
Traversability, Reconfiguration, and Reachability
in the Gadget Framework

Joshua Ani1, Erik D. Demaine1[0000−0003−3803−5703], Yevhenii Diomidov1,
Dylan Hendrickson1[0000−0002−9967−8799], and

Jayson Lynch2[0000−0003−0801−1671]

1 Massachusetts Institute of Technology, Cambridge, MA, USA,
{joshuaa,edemaine,diomidov,dylanhen}@mit.edu

2 Cheriton School of Computer Science, University of Waterloo, Waterloo, ON,
Canada, jayson.lynch@uwaterloo.ca

Abstract. Consider an agent traversing a graph of “gadgets”, each with
local state that changes with each traversal by the agent. Prior work has
studied the computational complexity of deciding whether the agent can
reach a target location given a graph containing many copies of a given
type of gadget. This paper introduces new goals and studies examples
where the computational complexity of these problems are the same or
differ from the original relocation goal. For several classes of gadgets—
DAG gadgets, one-state gadgets, and reversible deterministic gadgets—
we give a partial characterization of their complexity when the goal is
to traverse every gadget at least once. We also study the complexity of
reconfiguration, where the goal is to bring the entire system of gadgets
to a specified state. We give examples where reconfiguration is a strictly
harder problem than relocating the agent, and also examples where re-
location is strictly harder. We also give a partial characterization of the
complexity of reconfiguration with reversible deterministic gadgets.

1 Introduction

The motion-planning-through-gadgets framework , introduced in [3] and
further developed in [4], captures a broad range of combinatorial motion-planning
problems. It also serves as a powerful tool for proving hardness of games and
puzzles that involve an agent moving in and interacting with an environment
where the goal is to reach a specified location. Prior work [4] fully characterizes
the complexity of 1-player motion planning with two natural classes of gad-
gets: DAG k-tunnel gadgets, which naturally lead to bounded games, and re-
versible deterministic k-tunnel gadgets, which naturally lead to unbounded
games. Section 2 reviews these and other important definitions.

All of the prior work considers reachability , where the decision problem
is whether the agent can reach the target location.3 In this paper, we begin
extending the gadget model to victory conditions other than reaching a target

3 Assembly and motion planning literature often use the term reachability to refer to
whether an agent can reach a target location. However, reconfiguration literature



2 J. Ani, E. D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch

location. In particular we examine the complexity of reconfiguring a system of
gadgets and of visiting every single gadget. These extensions seem natural and
interesting, but are also motivated by the fact that this model has been used
to show hardness of reconfiguration problems and problems with Hamiltonian
Path like constraints.

We consider the universal traversal problem of whether the agent can visit
every gadget. In Section 3, we characterize the complexity of this problem for
three classes of k-tunnel gadgets: DAG gadgets, one-state gadgets, and reversible
deterministic gadgets. Of particular note is that universal traversal can be harder
than reachability for the same gadget. In particular, there are DAG k-tunnel
gadgets for which reachability is in P but universal traversal is NP-complete.
Additionally, reachability for one-state gadgets is always in NL, but universal
traversal can be NP-complete.

In Section 4 we consider the reconfiguration problem of whether the agent
can cause the entire system of gadgets to reach a target configuration. We exhibit
a gadget with non-interacting tunnels for which reconfiguration is PSPACE-
complete, but reachability is in P. We also show that for reversible gadgets,
reconfiguration is at least as hard as reachability. In contrast, we exhibit a nonre-
versible gadget for which the reconfiguration is contained in P while reachability
is NP-complete. The gadgets framework has already been used to prove com-
plexity results about reconfiguration problems related to swarm [2] and modular
robotics [1], so understanding reconfiguration in the gadgets model may provide
an easier and more powerful base for such applications.

