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Abstract9

We extend the motion-planning-through-gadgets framework to several new scenarios involving10

various numbers of robots/agents, and analyze the complexity of the resulting motion-planning11

problems. While past work considers just one robot or one robot per player, most of our models12

allow for one or more locations to spawn new robots in each time step, leading to arbitrarily13

many robots. In the 0-player context, where all motion is deterministically forced, we prove that14

deciding whether any robot ever reaches a specified location is undecidable, by representing a15

counter machine. In the 1-player context, where the player can choose how to move the robots,16

we prove equivalence to Petri nets, EXPSPACE-completeness for reaching a specified location,17

PSPACE-completeness for reconfiguration, and ACKERMANN-completeness for reconfiguration18

when robots can be destroyed in addition to spawned. Finally, we consider a variation on the19

standard 2-player context where, instead of one robot per player, we have one robot shared by the20

players, along with a ko rule to prevent immediately undoing the previous move. We prove this21

impartial 2-player game EXPTIME-complete.22
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1 Introduction26

Intuitively, motion planning is harder with more agents/robots. This paper formalizes this27

intuition by studying the effects of varying the number of robots in a recent combinatorial28

model for combinatorial motion planning and the resulting computational complexity.29

Specifically, the motion-planning-through-gadgets framework was introduced in30

2018 [10] and has had significant study since [12, 3, 6, 5, 11, 4, 17, 14]. In the original one-31

player setting, the framework considers a single agent/robot traversing a dynamic network32

of “gadgets”, where each gadget has finite state and a finite set of traversals that the robot33
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23:2 Complexity of Motion Planning of Arbitrarily Many Robots

can make depending on the state, and each traversal potentially changes the state (and34

thus which future traversals are possible). The goal is for the robot to traverse from one35

specified location to another (reachability), or for the system of gadgets to reach a desired36

state (reconfiguration) [5]. Existing results characterize in many settings which gadgets37

(in many cases, one extremely simple gadget) result in NP-complete or PSPACE-complete38

motion-planning problems, and which gadgets are simple enough to admit polynomial-time39

motion planning. This framework has already proved useful for analyzing the computational40

complexity of motion-planning problems involving modular robots [1], swarm robots [7, 8],41

and chemical reaction networks [2]. These applications all involve naturally multi-agent42

systems, so it is natural to consider how the complexity of the gadgets framework changes43

with more than one robot.44

1-player with arbitrarily many robots. In Section 4, we consider a generalization of this45

1-player gadget model to an arbitrary number of robots, and the player can move any46

one robot at a time. By itself, this extension does not lead to additional computational47

complexity: such motion planning remains in PSPACE, or in NP if each gadget can be48

traversed a limited number of times. To see the true effect of an arbitrary number of robots,49

we add one or two additional features: a spawner gadget that can create new robots, and50

optionally a destroyer gadget that can remove robots. For reachability, only the spawning51

ability matters — it is equivalent to having one “source” location with infinitely many52

robots — and we show that the complexity of motion planning grows to EXPTIME-complete53

with a simple single gadget called the symmetric self-closing door (previously shown54

PSPACE-complete without spawners [3]). For reconfiguration, we show that motion planning55

with a spawner and symmetric self-closing door is just PSPACE-complete (just like without56

a spawner), but when we add a destroyer, the complexity jumps to ACKERMANN-complete57

(in particular, the running time is not elementary). These results follow from a general58

equivalence to Petri nets — a much older and well-studied model of dynamic systems —59

whose complexity has very recently been characterized [15, 9].60

0-player with arbitrarily many robots. In Section 3, we consider the same concepts in a61

0-player setting, where every robot has a forced traversal during its turn, and spawners62

and robots take turns in a round-robin schedule. 0-player motion planning in the gadget63

framework with one robot was considered previously [6, 11], with the complexity naturally64

maxing out at PSPACE-completeness. With spawners and a handful of simple gadgets,65

we prove that the computational complexity of motion planning increases all the way to66

RE-completeness. In particular, the reachability problem becomes undecidable. This is a67

surprising contrast to the 1-player setting described above, where the problem is decidable.68

Impartial 2-player with a shared robot. In Section 5, we consider changing the number69

of robots in the downward direction. Past study of 2-player motion planning in the gadget70

framework [12] considers one robot per player, with each player controlling their own robot.71

What happens if there is instead only one robot, shared by the two players? This variant72

results in an impartial game where the possible moves in a given state are the same no73

matter which player moves next. To prevent one player from always undoing the other74

player’s moves, we introduce a ko rule, which makes it illegal to perform two consecutive75

transitions in the same gadget. In this model, we show that 2-player motion planning is76

EXPTIME-complete for a broad family of gadgets called “reversible deterministic interacting77

k-tunnel gadget”, matching a previous result for 2-player motion planning with one robot78
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per player [12]. In other words, reducing the number of robots in this way does not affect79

the complexity of the problem (at least for the gadgets understood so far).80

2 Standard Gadget Model81

We now define the gadget model of motion planning, introduced in [10].82

In general, a gadget consists of a finite number of locations (entrances/exits) and a83

finite number of states. Each state S of the gadget defines a labeled directed graph on84

the locations, where a directed edge (a, b) with label S′ means that a robot can enter the85

gadget at location a and exit at location b, changing the state of the gadget from S to S′.86

