in our schematic for a locking 2-toggle (Figure 11),253

FUN 2022



2:10 Pushing Blocks via Checkable Gadgets

Figure 12 A 1-toggle for BlockDude, currently traversable from left to right.

Figure 13 A 1-toggle for BlockDude that lets the player carry a block through it, currently
traversable from left to right.

which we show in full in Figure 14. To summarize: the player can enter on either side, at the254

lower entrance. They can get to the block in the center, but must return to the side they255

came from. Then they can use this block to reach the top exit on the same side. This makes256

the center block inaccessible from the other side, so the other side cannot be traversed until257

the player comes back in the opposite direction and returns the center block.258

3.1 BloxDude is PSPACE-complete259

In this section we discuss how to adapt the prior proof for BlockDude puzzles to work for260

blox which can both be picked up and pushed. All the valid traversals from our BlockDude261

constructions remain and we only need to prevent unwanted movement of the blox due to262

pushing.263

First, whenever there is a hallway in which a blox should not be able to be moved, such264

as all three hallways from the branching hallway, we add a step in the hallway, as shown in265

Figure 15. Thus the blox cannot be carried and if it is pushed to the step it will become266

stuck.267

Next we show how to adapt the 1-toggle with block traversal so it works in this setting.268

This is given in Figure 16. The three-block-tall staircases ensure that bringing a single blox269

from the wrong direction does not allow deconstructing a staircase from behind. In particular,270

the middle layer has two blox in a row which cannot be pushed and thus one extra blox will271

not enable the Dude to deconstruct the staircase from that side.272

We also need a regular 1-toggle, and the construction in Figure 12 can be broken in the273

blox model. Luckily we have a hallway that prevents blox from being carried or pushed274
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Figure 14 The full locking 2-toggle for BlockDude, combining Figures 11, 12, and 13.

Figure 15 A blox cannot be moved through this hallway.

Figure 16 A 1-toggle for BloxDude that lets the player carry a block through it, currently
traversable from left to right.

through it, so we can add such a hallway to each end of the gadget in Figure 16 preventing275

extra blox from entering or leaving. This yields a regular 1-toggle which does not permit276

blox to pass through.277

Once we have the prior two gadgets, it is clear the locking 2-toggle in Figure 11 will still278

work in the blox model, giving the desired PSPACE-hardness result.279

4 Checkable Gadget Framework280

In this section, we introduce a new extension to the gadgets framework which will be used in281

the rest of the paper. This extension allows us to indirectly construct a gadget G by first282

constructing a “checkable” version of G, and then using “postselection” to obtain G. The283

checkable G behaves identically to G except that the agent can make undesired traversals284

into “broken” states which prevent later “checking” traversals. The postselection operation285

removes these possibilities by guaranteeing that the agent will perform the checking traversals286

at the end, so to solve reachability, the agent could never perform the undesired traversals.287
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2:12 Pushing Blocks via Checkable Gadgets

The price we pay for this ability to constrain the behavior of gadgets is that the resulting288

simulations are no longer drop-in replacements as in the local simulations of Definition 1;289

instead we obtain “nonlocal simulations” which require altering the entire surrounding system290

of gadgets:291

I Definition 6. A finite set of gadgets G [planarly] nonlocally simulates a gadget H if,292

for every finite set of gadgets G′, there is a polynomial-time (many-one/Karp) reduction from293

[planar] reachability with {H} ∪ G′ to [planar] reachability with G ∪ G′.294

Lemma 2 says that simulations are nonlocal simulations, so this notion is a generalization295

of Definition 1.296

Next we define “checkable” gadgets via “postselection”, which transforms a gadget with297

broken states (where a checking traversal sequence is impossible) into an idealized gadget298

where those broken states are prevented. At this stage, the prevention is by a magical force,299

but we will later implement this force with a nonlocal simulation.300

I Definition 7. Let G be a gadget, C be a traversal sequence on L(G), and L′ ⊂ L(G). Call301

a state q of G broken if C is not legal from q. Assume that broken states are preserved by302

transitions on L′ in the sense that, if q is broken and there is a transition (q, a) → (q′, b)303

where a, b ∈ L′, then q′ is also broken.304

Define Postselect(G, C, L′) to be the gadget G′ where L(G′) = L′, Q(G′) contains the305

nonbroken states of G, and T (G′) contains the transitions of G restricted to L′ and Q(G′).5306