2 Gadget Model

We now define the gadget model of motion planning, introduced in [3].
A gadget consists of a finite number of locations (entrances/exits) and a

finite number of states. Each state S of the gadget defines a labeled directed
graph on the locations, where a directed edge (a, b) with label S′ means that
an agent can enter the gadget at location a and exit at location b, changing
the state of the gadget from S to S′. Each of these arcs is called a transition .
Sometimes we will discuss a traversal from some location a to location b which
refers to any possible transition from a to b in state s. Different states in a gadget
can have different transitions while having the same traversability, because the
transitions in those different states go from the same entrances to the same
exits. Equivalently, a gadget is specified by its transition graph , a directed
graph whose vertices are state/location pairs, where a directed edge from (S, a)
to (S′, b) represents that the agent can traverse the gadget from a to b if it is
in state S, and that such traversal will change the gadget’s state to S′. Gadgets
are local in the sense that traversing a gadget does not change the state of any
other gadgets. An example can be seen in Fig. 1.

uses the term to refer to whether a target location in the configuration space is
reachable from another. This would be equivalent to our reconfiguration problem
which also specifies a target location for the agent.



Traversability, Reconfiguration, and Reachability in the Gadget Framework 3

3

21

1

3

2

3

Fig. 1: A diagram describing the lock-
ing 2-toggle gadget. Each box represents
the gadget in a different state, in this
case labeled with the numbers 1, 2, 3.
Arrows represent transitions in the gad-
get and are labeled with the states to
which those transition take the gadget.
In the top state 3, the agent can traverse
either tunnel going down, which blocks
off the other tunnel until the agent re-
verses that traversal. Dotted lines help
visualize the associated transitions be-
tween states.

A system of gadgets consists of
gadgets, the initial state of each gad-
get, and an undirected connection
graph on the gadgets’ locations. If
two locations a and b of two gad-
gets (possibly the same gadget) are
connected by a path in the connec-
tion graph, then an agent can traverse
freely between a and b along the con-
nection graph. The configuration of
a system of gadgets is that system of
gadgets along with a state for each of
the gadgets in the system. (Equiva-
lently, we can think of locations a and
b as being identified, effectively con-
tracting connected components of the
connection graph.) These are all the
ways that the agent can move: exte-
rior to gadgets using the connection
graph, and traversing gadgets accord-
ing to their current states. An agent’s
path is a sequence of valid transi-
tions through gadgets and moves in
the connection graph.

Definition 1. For a finite set of gadgets F , reachability for F is the following
decision problem. Given a system of gadgets consisting of n copies of gadgets in
F , and a starting location and a win location in that system of gadgets, is there
a path the agent can take from the starting location to the win location?

We will consider several specific classes of gadgets.
A k-tunnel gadget has 2k locations, which are partitioned into k pairs called

tunnels, such that every transition is between two locations in the same tunnel.
The state-transition graph of a gadget is the directed graph which has a

vertex for each state, and an edge S → S′ for each transition from state S to S′.
A DAG gadget is a gadget whose state-transition graph is acyclic. DAG gadgets
naturally lead to problems with a polynomially bounded number of transitions,
since each gadget can be traversed a bounded number of times. The complexity
of the reachability problem for DAG k-tunnel gadgets, as well as the 2-player
and team games, is characterized in [4].

A gadget is deterministic if every traversal goes to only one state and every
location has at most 1 traversal from it. More precisely, its transition graph has
maximum out-degree 1.

A gadget is reversible if every transition can be reversed. More precisely,
its transition graph is undirected.

Reversible deterministic gadgets are gadgets whose transition graphs are par-
tial matchings, and they naturally lead to unbounded problems. Prior work [4]



4 J. Ani, E. D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch

characterizes the complexity of reachability for reversible deterministic k-tunnel
gadgets and partially characterizes the complexity of 2-player and team games.

A k-tunnel gadget has a distant opening if there is a transition in some
state across a tunnel which opens a different tunnel. A tunnel is opened if a
transition has taken it from a state where the tunnel did not have traversability
in some direction to a state where it is now traversable.

In Section 3.2, we consider one-state , k-tunnel gadgets. A transition in a
gadget with only one state does not change the state, so the legal traversals
never change.

3 Universal Traversal

In this section, we consider whether an agent in a system of gadgets can make a
traversal across every gadget, called the universal traversal problem.