Equivalently, a gadget is specified by its transition graph, a directed graph whose vertices87

are state/location pairs, where a directed edge from (S, a) to (S′, b) represents that the robot88

can traverse the gadget from a to b if it is in state S, and that such traversal will change the89

gadget’s state to S′. Gadgets are local in the sense that traversing a gadget does not change90

the state of any other gadgets.91

A system of gadgets consists of gadgets, their initial states, and a connection graph92

on the gadgets’ locations. If two locations a and b of two gadgets (possibly the same gadget)93

are connected by a path in the connection graph, then a robot can traverse freely between94

a and b (outside the gadgets). (Equivalently, we can think of locations a and b as being95

identified, effectively contracting connected components of the connection graph.) These are96

all the ways that the robot can move: exterior to gadgets using the connection graph, and97

traversing gadgets according to their current states.98

Previous work has focused on the robot reachability1 problem [10, 12]:99

I Definition 2.1. For a gadget G, robot reachability for G is the following decision100

problem. Given a system of gadgets consisting of copies of G, the starting location(s), and a101

win location, is there a path a robot can take from the starting location to the win location?102

Gadget reconfiguration, which had target states for the gadgets to be in, was considered in103

[5] and [14]. We additionally investigate a problem where we have target states and multiple104

locations which require specific numbers of robots.105

I Definition 2.2. For a gadget G, the multi-robot targeted reconfiguration problem106

for G is the following decision problem. Given a system of gadgets consisting of copies of G,107

the starting location(s), and a target configuration of gadgets and robots, is there a sequence108

of moves the robots can take to reach the target configuration?109

[12] also defines 2-player and team analogues of this problem. In this case, each player has110

their own starting and win locations, and the players take turns making a single transition111

across a gadget (and any movement in the connection graph). The winner is the player who112

reaches their win location first. The decision problem is whether a particular player or team113

can force a win. When there are multiple robots, we are asking whether any of them can114

reach the win location.115

We will consider several specific classes of gadgets.116

I Definition 2.3. A k-tunnel gadget has 2k locations, which are partitioned into k pairs117

called tunnels, such that every transition is between two locations in the same tunnel.118

1 In [10, 12], “reachability” refers to whether an agent/robot can reach a target location. Here we refer to
it as robot reachability since for models such as Petri-nets the Reachability problem refers to whether a
full configuration is reachable.

CVIT 2016
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Most of the gadgets we consider are k-tunnel.119

I Definition 2.4. The state-transition graph of a gadget is the directed graph which has120

a vertex for each state, and an edge S → S′ for each transition from state S to S′. A DAG121

gadget is a gadget whose state-transition graph is acyclic.122

DAG gadgets naturally lead to bounded problems, since they can be traversed a bounded123

number of times. The complexity of the reachability problem for DAG k-tunnel gadgets, as124

well as the 2-player and team games, is characterized in [12].125

I Definition 2.5. A gadget is deterministic if every traversal can put it in only one state126

and every location has at most 1 traversal from it. More precisely, its transition graph has127

maximum out-degree 1.128

I Definition 2.6. A gadget is reversible if every transition can be reversed. More precisely,129

its transition graph is undirected.130

Reversible deterministic gadgets are gadgets whose transition graphs are partial matchings,131

and they naturally lead to unbounded problems. [12] characterizes the complexity of132

reachability for reversible deterministic k-tunnel gadgets and partially characterizes the133

complexity of the 2-player and team games.134

We define the decision problems we consider in their corresponding sections.135

3 0-Player Motion Planning with Spawners136

In this section, we describe a model of 0-player motion planning, introduce the spawner137

gadget, and show that 0-player motion planning with spawners is RE-complete, implying138

undecidability. RE-completeness is defined in terms of arbitrary computable many-one139

reductions; in particular, they don’t have to run in polynomial time. We will use the fact140

that the halting problem for 3-counter machines is RE-complete [18].141

3.1 Model142

In 0-player directed-edge motion planning (with one robot), we modify 1-player motion143

planning by removing the player’s ability to control the robot, and specifying directions on144

the connections between gadget locations. More precisely, the connection graph is now a145

directed graph such that each gadget location has only incoming edges (meaning that the146

robot enters the gadget from that location), or only outgoing edges and at most one such147

edge (meaning that the robot exits the gadget from that location); and all gadgets must be148

deterministic. 2 Thus the robot moves on its own, moving in the direction of the edge it149

is on and traversing any gadgets it encounters. The reachability question asks whether the150

robot reaches a specified target location in finite time.151

Because the state of this system can be encoded in a polynomial number of bits (the152

state for each gadget and the location of the robot), this reachability problem is in PSPACE153

as in other 0-player models of the gadget framework [6, 11].154

Our extension is to define the spawner gadget: a 1-location gadget that spawns a new155

robot in each round, appearing at its only location. We now define 0-player directed-edge156

2 There was no need to apply directions to the connection graph in [6] because each location acted
exclusively as either the start of transitions or the end of transitions. In [11] the connections were
undirected and it was assumed the robot proceeded away from the gadget where it just traversed.
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motion planning to take into account multiple robots and spawners. 0-player directed-edge157

motion planning with spawners is divided into rounds. In each round, each robot takes a158

turn in spawn order, and then each spawner spawns a robot (in a predefined spawning order).159

A robot’s turn consists of it moving along the directed edge it is on until it either traverses a160

gadget or it gets stuck (i.e., reaches a point where all edges are directed to its position). The161

reachability question asks whether any robot reaches a specified target location in finite time.162

I Lemma 3.1. Deciding robot reachability in 0-player directed-edge motion planning with163

spawners with any set of gadgets is in RE.164

Proof. After each step of the game, there will still be a finite, if increasing, number of robots.165

Thus to confirm if at least 1 robot can reach the win location in finite time we can simply166

simulate the game for the needed finite number of steps. J167

3.2 RE-hardness168

We show that deciding robot reachability in 0-player directed-edge motion planning with169

spawners is RE-hard by reduction from the halting problem by simulating a 3-counter170

machine. First we introduce the gadgets that we show RE-hard.171

Increment gadget. The increment gadget is a 4-state 10-location gadget containing a172

3-path lock branch and a 3-path path selector (Figure 1). When a robot traverses a path173

in the path selector, it enables a single path in the lock branch and locks the path selector.174

When a robot traverses a path in the lock branch, the gadget reverts to the original state.