When there exist C and L′ such that Postselect(G, C, L′) is equivalent to G′, we say that G307

is a checkable G′, and we call C the checking traversal sequence.308

A traversal sequence X is legal for Postselect(G, C, L′) from state q if and only if XC is309

legal for G from q, because both are equivalent to there being a nonbroken state reachable by310

traversing X. Intuitively, Postselect(G, C, L′) is the gadget that results from forcing the agent311

to traverse C after solving reachability, to ensure that the gadget was left in a nonbroken312

state, and hiding locations in L \ L′. Postselect(G, C, L′) behaves like G on the locations L′313

except that transitions into broken states are prohibited.314

We now state the main result of the checkable gadget framework, which is in terms of two315

simple (and often easy-to-implement) gadgets SO (single-use opening) and MSC (merged316

single-use closing gadgets) defined in Section 4.1.317

I Theorem 8. For any G, C, and L′ satisfying the assumptions of Definition 7, {G,SO,MSC}318

planarly nonlocally simulates Postselect(G, C, L′).319

The goal of this section is to prove Theorem 8. Figure 17 provides a schematic overview320

of the gadget simulations throughout this section that culminate in this result. In Section 4.1,321

we describe the base gadgets needed for our construction. In Section 4.2, we prove that322

nonlocal simulations compose in the natural way. In Section 4.3, we introduce a particularly323

simple kind of checkable gadget, and show that they nonlocally simulate the gadget they are324

based on. Finally, in Section 4.4 we use all of these tools to prove Theorem 8.325

5 If every state of G is broken, then Postselect(G, C, L′) has no states. In this case, it is impossible to use
Postselect(G, C, L′) in a system of gadgets because that requires specifying an initial state, so all of our
theorems hold vacuously.
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SO MSCSD

SX WCX

  

𝐺

simply checkable PostSelect(𝐺, C, 𝐿′)

PostSelect(𝐺, C, 𝐿′)

nonlocal

Figure 17 Overview of gadget simulations used for postselection. Black arrows show local
simulations and blue arrows show nonlocal simulations.

4.1 Base Gadgets326

We now define two base gadgets and three additional derived gadgets, shown in Figure 18,327

that we use to implement the machinery of checkable gadgets. All five of these gadgets can328

change state only a bounded number of times; they are “LDAG” in the language of [13].329

1  

2  

3  

2

3

(a) Single-use
opening gadget

(SO)

1  

2  

2

1

(b) Merged
single-use closing
gadget (MSC)

2 

1  2

(c) Dicrumbler/
single-use diode

(SD)

1  

2  

3  

2

3

(d) Single-use
crossover (SX)

1  

3  

2  

1

2 2

3

2

33

(e) Weak closing
crossover (WCX)

Figure 18 Icons (top) and state diagrams (bottom) for two base gadgets (a–b) and three derived
gadgets (c–e). Green arrows show opening traversals, red arrows show closing traversals, and purple
crosses indicate traversals that close themselves.

The two base gadgets required for our construction are shown in Figure 18a–18b:330
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(a) The single-use opening (SO) gadget, shown in Figure 18a, is a three-state three-331

location gadget. In state 1, the “opening” location has a self-loop traversal (also called a332

button, or a port in [3]), which transitions to state 2. State 2 allows a single traversal333

between the other two locations, after which (in state 3) no traversals are possible.334

(b) The merged single-use closing (MSC) gadget, shown in Figure 18b, is a two-state335

three-location gadget. In the “open” state 1, horizontal traversals in both directions are336

freely available. After a traversal from top to right, the gadget transitions to the “closed”337

state 2, where no traversals are possible.338

Next we describe three useful gadgets for our construction which can be built from these339

base gadgets.340

The dicrumbler/single-use diode (SD) gadget, shown in Figure 18c, is a two-state341

two-location gadget. In state 1, there is a single directed traversal between the two locations,342

which permanently closes the gadget in state 2 where no traversals are possible. The SD343

gadget can be simulated by either of the two base gadgets: it is equivalent to state 2 of SO,344

and to MSC restricted to the two locations incident to the closing traversal.345

The single-use crossover (SX) gadget, shown in Figure 18d, allows one traversal from346

left to right and then one from top to bottom. It can be simulated using SO and SD gadgets347

as shown in Figure 19. The top location in the simulation cannot be entered until the top SO348

is opened. This opening is possible only after traversing the first two SDs, which prevents349

any further traversals coming from the left or going to the right. The bottom SO prevents350

premature traversals going to the bottom.351

Figure 19 Construction of the single-use crossover from SO and SD gadgets.

The weak closing crossover (WCX), shown in Figure 18e, initially allows traversals352

freely between the left and right. If a bottom-to-top traversal is performed, no more traversals353

are possible. However, a bottom-to-left or bottom-to-right traversal is also possible (which354

also opens up left-to-top or right-to-top traversals), making the crossover “leaky”. The weak355

closing crossover can be simulated using SO, MSC, and SD gadgets, as shown in Figure 20.356
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Figure 20 Construction of the weak closing crossover from SD, SO, and MSC gadgets.

To open the upper-right SO, the agent needs to traverse the upper-left SO and then close357

the middle MSC. To open the upper-left SO, the agent will need to close the leftmost MSC.358

Having closed both the left and the middle MSCs, the agent is forced to traverse the bottom359

SO and close the rightmost MSC. The bottom SO can only be opened by the agent traversing360

entering the bottom and traversing bottom two SDs, preventing any future traversals from361

the bottom. In summary, in order to exit the top, the agent must have entered the bottom362

in the past, and have closed all three MSCs. Entering the bottom changes to state 2, and363

exiting the top changes to state 3.364

4.2 Nonlocal Simulation Composition365

A crucial fact about nonlocal simulation is that nonlocal simulations can be composed:366

I Lemma 9. Let G and H be finite sets of gadgets. Suppose G [planarly] nonlocally simulates367

every gadget in H, and H [planarly] nonlocally simulates another gadget H. Then G [planarly]368

nonlocally simulates H.369

Proof. For a finite set of gadgets G′, we must find a polynomial-time reduction from
reachability with {H}∪G′ to reachability with G∪G′. Let H = {H1, . . . , Hn}, where n = |H|,
and let Hi be the prefix {H1, . . . , Hi}, so Hn = H. Then we construct a chain of reductions
between reachability with different sets of gadgets:

{H} ∪ G′ → G ∪Hn ∪ G′ → G ∪Hn−1 ∪ G′ → · · · → G ∪H1 ∪ G′ → G ∪ G′.
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The first reduction is because H = Hn nonlocally simulates H. The remaining reductions370

come from the assumption that G nonlocally simulates each Hi ∈ H, which implies that there371

is a polynomial-time reduction from reachability with {Hi} ∪ G ∪Hi−1 ∪ G′ = G ∪Hi ∪ G′ to372

reachability with G ∪ G ∪Hi−1 ∪ G′ = G ∪ Hi−1 ∪ G′. J373

4.3 Simply Checkable Gadgets374

Next, we define a special kind of checkable gadgets, called “simply checkable” gadgets. A375

simply checkable G is essentially a checkable G where the checking sequence consists of a376

single traversal between two locations not in L(G), called cin and cout. Simply checkable377

gadgets will be a useful as an intermediate step in our proof of Theorem 8.378

I Definition 10. For a gadget G, a simply checkable G is a gadget G′ satisfying the379

following properties:380

1. L(G′) = L(G) t {cin, cout} has two new locations cin, cout. For planar gadgets, the cyclic381

orderings of the shared locations L(G) are the same. (Locations cin and cout can be added382

to the cyclic order anywhere.)383

2. There is a function f : Q(G)→ Q(G′) assigning a state of G′ to each state of G.384

3. For any traversal sequence X that is legal for G from state q, the concatenated traversal385

sequence X · [cin → cout] is legal for G′ from f(q).386

4. Every traversal sequence that ends at cout and is legal for G′ from state f(q) has the form387

X · [cin → •, • → •, . . . , • → cout]388

where X is legal for G from state q and the omitted • locations (if any) belong to L(G).389

Intuitively, a simply checkable G in state f(q) behaves the same as G does in state q,390

provided that afterward the agent performs a traversal sequence from cin to cout (which may391

involve the agent exiting and re-entering the gadget, but only via nonchecking locations).392

The gadget can do essentially anything in a traversal sequence not ending in cout.393

Any simply checkable G is also a checkable G: if G′ is a simply checkable G, then394

Postselect(G′, [cin → cout], L(G)) is equivalent to G.395

We show that a simply checkable G can nonlocally simulate G while preserving planarity,396

using an auxiliary gadget. First, define the hallway gadget to be the one-state two-location397

gadget with transitions in both directions between the locations (i.e., a “branching hallway”398

with only two locations). A checkable hallway crossover is a simply checkable hallway399

where the added locations cin and cout are not adjacent in the cyclic order, i.e., they interleave400

with the two hallway locations. For example, the weak closing crossover from Figure 18e is a401

checkable hallway crossover, where the horizontal traversal corresponds to the hallway, the402

bottom location is cin, and the top location is cout.403

I Lemma 11. Let G′ be a simply checkable G and let CHX be a checkable hallway crossover.404

Then405

1. {G′} nonlocally simulates G; and406

2. {G′,CHX} planarly nonlocally simulates G.407

Proof. For any gadget set G′, we construct a polynomial-time reduction from reachability408

with {G} ∪ G′ to reachability with {G′} ∪ G′, or from planar reachability with {G} ∪ G′ to409

planar reachability with {G′,CHX}∪G′. Suppose we have a [planar] system S of gadgets from410

{G} ∪ G′, along with a designated starting location s and target location t. Let G1, . . . , Gn411

denote the copies of G in S, and let q1, . . . , qn be their respective initial states in S. We412

build a new system S′ of gadgets from {G′} ∪ G′ as follows; refer to Figure 21.413
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s

G1

G2

G3

t

t'
G4

Figure 21 Our nonlocal simulation for the proof of Lemma 11. The system is modified by
replacing each copy of G with a copy of G′ and adding the blue path from t through cin → cout on
each one.