1

=

Increment

2 3 4

1 1

1

2

3

4

Lock Branch

Path selector

Figure 1 The increment gadget, shown with state transitions.

175

Register gadget. The register gadget is a 3-state 10-location gadget containing a path176

selector , a processing branch, and a response branch (Figure 2). When a robot177

traverses the top path selector path, the path selector is locked and a path in the processing178

branch is enabled. When a robot traverses the bottom path selector path, the path selector is179

locked and the other processing branch path and a path in the response branch are enabled.180

If a robot traverses any non-path-selector path, the gadget reverts to the original state.181

UPDSDS gadget. For the following theorem, we will also use the UPDSDS gadget. This182

gadget has two states ‘up’ and ‘down’, a tunnel which sets the state to ‘up,’ and two set-up183

switches which each have one input and two outputs, where the output taken depends on184

the state and traversing the switch sets the state to ‘down.’185

CVIT 2016
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1

=

Register 

2 3

1 

3 

2 

1 1 

1 

Processing branch

Response branch

Path selector

Figure 2 The register gadget, shown with state transitions.

I Theorem 3.2. Deciding robot reachability for 0-player directed-edge motion planning with186

spawners is RE-hard with the spawner, increment, register, and UPDSDS gadgets combined.187

Proof. We reduce from the halting problem of the 3-counter machine with INC(r), DEC(r),188

and JZ(r, z) instructions, which is undecidable ([18]). We will need to implement the INC(r)189

(increment register r by 1), DEC(r) (decrement r by 1), and JZ(r, z) (jump to instruction z190

if r is 0) instructions of a counter machine. We will not worry about decrementing a register191

that is already 0, because all DEC instructions can be preceded by JZ to guard against that.192

We will also implement the HALT instruction, which should result in a win.193

First we implement a register , which will store a nonnegative integer, just like a register194

in a counter machine. This, of course, uses the register gadget, and the implementation is195

shown in Figure 3. In this implementation, the value of a register gadget is the number of196

robots stuck at the entrance of the processing branch. If a robot b crosses the decrement197

in path, a single robot can cross the gadget to the sink, where it is stuck forever, and all198

other robots stuck at the entrance stay stuck. Robot b goes through the out path on its next199

turn. This decrements the value of the gadget by 1, thus implementing DEC, taking 1 round200

to process. If a robot b crosses the jump-zero in path, then if the gadget’s value is nonzero, a201

single robot b′ crosses the top path of the processing branch, reverting the gadget’s state, and202

forcing b to traverse the top path of the response branch on its next turn, which leads to the203

out path. b′ gets stuck back at the entrance on its next turn. However, if the gadget’s value204

is 0, then no robot will traverse the processing branch, which lets b traverse the bottom path205

of the response branch on its next turn. This does not change the value of the gadget, and206

changes the path of b iff the value is 0, thus implementing JZ, taking 2 rounds to process.207

To implement INC, we need a place that robots can come from. For this, we have the208

setup shown in Figure 4. This setup contains a spawner gadget. Spawned robots go through209

the US gadget (a set-up switch, simulated by using one switch of the UPDSDS gadget and210

flipping it) to the entrance of the lock branch of the increment gadget and get stuck. It takes211

2 turns for this to happen. The first robot b to get spawned instead takes the bottom path212

of the US gadget and executes the program. So during the 4th and later rounds, an extra213

robot gets stuck at the increment gadget. When robot b goes through the increment ri in214

path, a single robot b′ at the increment gadget traverses the lock branch, goes to the income215

entrance of ri, and gets stuck at that register gadget’s processing branch on its next turn,216

incrementing said register gadget’s value. In the process, the increment gadget reverts to its217

original state. This implements INC, taking 2 rounds to process, and we only need to make218

sure that b does not traverse the path selector of the increment gadget before the 4th round219
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Income

Decrement in

Jump-Zero in

Jump-Zero success

Out

Sink
Value (number of robots stuck here)

Figure 3 Implementation of the register of a counter machine

to ensure that there will be a robot b′ that goes to a register.

++

Execute Out

Increment r1 in

Increment r2 in

Increment r3 in

r1 income

r2 income

r3 income

Spawner

Figure 4 The context of the increment gadget, along with the spawner and a US gadget.

220

We also need to implement the program, and we use UPDSDS gadgets for that, as221

shown in Figure 5. A UPDSDS-gadget instruction contains an execute in entrance, a pass in222

entrance, a jump in entrance, a jump destination entrance, an execute out exit, an execute223

next exit, a pass next exit, a jump next exit, and a jump out exit. Only the executor robot is224

allowed to traverse this gadget.225

The execute out exit leads to the proper location of the increment or register gadgets.226

For an INC(r) instruction, it leads to the increment r in entrance of the increment gadget.227

For a DEC(r) instruction, it leads to the decrement in entrance of the register gadget for228

register r. For a JZ(r, z) instruction, it leads to the jump-zero in entrance of the register229

gadget for register r. For a HALT instruction, it leads directly to the win location.230

The execute next exit leads to the execute in entrance of the next instruction. The pass231

next exit leads to the pass in entrance of the next instruction. The jump out exit leads232

to the jump destination entrance of instruction z for a JZ(r, z) gadget, and doesn’t exist233

otherwise. The jump next exit leads to the jump in entrance of the next instruction.234

This reduction can be done in polynomial time with respect to the number of instructions,235

because each instruction is simulated with 1 UPDSDS gadget, and there are a constant236

number of constant-size gadgets other than these.237

CVIT 2016
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zi zi+1

Execute in 

Pass in 

Jump in 

Execute out Execute out 

Execute next 

Pass next 

Jump next 

Jump out Jump out 

Jump dest. Jump dest. 