1. Replace each copy Gi of gadget G with initial state qi in S by a corresponding copy G′i414

of G′ with initial state f(qi), whose copies of cin and cout are named cin,i and cout,i.415

2. Connect t to cin,1. In the planar case, we place a copy of CHX on each crossing this416

creates, with the check line on the way from t to cin,1.417

3. Connect cout,i to cin,i+1 for each i. In the planar case, we place a copy of CHX on each418

crossing this creates, with the check line on the way from cout,i to cin,i+1.419

Our reduction outputs this new system S′ along with the same start location s and the new420

target location t′ = cout,n.421

This construction clearly takes polynomial time. To prove that the reduction is valid, we422

must show that there is a legal system traversal s →∗ cout,n in S′ if and only if there is a423

legal system traversal s→∗ t in S.424

First suppose there is a legal system traversal s →∗ t in S. Then this solution can be425

extended to a legal system traversal s→∗ cout,n in S′ by appending the traversal cin,i → cout,i426

on G′i for each i in increasing order, and in the planar case, adding the needed traversals427

of the inserted copies of CHX (including the check traversals needed to get from t to cin,1428
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and from each cout,i to cin,i+1). The appended cin,i → cout,i traversals are all valid because429

Property 3 of Definition 10 requires that any legal traversal sequence for G can be extended430

by cin → cout to yield a legal traversal sequence for G′. For the same reason, the appended431

cin → cout traversals in copies of CHX are valid. Also, the inserted hallway traversals of the432

copies of CHX are all valid from the definition of checkable hallway crossover, because they433

occur before all appended cin → cout traversals.434

Now suppose that there is a legal system traversal s→∗ cout,n in S′. Define c′in,i, c′out,i to435

be the check in and out locations for all checkable gadgets (copies of both G′ and CHX),436

in the order that these check traversals occur in the intended solution described above. By437

Property 4 of Definition 10, the agent can only exit the ith checkable gadget (G′ or CHX) at438

c′out,i if it previously entered at the corresponding c′in,i. In S′, the only location connected to439

c′in,i+1 is c′out,i (ignoring hallway traversals of CHX gadgets), so this property implies that440

cout,i was previously visited as well. By induction, the solution must have reached c′in,1 via t,441

and then traversed all of the c′in,i and c′out,i locations (possibly with some detours). Consider442

the prefix X ′ of the solution up to the first time t is visited, and let X be the modification to443

remove any hallway traversals of the copies of CHX. We claim X is a solution for S. Clearly444

X is a system traversal s→∗ t and satisfies all unmodified gadgets (from G′). By Property 4445

of Definition 10, c′in,i and c′out,i are visited at most once in the full solution, and the prefix of446

the solution prior to visiting c′in,i is legal for the ith checked gadget. Because each c′in,i is447

visited after t, it is not visited in X, and thus X is legal for Gi. Similarly, X makes only448

hallway traversals of CHX, so removing those traversals is valid in S where there were direct449

connections before the crossings were introduced. Therefore X is a valid system traversal450

s→∗ t in S. J451

4.4 Postselected Gadgets452

We now finally prove our main result, Theorem 8: postselection can be achieved using only453

the two base gadgets from Section 4.1, while preserving planarity.454

It will be convenient to assume all of our gadgets are transitive: if there are two455

transitions (q1, `1)→ (q2, `2)→ (q3, `3), then there is also a transition (q1, `1)→ (q3, `3). For456

reachability, this makes no difference: we can replace any gadget with its transitive closure457

without affecting the answers to any reachability problems, since we can always think of458

the transition (q1, `1)→ (q3, `3) as a sequence of two transitions. That is, every gadget is459

equivalent for reachability to some transitive gadget, and in particular there are nonlocal460

simulations in both directions.461

Proof of Theorem 8. Assume without loss of generality that G is transitive, by replacing G462

with its transitive closure.463

We will show that {G,SO,MSC,SD,SX,WCX} planarly locally simulates some gadget G′464

which is a simply checkable Postselect(G, C, L′). As shown in Section 4.1 (Figures 19 and 20465

in particular), {SO,MSC} planarly locally simulates WCX, SX, and SD. By combining these466

local simulations, we obtain that {G,SO,MSC} planarly locally simulates the same G′. By467

Lemma 2, this is also a nonlocal simulation. By Lemma 11, for any checkable hallway crossover468

gadget CHX, {G′,CHX} planarly nonlocally simulates G′. Because {SO,MSC} planarly469

simulates the weak closing crossover (Figure 20), which is a checkable hallway crossover, it470

follows from Lemma 9 that {G,SO,MSC} planarly nonlocally simulates Postselect(G, C, L′),471

proving the theorem.472

Now we show that {G,SO,MSC,SD,SX,WCX} planarly locally simulates some gadget473

G′ which is a simply checkable Postselect(G, C, L′). Unpacking the definitions of “simply474
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checkable” and Postselect, we must simulate a gadget G′ that satisfies the following properties:475