Figure 5 Two instructions implemented using UPDSDS gadgets.

We now describe the behavior of the entire simulation, with an example shown in Figure 6.238

A robot spawns from the spawner.239

The robot that spawned takes the bottom path of the US gadget, setting it to the up240

state permanently. This robot is the executor robot. Another robot spawns from the241

spawner.242

The executor robot takes the top path of the UPDSDS gadget representing the first243

instruction. The newly spawned robot crosses the US gadget. Another robot spawns244

from the spawner.245

If the executor robot is executing an INC instruction, it traverses the path selector of246

the increment gadget. This is the 4th (or later) round, so there will be a robot ready to247

traverse the lock branch of the increment gadget.248

When the executor robot finishes executing an instruction that doesn’t lead to a jump, it249

travels along the upper set-down switches of the UPDSDS gadgets until it finds the one250

representing the instruction it was executing. It resets that gadget and executes the next251

instruction, flipping the state of the next UPDSDS gadget.252

If the instruction led to a jump instead, the executor robot travels along the lower set-253

down switches of the UPDSDS gadgets until it finds the one representing the instruction254

it was executing. It resets that gadget and takes the jump next path to the destination255

UPDSDS gadget of the jump, then executes the corresponding instruction.256

If the executor robot reaches the top path of the UPDSDS gadget representing the HALT257

instruction, it goes to the win location.258

So this simulates a 3-counter machine. So if the 3-counter machine halts, then a robot259

will reach the win location in finite time, and vice versa. J260

4 1-Player Motion Planning with Spawners and/or Destroyers261

In this section, we investigate 1-player motion planning with multiple robots, where a single262

player controls a set of robots, with the ability to separately command each, moving any one263

robot at a time. There is no limit to the number of robots that can be at a given location.264

We include a spawner gadget (as in Section 3) which the player can use to produce a new265

robot at a specific location, providing an unlimited source of robots at that location. We266

optionally also include a destroyer gadget, which deletes any robot that reaches a specified267

sink location; such removal plays a role when we consider the targeted reconfiguration268
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++ r0 r1

INC(r0) DEC(r0) JZ(r1, z1) HALT

Figure 6 A 2-counter machine constructed with the gadgets. 2 counters are shown instead of 3
to save space.

problem where the goal is to achieve an exact pattern of robots at the locations. If a system269

of gadgets only has a single spawner gadget we call that gadget the source and if the system270

only has a single destroyer gadget we call that the sink.271

We show an equivalence between this 1-player motion planning problem and corresponding272

problems on Petri nets. Through these connections, we establish EXPSPACE-completeness for273

reachability; PSPACE-completeness for reconfiguration with a spawner; and ACKERMANN-274

completeness for reconfiguration with a spawner and a destroyer.275

4.1 Petri Nets276

Petri nets are used to model distributed systems using tokens divided into dishes, and277

rules which define possible interactions between dishes. This is a natural model since many278

equivalent models have been defined such as Vector Addition Systems and Chemical Reaction279

Networks.280

I Definition 4.1. A Petri net {D, R} consists of a set of dishes D and rules R. A281

configuration t is a vector over the elements of D which represents the number of tokens282

in each dish. Each rule (u, v) ∈ R is a pair of vectors over D. A rule can be applied to283

a configuration d0 if d0 − u contains no negative integers to change the configuration to284

d1 = d0 − u + v. The volume of a configuration denoted |d| is the sum of all its elements.285

I Definition 4.2. A reachable set for a Petri-net configuration, denoted REACHP ({D, R}, t),286

is the set of configurations of a Petri net reachable starting in configuration t and applying287

rules from R.288

We can view a system of gadgets with multiple robots as a set of gadget states Γ and a289

vector l indicating the counts of robots at each location. We can define the set of reachable290

CVIT 2016
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targeted configurations as REACH(Γ, l) similarity to Petri nets.291

A

B

C

Figure 7 General Petri-net rule (u, v), where u’s nonzero dishes are shown on the left side and
v’s nonzero dishes are shown on the right side.

4.2 Equivalence between Petri Nets and Gadgets292

We present transformations that turn Petri nets into gadgets, and gadgets into Petri nets.293

We use these simulations to prove the complexity of robot reachability and reconfiguration294

with arbitrarily many robots.295

Gadgets to Petri Nets. We can transform a set of gadgets into a Petri net where each296

location, besides the source and sink, is represented as a robot dish. Each gadget besides297

the spawner and destroyer is given a number of state dishes equal to its states, and each298

transition of the gadget is represented by a rule. The set of dishes D is DST AT E ∪DLOCT ,299

the union of state and robot dish sets, respectively.300

A configuration of robots and gadgets is represented by a Petri-net configuration t301

satisfying the following:302

Each k-state gadget is simulated by k unique dishes in DST AT E , one per state. The state303

of the gadget is represented by a single token which is contained in the corresponding304

dish, and the other k − 1 dishes are empty.305

Each location in the system of gadgets is simulated by a unique dish in DLOCT . The306

number of tokens in that dish is equal to the number of robots at that location.307