1. L(G′) = L′ t {cin, cout}.476

2. There is a function f from unbroken states of G to states of G′.477

3. For any traversal sequence X on L′, if XC is legal for G from state q, then X · [cin → cout]478

is legal for G′ from state f(q).479

4. Any traversal sequence that ends with cout and is legal for G′ from state f(q) has the480

form X · [cin → •, • → •, . . . , • → cout], where X is a traversal sequence on L′, XC is481

legal for G from state q, and all the omitted • locations are in L′.482

We construct our simulation of the gadget G′ starting from G as follows; refer to Figure 22.483

1. For purposes of description, orient so that G has all of its locations on the top of its484

bounding box. We will place the locations for the simulated gadget on a horizontal line485

L above G (so they will lie on the outside face).486

2. For each location l ∈ L′, add a long upward edge el connecting l in G to a new location l′487

on L. Because the edges are all vertical, they do not cross each other, and the l′ locations488

appear in the same cyclic (left-to-right) order as l ∈ L′.489

3. Place cin on L left of all el edges. Starting from cin, draw a non-self-crossing path that490

crosses each of the el in one rightward pass, then turn down, then cross each el a second491

time in one leftward pass in between the first pass and G. We ensure any further crossings492

with the edges el take place between these two delimiter passes, which we call the top493

and bottom delimiters, by routing paths across the bottom delimiter before crossing any494

el. These delimiters serve to “cut off” the rest of the construction, preventing leakage.495

4. For each traversal ai → bi in the sequence C = [a1 → b1, . . . , ak → bk], add a single-use496

opening gadget Oi and a dicrumbler Di, near locations bi and ai respectively. Connect the497

opening location of Oi to the entrance of Di (routing up across the bottom delimiter, then498

horizontally, then down). Connect the exit of Di to ai, and connect bi to the entrance of499

Oi.500

5. Connect the exit of each Oi to the opening location of Oi+1, routing up across the bottom501

delimiter, then all the way left, then up, then right, then down.502

6. Finally, connect cin to the opening location of O1 after the two delimiter passes; and503

connect the exit of Ok to cout, routing up across the bottom delimiter, then all the way504

left, then up.505

We call the path we have constructed from cin to cout the checking path. For an506

unbroken state q of G, the corresponding state f(q) of G′ is simulated by placing G in state507

q and all other gadgets in their usual initial states.508

This construction is nonplanar in two ways: our new checking path crosses the edges509

el and also crosses itself. In the former case we replace the crossing with a weak closing510

crossover, oriented so that the checking path closes el. In the latter case we replace the511

crossing with a single-use crossover, oriented correctly so that the agent can traverse the two512

directions in the expected order detailed below. We must prove this construction has the513

properties stated above. By construction, its locations are L′ t {cin, cout}.514

Suppose XC is legal for G from state q. We can perform X · [cin → cout] in the simulation515

where G starts in q by first performing X in the natural way (using the edges el) and then516

following the checking path: starting at cin, for each i we visit the opening location of Oi,517

then go through Di, then traverse ai → bi via G, then traverse Oi. This path brings us to518

cout at the end, and its restriction to G is exactly XC.519

Now suppose that there is a legal traversal sequence for G′ from state f(q) ending in520

cout. Putting ourselves in the position of a forgetful agent, we find ourselves at cout and must521

determine how we got there. We can induct backwards along the checking path (as in the522
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G

cincout

l1 l2 l3 l4 l5

Oi
Di

to O1, D1

from Oi−1

to Oi, Di

from Oi

to Oi+1, Di+1

from Ok

Figure 22 The simulation of a simply checkable, postselected version of the gadget G. The two
initial crossings of the edges el connecting locations in L′ to the outside are shown in red. The rest
of the checking path is shown in purple. All further crossings of the checking path with edges el

occur between the two initial crossings. In this example, L = {l1, l2, l3, l4, l5} and L′ = {l2, l3, l5}.
The ith checking traversal [l4 → l2] is enforced by Oi and Di.

proof of Lemma 11) to show that we must have visited cin, using the facts that in order to523

exit the closing side of a weak closing crossover we must have entered it on the opposite side,524

and that in order to exit from Oi we must have visited its opening location.525

Thus at some point in the path we entered G′ through cin, crossed all the el twice, and526

then for every ai → bi of C in order we opened Oi, traversed Di, and later traversed Oi.527

Crossing each el twice closes the weak closing crossovers, making el no longer traversable.528

Between traversing Di and Oi, we somehow must have gotten from ai to bi. We cannot have529

used the edges el because they were already closed during the initial crossings. So we must530

have made transitions only in G, of the form (q1, `1 = ai)→ (q2, `2)→ · · · → (qk, `m = bi).531