A Petri net {D, R} simulates a system of gadgets G if for any configuration {Γ, l} of G308

represented by Petri-net configuration t, each configuration in REACHG(Γ, I) is represented309

by a configuration REACHP ({D, R}, t) and each configuration in REACHP ({D, R}, t)310

represents a configuration in REACHG(Γ, I).311

A B

1 2

C D

1 2

A B

1 2

C D

1 2

2

2

1

A B

C D

A B

C D

2
1

1

Figure 8 Petri-net rules which simulate a 2-tunnel toggle gadget
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I Lemma 4.3. For any set of deterministic gadgets S, any system of multiple copies of312

gadgets in S with a spawner (and optionally, a destroyer) can be simulated by a Petri net.313

Proof. We first explain how to create the rules for gadgets that are not connected to the314

source or sink locations. Each gadget transition will be represented by a unique rule. For315

example the 2-tunnel toggle gadget is shown in Figure 8 and has four transitions. It can be316

traversed:317

from A to B in state 1,318

from C to D in state 1,319

from B to A in state 2, and320

from D to C in state 2.321

The four corresponding rules for the gadget are drawn in Figure 8 as well. Each rule322

takes in one token from a robot dish and one from a state dish, and places one token in a323

robot dish and one in a state dish. The token being moved between robot dishes models324

moving one robot across a gadget, and the token being moved between state dishes models325

the state change of the gadget.326

If a gadget is connected to the source, any transition from the source is represented by a327

rule that only takes in a state token, producing two tokens. One token is output to a location328

dish and one to a state dish. If a transition is connected to the sink then the rule takes in329

two tokens and outputs only a state token. These special cases are shown in Figure 9. Note330

that we do not have an actual dish for the source so the player may spawn multiple robots331

at the source but they do not appear in the simulation until they traverse a gadget.332

B

1 2

A

1 2

A B

C D

A B

C D

-+

Figure 9 Left: Rule we include when a gadget can be traversed from the source. Right: Rule we
include when a traversal leads to the sink.

For each configuration of a system of gadgets, there exists a configuration of the Petri333

net with dishes that represent the gadgets and locations. Each rule of the Petri net acts334

as a traversal of a robot changing the state of a gadget. The rules need the gadgets state335

token to be in the correct dish, and a robot token in the location dish representing the start336

traversal. J337

Petri Nets to Gadgets. We simulate a Petri net with symmetric self-closing doors using a338

location for each dish, where each rule is represented by multiple gadgets. We also have a339

single control robot which starts in a location we call the control room. The other robots340

are token robots which represent the tokens in each dish. At a high level, our simulation341

works by “consuming” the input tokens to a rule to open a series of tunnels for the control342

robot to traverse. The control robot then opens a gadget for each output to allow token343

robots to traverse into their new dishes. We use the source and sink to increase and decrease344

rules as needed. Figure 11 gives an overview.345

Symmetric self-closing door. The symmetric self-closing door is a 2-state 2-346

tunnel gadget shown in Figure 10. The states are {1, 2} and the traversals are347
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2

1

A B

C D 1

2

A B

C D

Figure 10 Symmetric self-closing door

in state 1 from A to B changing state to 2, and348

in state 2 from C to D changing state to 1.349

Control Room Control Room

A C

B D

E

A

B

D

C

E

Control Room

-

+

Control Room

A C

B

A

B

C

Figure 11 How to simulate a rule which decreases volume (Left) and a rule which increases
volume (Right).

Using this simulation we prove two problems in Petri-nets are polynomial time reducible350

to the gadgets problems we are interested in. [13] lists many problems including the ones we351

describe here3. First is production, this problem asks given a Petri-net configuration and a352

target dish, does there exist a reachable configuration which contains at least one token in353

the target dish. Configuration reachability asks given an initial and target configuration, is354

the target reachable from the initial configuration.355

I Lemma 4.4. Production in Petri nets is polynomial time reducible to robot reachability356

with the symmetric self-closing door and a spawner. Configuration reachability in Petri357

nets is polynomial-time reducible to multi-robot targeted reconfiguration with the symmetric358

self-closing door and a spawner.359

Proof. For a rule (a, b) we include |a|+ |b| copies of the gadgets. There is a gadget for each360

input to the rule; these gadgets can be traversed from the location representing an input dish361

to an intermediate location, opening another tunnel for the control robot to traverse. The362

control robot must traverse all the input gadgets the goes through the tunnels of the output363

gadgets. The control robot opens the doors of these gadgets allowing the robots moving364

from an intermediate wire to traverse to a location representing the output dishes.365

If a rule would increase the volume, the surplus output gadgets will allow traversal from366

the spawn location instead of an input gadget. If a rule decreases the volume, then the367

surplus input gadgets send robots to a “sink” location instead of an output gadget. We do368

not require a true sink in this case because we can add an extra location which robots can be369

3 Problems names may differ.
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held instead of being deleted. If we do not connect this location to any other gadget, then370

the robots can never leave and can be thought of as having left the system.371

Production reduces to robot reachability since a robot can reach a location if and only if372

a token can reach the corresponding dish. If token is placed in a dish, it must have moved373

through a rule gadget. The robot can only move through a rule gadget if the number of374

robots in the dishes are at least the number of tokens of the left hand side of the rules to375

open the tunnels for the control robot to move through.376

Configuration reachability in Petri nets reduces to multi-robot targeted reconfiguration.377

The target and initial states of the gadgets are the same. The only difference between the378

initial configuration and the target is the number of robots at each location, equal to the379

counts in the instance of Configuration reachability for Petri nets. The number of robots at380

each location is equal to the number of tokens in each dish. The targets for each intermediate381

wire is 0 and in the control room 1. Thus, it is never beneficial to partially traverse a rule382

gadget. J383

4.3 Complexity of Reachability384

The reachability problem for a single robot is very similar to the well-studied problem in385