Since G is transitive, we could equivalently have made the single transition (q1, ai)→ (qk, bi),532

and in particular have traversed ai → bi.533

Similarly, after the initial two crossings of the el, we can’t have left this simulated gadget534

or entered G except for the traversals of C. Finally, we take advantage of the fact that535

before entering cin, the simulation behaves exactly like G except that only locations in L′ are536

accessible. So the full path through the simulation G′ ending at cout must have the following537

form:538

1. We use G′ as if it were G (restricted to the locations of L′) with initial state q, performing539

some traversal sequence X.540

2. We enter G′ through cin.541

3. We possibly leak out of G′ or into G via locations in L′, through the weak closing542
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crossovers at the initial two crossings with each el. Call the sequence of traversals made543

during this phase Y .544

4. Eventually, we finish all of initial crossings with el, and moved to the Ois and Dis.545

5. We perform the traversal sequence C in G without any additional traversals in G in546

between and without leaving G′.547

6. Finally, we leave G′ through cout.548

Therefore the sequence of traversals on G′ has the form X · [cin → •, • → •, . . . , • → cout] and549

the sequence of traversals just on G is XY C, where X and Y are traversal sequences on L′550

and the omitted • locations are in L′. In particular, XY C is legal for G from state q, so by551

the assumption that broken states are preserved by transitions on L′, XC is legal for G from552

q. This is the final condition we needed, so G′ is a simply checkable Postselect(G, C, L′). J553

5 BoxDude is PSPACE-complete554

We now show that BoxDude is PSPACE-complete via a reduction from reachability with555

nondeterministic locking 2-toggles. In this model, boxes can be pushed horizontally by the556

Dude but cannot be picked up. We will make use of the postselection construction from557

Section 4 in order to nonlocally simulate nondeterministic locking 2-toggles.558

Similarly to BlockDude we must build a branching hallway in order to connect the559

locations of our gadgets. This time, we also build a directed crossover gadget. These gadgets560

are shown in Figure 23. Directed crossovers can be used to construct undirected crossovers561

as in Figure 24. This allows us to connect locations in nonplanar ways, and reduce from562

reachability instead of planar reachability. We note a diode gadget is easy to build by simply563

having a height 2 drop.564

(a) Branching Hallway (b) Directed Crossover

Figure 23 Hallway connection gadgets for BoxDude. Pushable boxes are in red. The branching
hallway gadget is fully traversable from any of its three locations to the others. The directed
crossover can be traversed only from bottom-left to top-right or from bottom-right to top-left.

Postselection requires us to additionally simulate the gadgets SO and MSC. These gadgets565

are shown in Figure 25.566

Next we build a checkable leaky door gadget. A leaky door has two states (“open”567

and “closed”), and three locations, called “opening”, “entrance”, and “exit”. Similar to a568

self-closing door [3], the gadget can be traversed in the open state from entrance to exit, but569

doing so transitions the door to the closed state. In the closed state, it is not possible to570

enter the gadget through the entrance at all, but visiting the opening location allows the571

gadget to transition back to the open state. Unlike a self-closing door, it is possible to go572

from the entrance to the opening location when the gadget is in the open state. It is also573
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(a) Directed
Crossover Icon

(b) Crossover
Icon

(c) Construction of an undirected crossover from a directed
crossover.

Figure 24 Icons for directed and undirected crossovers. The undirected crossover can be
constructed from four directed crossovers as shown in [10].

(a) SO (b) MSC

Figure 25 SO and MSC gadgets for BoxDude.

always possible to go from the opening location to the exit, but doing so transitions the door574

to the closed state. The full state diagram for the leaky door is shown in Figure 26.575

The checkable leaky door is shown in Figure 27. We apply postselection to this gadget576

with the checking traversal sequence [opening → opening, entrance → opening].6 We now577

6 The first check from opening to opening does not enforce anything but merely allows access to the
location in case the gadget was last left in the closed state. The check from entrance to opening cannot
be done if the gadget is in the closed state.



J. Ani, L. Chung, E. D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 2:23

1 2

2

2
1

Figure 26 Icon and state diagram for the leaky door gadget.

analyze which states are broken in the sense that this traversal sequence is impossible from578

those states.579

If the left box is further to the left than its current location, the gadget state is broken580

since the entrance is unusable.581

If the left box is more than one square to the right of its current location, the gadget582

state is broken because the opening location is unreachable from the entrance.583

If the two boxes are adjacent, the gadget state is broken for the same reason.584

Moving the right box more than one square to the right is never advantageous for the585

player, so we assume it does not occur.586

We will show that the postselection of this gadget is exactly the leaky door gadget. When587

the right box is in its current location, we say that the gadget is in the closed state; when it588

is one square to the right the gadget is in the open state. Because the left box cannot move589

more than one square to the right, it follows that any traversal to the exit location must590

leave the gadget in the closed state. In the closed state, no traversals are possible from the591

entrance without breaking the gadget by putting two boxes adjacent. Visiting the opening592

allows transitioning to the open state. In the open state, additional traversals are available593

from the entrance. The agent may go from entrance to exit by using the connected opening594

locations to reset the gadget to the closed state and then using the right block to reach the595

exit. It is also possible to leak from the entrance to the opening location, and from the596

opening location to the exit (transitioning to the closed state). Thus the traversals within597

unbroken states are exactly those allowed by the leaky door gadget. By Theorem 8 the598

checkable leaky door, along with the SO and MSC gadgets built earlier, nonlocally simulate599

the leaky door.600

We now build a 1-toggle gadget, shown in Figure 10, using a pair of leaky doors. This601

construction is shown in Figure 28. It can be seen that none of the leaks are useful to an602

agent traversing the gadget, since the most they accomplish is bringing the agent back to its603

starting location without changing any state.604

We are now in a position to build a nondeterministic locking 2-toggle. By Theorem 4,605

reachability with this gadget is PSPACE-complete. The final construction, shown in Figure 29,606

is quite simple in appearance; the complexity is hidden in the 1-toggles used to protect the607

locking 2-toggle’s locations. Traversing from A to B is only possible when the box is on608

the left side of the gadget, and conversely for C to D. Since the box’s position can only be609

changed when exiting the gadget through A or C (corresponding to which side the gadget is610

locked to), the gadget simulates a locking 2-toggle. Note that this gadget cannot be broken611

by moving the box further to the left than its current position, since doing so renders the612

gadget fully untraversable. This is because in this state location A is permanently unusable613

and B and D cannot be reached from inside the gadget. The agent can only exit out of C,614
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opening

entrance

exit

Figure 27 A checkable leaky door, shown in the closed state. The crossover and branching
hallway needed to connect the top left and bottom right hallways have been abstracted. Horizontal
“tracks” display the range of locations for each box in unbroken states. (The right box can move
farther right but it is never advantageous to do this.) The two boxes may not be adjacent in
unbroken states.

Figure 28 A 1-toggle built from leaky doors. Solid or dashed arrows inside gadgets show the
traversal from entrance to exit in an open or closed leaky door, respectively. Green self-loops are
opening locations of leaky doors. Arrows outside gadgets are diodes.

so that C’s 1-toggle points inwards. Since C’s and D’s 1-toggles always point in different615

directions, D is also permanently unusable. The only remaining traversal is B → C, but this616

is impossible also because C’s 1-toggle points inwards.617

Using Theorem 8 and Lemma 9, our simulations imply that the BoxDude gadgets we618

have explicitly built nonlocally simulate a nondeterministic locking 2-toggle. In particular,619
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A C

B D

Figure 29 A nondeterministic locking 2-toggle, currently locked to the left side. Locations B
and C are protected with inwards-directed 1-toggles; locations A and D with outwards-directed
1-toggles. (Note: the middle portion of the gadget would actually need to be wider than shown in
this diagram in order to make enough space to route locations B and D away from each other.)

there is a polynomial-time reduction from planar reachability with nondeterministic locking620

2-toggles, which is PSPACE-complete by Theorem 4, to BoxDude. Hence BoxDude is621

PSPACE-complete.622

6 Push-1F is PSPACE-complete623

In this section, we show that Push-1F is PSPACE-complete using a reduction from planar624

reachability with self-closing doors, shown in Figure 8, which is PSPACE-complete by625

Theorem 5. Recall that in this model there is no gravity, and the agent can push one block626

at a time in any direction. We will make several uses of postselection from Section 4 in order627

to nonlocally simulate various gadgets along the way.628

In order to use postselection, we must build single-use opening (SO) and merged single-use629

closing (MSC) gadgets. We start by building a weak merged closing gadget, based on the630

Lock gadget from [8]. The weak merged closing gadget acts like the MSC except that the631

closing traversal can be performed multiple times. We also use a gadget introduced in [8]632

called a no-return gadget. After a no-return gadget is traversed from left to right, it cannot633

immediately be traversed from right to left. However, initially traversing it from the right634

or traversing left to right twice breaks the gadget, making it fully traversable. Finally, we635

build a weak opening gadget. A weak opening gadget’s exit cannot be used in traversals636

until both of its input locations are visited separately. Figure 30 shows the state diagrams637

for these gadgets, and Figure 31 shows how to implement them in Push-1F.638

We combine the weak merged closing, no-return, and weak opening gadgets to make a639

dicrumbler; this allows us to simulate ordinary SO and MSC gadgets using the gadgets we640

have built so far. These simulations are shown in Figure 32. Having built these gadgets,641

we can now take advantage of the machinery of checkable gadgets. The structure of the642

remaining gadget simulations used in this section is outlined in Figure 33.643

We first nonlocally simulate a diode, which allows traversal in only one direction. We644

accomplish this by building a checkable protodiode, where the protodiode is a certain four-645

location gadget which easily simulates a diode. Refer to Figure 34. We apply postselection to646

the checkable protodiode with the checking traversals [A→ C, D → B] to nonlocally simulate647

the protodiode. The nonbroken states are exactly those in which the block is confined to the648

middle two squares. Connecting the bottom two locations of the protodiode yields a diode.649
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Figure 30 Icons and state diagrams for Push-1F base gadgets.