Petri nets called coverage. The input to the coverage problem is a Petri net and a vector of386

required token amounts in each dish, and the output is yes if and only if there exists a rule387

application sequence to reach a configuration with at least the required number of tokens in388

each dish.389

I Definition 4.5 (Coverage Problem). Input: A Petri net {D, R}, and vectors d0 and dc.390

Output: Does there exist a reachable configuration d ∈ REACH({D, R}, d0) such that391

d[k] ≥ dc[k] for all 0 ≤ k < |D|.392

I Theorem 4.6. Robot reachability is EXPSPACE-complete with symmetric self-closing393

doors, a spawner, and optionally a destroyer.394

Proof. We can solve robot reachability by converting the system of gadgets to a Petri net395

which simulates it as in Lemma 4.3. In this simulation, a token can be placed in a location396

dish if and only if a robot can reach that location represented by that dish. Determining if397

a single token can be placed in a target dish, the production problem, is a special case of398

coverage problem where the target dish is labeled with 1 and all others labeled with 0. We399

can use the exponential-space algorithm for Petri-net coverage shown in [19] to solve robot400

reachability. When simulating the sink we require rules that decrease the volume of a Petri401

net. This algorithm works for general Petri nets so it implies membership with a sink.402

For hardness, we first reduce Petri-net coverage to Petri-net production by adding a403

target dish T starting with 0 tokens and a new rule. This rule takes as input the number of404

tokens equal to the goal of the coverage problem and produces one token to the t dish. This405

token can only produced if the reach a configuration that has at least the target number of406

each species. We then use Lemma 4.4 to reduce production to robot reachability with the407

self-closing symmetric door and a spawner. It is relevant to note the first reduction does not408

work when exactly the target numbers are required. The reduction works even when not409

allowing the sink as described in Lemma 4.4.410

J411
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4.4 Complexity of Reconfiguration412

The reconfiguration problem has been studied in the single-robot case as the problem of413

moving the robot through the system of gadgets so that each gadget is in a desired final414

state. Targeted reconfiguration not only asked about the final states of the gadgets, but the415

location of the robot as well. Here, we study multi-robot targeted reconfiguration which416

requires both that all gadgets are in specified final states and that each location contains a417

target number of robots.418

I Definition 4.7. For a gadget G, the multi-robot targeted reconfiguration problem419

for G is the following decision problem. Given a system of gadgets consisting of copies of G420

and the starting location(s) a target configuration of gadgets and robots, is there a sequence421

of moves the robots can take to reach the target configuration?422

The complexity of multi-robot targeted reconfiguration depends on whether we allow a423

destroyer. If we do not allow for a destroyer, the complexity is bounded by polynomial space424

since we can never have more robots than the total target size. If we allow for the ability to425

destroy robots, then the reconfiguration problem is the same as the configuration reachability426

problem in Petri nets from our relations between the models above. This is a fundamental427

problem about Petri nets and was only recently shown to be ACKERMANN-complete [15, 9].428

I Theorem 4.8. Multi-robot targeted reconfiguration is ACKERMANN-complete with sym-429

metric self-closing doors, a spawner, and a destroyer.430

Proof. For membership we can solve multi-robot target reconfiguration by converting the431

gadgets to the Petri net using Lemma 4.3. The target configuration is a state token for each432

gadget in the dish of its target state, and a number of tokens in each location dish as the433

number of robots in the target configuration. We can then call the ACKERMANN algorithm434

for configuration reachability in Petri nets shown in [16].435

For hardness we can reduce from configuration reachability. It was shown in [9] that436

configuration reachability is ACKERMANN-hard. J437

The reduction presented in [9] vitally uses the ability of Petri nets to delete tokens, so438

we must use a sink in our simulation. Without a sink, we have PSPACE-completeness for439

multi-robot targeted reconfiguration.440

I Theorem 4.9. Multi-robot targeted reconfiguration for symmetric self-closing doors and a441

spawner is PSPACE-complete.442

Proof. Consider the input to the reconfiguration problem: two configurations of a system of443

gadgets. Namely, the start and end state of all the gadgets, and a start and end integer for444

each location. Since we can never destroy a robot once it is spawned, it always exists, so the445

player cannot spawn more robots than the total number of robots in the target configuration.446

We can then solve this problem in NPSPACE by nondeterministically selecting a robot to447

move, either from the source or another location. If we ever increase the total number of448

robots above the target we may reject. If we ever reach the configuration with the correct449

gadget states and robots at each location accept. Since PSPACE = NPSPACE we get450

membership.451

We inherit hardness from the 1-player single-robot case by not including the source or452

connecting it to an unreachable location. J453
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5 Impartial Unbounded 2-Player Motion Planning454

In this section, we describe the 2-player impartial motion planning game and show that it is455

EXPTIME-complete for any reversible deterministic gadget.456

5.1 Model457

In the 2-player impartial motion planning game, two players control the same robot458

in a system of gadgets. Player 1 moves first, then Player 2 moves, then play repeats. On a459

given player’s turn, they move the robot arbitrarily along the connection graph and through460

exactly one transition of a gadget. There is also a ko rule: The robot cannot traverse the461

same gadget on a player’s turn as it traversed on their opponent’s previous turn. If a player462

cannot make the robot traverse a gadget without breaking the ko rule, that player loses and463

the other player wins.464

I Lemma 5.1. Deciding whether Player 1 has a deterministic winning strategy in the 2-player465

impartial motion planning game is in EXPTIME for any set of gadgets.466

Proof. An alternating Turing machine can solve the problem by using existential states to467

guess Player 1’s moves and universal states to guess Player 2’s moves, accepting when Player468