(a) Weak merged
closing

(b) No-return (c) Weak opening

Figure 31 Constructions of base gadgets for Push-1F.

(a) Dicrumbler (b) SO (c) MSC

Figure 32 Constructions of gadgets required for postselection in Push-1F.

We now nonlocally simulate a precursor gadget, which will be used to build a 1-toggle650

and a checkable self-closing door. The precursor’s state diagram is shown in Figure 35d. We651
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protodiode

proto-precursor
checkable protodiode

checkable proto-precursor

precursor

  

nonlocal

1-toggle

checkable self-closing door

self-closing door
nonlocal

diode

nonlocal

Figure 33 Overview of gadget simulations used for Push-1F. Black arrows show local simulations
and blue arrows show nonlocal simulations.

A B

C D
(a) Checkable protodiode
and checking traversals

(b) Protodiode (c) Diode

Figure 34 Nonlocal diode simulation for Push-1F. Horizontal tracks show where the block is
allowed to move in the protodiode and diode, as if it is confined by a magical force.

begin by building a checkable proto-precursor , where again the proto-precursor is a certain652

gadget which easily simulates the precursor. Refer to Fig 35. We apply postselection to the653

checkable proto-precursor with the checking traversals [A → D, C → G, B → A, B → C].654

We close off locations D and G during postselection by not including them in the set655

L′ = {A, B, C, E, F} of locations on the proto-precursor. The nonbroken states are exactly656

those in which the blocks are confined to the four center-most spaces, and the two blocks657

are not adjacent. Entering a broken state is irreversible with respect to transitions on the658

locations in L′ because D and G were excluded in L′. (If D or G were included then it would659

be possible to un-break the gadget from some broken states by pushing a block back into the660

center.) Thus we can use postselection to nondeterministically simulate the proto-precursor;661

joining its upper three locations together yields the precursor gadget. Additionally, closing662

the top location of the precursor gadget produces a 1-toggle.663

Finally, we nonlocally simulate a self-closing door. Our construction of a checkable664

self-closing door is shown in Figure 36. This gadget is almost identical to a self-closing door,665

except that it permits a traversal from the opening location to the exit location exactly666

once, after which the gadget is fully untraversable. We eliminate this problem by applying667

postselection with the checking traversal sequence [opening → opening, entrance → exit].668
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A B C

D E F G
(a) Checkable proto-precursor and checking
traversals. Locations excluded from L′ are

marked with an X.

(b) Proto-precursor

(c) Precursor

21
12

(d) Icon and state diagram for precursor

Figure 35 Nonlocal precursor simulation for Push-1F. As before, horizontal tracks in the
proto-precursor and precursor show spaces to which blocks are magically confined. The magical
force also prevents the pair of blocks in the proto-precursor and precursor from being adjacent.

The sole broken state is the fully untraversable one arising from the aforementioned undesired669

traversal. If we imagine that a magical force prevents the gadget from being left in such a670

state, then we obtain exactly a self-closing door.671

Figure 36 Checkable self-closing door for Push-1F using the precursor gadget, two diodes, and
a 1-toggle.

We have demonstrated a series of planar, nonlocal gadget simulations culminating in672

the planar nonlocal simulation of a self-closing door. Because planar reachability through673

systems of self-closing doors is PSPACE-complete by Theorem 5, so is Push-1F.674
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7 Open Problems675

The primary remaining question is the complexity of Push-1 block puzzles where there676

are no fixed blocks allowed in the puzzle. Push-1 can easily simulate fixed blocks using677

2× 2 arrangements of movable blocks, so we only need to make all fixed areas two blocks678

thick. Our constructions of the gadgets SO and MSC needed to apply postselection all use679

two-block thick spacing, so we have shown that postselection is available for Push-1 gadgets.680

Unfortunately, our postselected constructions for Push-1F critically use one-block-thick681

spacing.682

Another question we do not address is the related block storage question for · · ·Dude683

puzzles, named · · ·Duderino in [5], in which the blocks have target locations to occupy. This684

is comparable to the difference between Push-1F and Sokoban. It is generally expected that685

the storage version of block-pushing puzzles is at least as hard as reaching a single goal686

location; however, this result does not directly follow. We believe using the reconfiguration687

version of the gadgets framework from [4] may help build a gadget-based proof.688

We have another open question related to the technique of postselected gadgets. When689

defining a postselected gadget, we only specified a single traversal sequence to be checked. It690

seems likely that one could enforce the choice of one of several possible sequences using more691

complex constructions like those found in the SAT reduction for DAG gadgets in [11]. Are692

there cases where this sort of flexibility is useful?693
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