1 wins and rejecting when Player 2 wins. This takes only polynomial space because the469

configuration of the game can be described in polynomial space. The machine can reject after470

a number of turns at least the number of configurations, which is at most exponential and thus471

can be counted to in polynomial space. Hence the problem is in APSPACE = EXPTIME. J472

5.2 Hardness473

We introduce the locking 2-toggle, introduced in [12] and shown in Figure 12. States 1 and474

3 are leaf states and state 2 is the nonleaf state. If a robot crosses a tunnel in state 2,475

the tunnel flips direction and the other tunnel locks. Crossing a tunnel again will reverse476

this effect.477

2
3

1 2 3

1
2

Figure 12 The locking 2-toggle

I Theorem 5.2. Deciding whether Player 1 has a deterministic winning strategy in the478

2-player impartial motion planning game is EXPTIME-hard for the locking 2-toggle.479

Proof. We reduce from G4 as defined in [20]. G4 is a 2-player game involving Boolean480

variables where the players flip a variable on their turn and try to be the one to satisfy a481

common DNF Boolean formula with 13 variables per clause (a 13-DNF). Players have their482

own variables and can’t flip their opponent’s variables, and a player may flip 1 variable on483

their turn or pass their turn. There is no ko rule.484

We start the robot next to a 1-toggle (a single tunnel of a locking 2-toggle) as shown485

in Figure 13. This 1-toggle is called the alternator . On each side of the alternator is a486

variable system for each player, which consists of variable branching and variable setting487
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loops. The variable branching, as shown in Figure 14, has 2 locking 2-toggles before each488

branch. These start in the nonleaf state. At the end of each path is a variable flipping489

loop, which is shown in 15. The variable flipping loop for variable v contains 2 locking490

2-toggles per instance of v or ¬v in the 13-DNF formula of the G4 instance, as well as an491

path to the 13-DNF checker with 2 1-toggles on it. The locking 2-toggles representing v492

start in the nonleaf state iff v starts True in G4, and the locking 2-toggles representing ¬x493

start in the leaf state iff x starts True in G4. One path of the variable branch, on the other494

hand, leads to a pass loop, which is a variable flipping loop with 2 1-toggles in the loop495

instead of the locking 2-toggles. The 13-DNF checker contains a path for each clause in the496

13-DNF, and each path contains a locking 2-toggle representing v, the same as one of the497

locking 2-toggles representing v in the variable flipping loop of v, followed by a 1-toggle, for498

each variable v in the corresponding clause. The paths all lead to a final 1-toggle called the499

finish line. This reduction can be done in polynomial time, as each variable and clause in500

G4 is converted to a polynomial number of constant-size gadgets.501

Start
To P1 variables

To P1 variablesTo P2 variables

To P2 variables

Figure 13 The robot’s starting position, and the 1-toggle that’s called the alternator.

To P1 variable x

To P1 variable y

To P1 variable z

To P1 pass loop

To alternator

Figure 14 The variable branching for Player 1. Player 2’s variable branching is on the other side
of the alternator. In this example, player 1 has 3 variables: x, y, and z.

x x ¬x ¬x

To P1 variable branch

To 13DNF checker

Paths in the 13DNF checker

Figure 15 The variable flipping loop for variable x. This example represents the case where the
13-DNF has 1 instance of x and 1 instance of ¬x. Currently, x is True.
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To variable flipping loops and pass loops

y

z

x ¬x ¬x

w

z¬w

¬w

Figure 16 A 13-DNF checker, except that it represents a 3-DNF. This example represents
(y ∨ z ∨ x) ∧ (¬w ∨ ¬w ∨ ¬x) ∧ (z ∨ w ∨ ¬x). The dotted paths are part of variable setting loops.

During intended play:502

Player 1 moves the robot through variable branching to select a variable to set. Because503

the locking 2-toggles are doubled, and because of the ko rule, Player 2 has no choice but504

to second Player 1’s choices. Player 1 could also move the robot to the pass loop.505
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Player 1 moves the robot around a variable selection loop, a variable by flipping whether506

each locking 2-toggle is locked or not. If they’re in the pass loop, they just go around the507

loop. Again, Player 2 has no choice since the number of gadgets in the path is even.508

Player 1 either moves the robot to the 13-DNF checker or back through the variable509

branching to the alternator.510

If Player 1 moves it back, they make it cross the alternator, and Player 2 goes through511

the same steps, but on the other side of the alternator.512

If a player moves the robot to the 13-DNF checker, they pick a path. If that path’s513

corresponding clause in the 13-DNF is currently satisfied, they cross the finish line and514

win, since their opponent then has no legal moves. Otherwise, they get blocked by the515

first variable set to False, making their opponent win.516

So Player 1 has the initiative and takes a G4 turn on one side of the alternator, and Player 2517

has the initiative and takes a G4 turn on the other side. It is correct for a player to move518

the robot to the 13-DNF checker iff the 13-DNF is currently satisfied.519

We will now look at ways that the players can try to break the simulation of G4:520

Player 1 can make the robot cross the alternator as their first move. However, this lets521

Player 2 flip a variable or pass first. If Player 1 can win this way, they can also win by522

passing (moving the robot around the pass loop) first and then giving the initiative to523

Player 2. So not crossing the alternator first is always a correct move.524

A player can move the robot to a variable flipping loop and cut to the 13-DNF checker.525

However, if the player can win this way, they can win by passing and moving the robot526

to the 13-DNF checker.527

A player can try to turn around and flip another variable on the way back to the alternator.528

However, the ko rule prevents this.529

A player can try to move the robot to some other variable flipping loop from the start of530

the 13-DNF checker. However, 1-toggles will block the way.531

Thus, the players are effectively forced to play G4 in this game. Therefore, if Player 1 has a532

deterministic winning strategy in the G4 instance, then they have one in this game, and if533

Player 1 has a deterministic winning strategy in this game, then they have one in the G4534

instance as well. J535

I Theorem 5.3. Deciding whether Player 1 has a deterministic winning strategy in the536

2-player impartial motion planning game is EXPTIME-hard for any interacting k-tunnel537

reversible deterministic gadget.538

Proof. Figure 17 shows two tunnels that any interacting k-tunnel reversible deterministic539

gadget must have, as proved in [12, Section 2.1], which further shows that these tunnels can540

be used to simulate a locking 2-toggle. For 2-player impartial motion planning, however, we541

must be careful of the simulation. To preserve parity, each traversal in the locking 2-toggle542

must correspond to an odd number of traversals in the simulation. In addition, if a traversal543

is not allowed, it must be blocked after an even number of traversals so the player who544

started moving the robot along that path loses. And to simulate the gadget ko rule, the545

gadgets at the ends of the simulation must be in the way of both paths. If all the constraints546

are met, then if a player makes the robot start a traversal along the simulation, the players547

must follow through, and in the end, it will be said player’s opponent’s turn. The opponent548

would have to make the robot traverse a gadget not in the simulation. Players would be549

disincentivized to start a traversal along a closed path, because they will be the one stuck550

with no legal moves. So the simulation would act exactly like a locking 2-toggle in the551

above reduction, giving us a straightforward reduction 2-player impartial motion planning552
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with locking 2-toggles to 2-player impartial motion planning with any interacting k-tunnel553

reversible deterministic gadget.

2

3

1 2
1 ?

?

?

?

Figure 17 Two tunnels that an interacting k-tunnel reversible deterministic gadget must have.
Solid arrows indicate open traversals, hollow arrows with ‘?’ indicate optionally open traversals, and
absent arrows indicate closed traversals. State 3 could be any state, including 1 and 2.

554

First we simulate a 1-tunnel reversible deterministic gadget with a directed tunnel, as555

shown in Figure 18. The robot cannot cross from right to left. If it crosses from left to right,556

it may cross back (after traversing some other gadget, of course), and the path from left to557

right may optionally still be open, this time leading to whatever state. Note that it takes558

two traversals to cross the simulation, and that a closed path in state 1 of the gadget used in559

the simulation blocks the robot after 0 traversals.

?
2

?
2

1
?

2
1=

Figure 18 Simulation of a 1-tunnel reversible deterministic gadget with a directed tunnel. We
draw double bars crossing the 1-tunnel gadget as a reminder that it takes two traversals to cross.

560

Now we simulate the locking 2-toggle, as shown in Figure 19. The simulation currently561

simulates the locking 2-toggle in the nonleaf state. The robot can traverse from top right to562

top left or from bottom left to bottom right. The robot will get blocked after two traversals563

in an attempt to traverse from top left to top right or from bottom right to bottom left. If564

the robot traverses from top right to top left, the robot will be able to traverse from top left565

to top right (after traversing a different gadget). But an attempt to traverse from bottom566

left to bottom right gets the robot blocked after 0 traversals, thanks to the tunnel interaction567

in the left gadget, and an attempt to traverse from bottom right to bottom left or from top568

right to top left gets blocked after two traversals. So this would simulate a leaf state of the569

locking 2-toggle. The center gadget never becomes relevant for blocking, so we can argue by570

symmetry that traversing from bottom left to bottom right results in the other leaf state.571

Note that each path takes nine traversals to cross, so we have successfully simulated the572

locking 2-toggle meeting the constraints. This completes the proof. J

3

1 ?

? 3

1 ?

? 3

1 ?

?

?1

2

2

1? 1

3 ?

? 1

3 ?

?

Figure 19 Simulation of the locking 2-toggle, under the constraints.

573
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By Lemma 5.1 and Theorem 5.3, it is EXPTIME-complete to determine whether Player574

1 has a deterministic winning strategy in the 2-player impartial motion planning game with575

any interacting k-tunnel reversible deterministic gadget.576

6 Open Problems577

For 0-player motion planning, we leave as an open problem whether the finite-time reachability578

problem is undecidable for a smaller set of gadgets. In particular, we used gadgets that can579

separate one robot from the rest when they are all stuck at the same spot. Is the problem580

undecidable for gadgets without this ability? What about classes of gadgets that have already581

been studied such as self-closing doors or reversible, deterministic gadgets?582

In the 0-player model with spawners we investigated a synchronous model for the robots583

where they all took turns making their moves. One could imagine asking about various584

asynchronous models of robot motion through the gadgets.585

For 1-player multi-agent motion planning, we investigated robot reachability and multi-586

agent targeted reconfiguration. The hardness for both these problems relies on simulating587

Petri nets with a symmetric self-closing door. Do there exist reversible gadgets for which the588

problem is the same complexity? How does this relate to reversible Petri nets?589

We also did not investigate spawners in the 2-player setting. It seems likely that this590

problems is Undecideable for many gadget; however, the 0-player and 1-player constructions591

do not obviously adapt to give this result.592

Finally, in the 2-player impartial case, does the complexity change for other gadgets? Are593

there any gadgets for which finding a winning strategy is provably easier? What about cases594

where the impartial game is harder than the regular 2-player game?595
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