Definition 2. For a finite set of gadgets F , universal traversal for F is the
following decision problem. Given a system of gadgets consisting of n copies of
gadgets in F , and a starting location and a win location in that system of gadgets
is there a path the agent can take from the starting location which makes at least
one traversal in every gadget?

We provide a full characterization for the complexity of this problem for
three classes of gadgets. In Section 3.1, we characterize DAG k-tunnel gadgets.
Universal traversal is NP-hard for some DAG gadgets where reachability is in P.
This is somewhat similar to the distinction between finding paths and finding
Hamiltonian paths. In Section 3.2, we further emphasize this difference by char-
acterizing one-state k-tunnel gadgets. Reachability is always in NL for one-state
gadgets, but we find that universal traversal is often NP-complete. Finally, in
the full version of the paper we consider the unbounded case by characterizing
universal traversal for reversible deterministic k-tunnel gadgets. In this case, the
dichotomy is the same as for reachability.

3.1 DAG Gadgets

In this subsection, we consider universal traversal for k-tunnel DAG gadgets and
show this problem is NP-hard for any DAG gadget which has and actually uses
at least 2 tunnels, in the sense defined below. For some simple 1-tunnel DAG
gadgets, universal traversal is analogous to finding Eulerian paths and is thus in
P; however, more complex 1-tunnel gadgets can not easily be converted to an
Eulerian path problem. For example the 1-toggle which switches direction after
each transition or a gadget which can be traversed at most twice. We leave the
case of 1-tunnel DAG gadgets open.

Open Problem 1 Is universal traversal with any 1-tunnel DAG gadget in P?
Are there 1-tunnel DAG gadgets for which universal traversal is NP-complete?



Traversability, Reconfiguration, and Reachability in the Gadget Framework 5

3
3

1 2 3

Fig. 2: A 2-tunnel DAG gadget
which is not true 2-tunnel.

Some k-tunnel DAG gadgets with k > 1
act like 1-tunnel gadgets in that it is never
possible to make use of multiple tunnels. A
simple example is shown in Fig. 2. We for-
malize this notion in the following definition.

Definition 3. A state of a k-tunnel gadget
is true 2-tunnel if there are at least two tunnels, each of which is traversable
in some state reachable (through any number of transitions) from that state. A
gadget is true 2-tunnel if it is a k-tunnel gadget and has a true 2-tunnel state.

Note that a k-tunnel gadget does not need multiple tunnels traversable in the
same state to be true 2-tunnel: perhaps traversing the single traversable tunnel
opens another tunnel. To justify this definition, we prove the following result.

Theorem 1. Let G be a k-tunnel which is not true 2-tunnel. Then there is a
1-tunnel gadget G′ and a bijection between states of G to states of G′ such that
replacing each copy of G in a system of gadgets with a copy of G′ in the corre-
sponding state gives an equivalent system of gadgets with respect to reachability
and universal traversal.

We will use the fact that every nontrivial DAG gadget simulates either a
directed or an undirected single-use path, since we can take a final nontrivial
state of the gadget [4]. The rest of this subsection is devoted to proving NP-
completeness for universal traversal for true 2-tunnel DAG gadgets.

Theorem 2. Universal traversal with any true 2-tunnel DAG gadget is NP-
complete.

To prove Theorem 2, we will focus on a final true 2-tunnel state of a DAG
gadget, and only use the two tunnels which make this state true 2-tunnel. A final
true 2-tunnel state is a true 2-tunnel state from which no other true 2-tunnel
state can be reached. Such a state exists because the state-graph is a DAG.
After making a traversal in this state, any resulting state is not true 2-tunnel,
so only one of the two tunnels can be traversed in the future. If the gadget is
nondeterministic, the agent may be able to choose which of the two tunnels this
is. We consider several cases for the form of the last true 2-tunnel state, and
show NP-hardness for each one. Most proofs are left to the full version of the
paper.

The first case we consider is when the final true 2-tunnel state being consid-
ered has a distant opening.

Lemma 1. Let G be a true 2-tunnel gadget and let S be a final true 2-tunnel
state of G. If there exists a transition from S across one tunnel which opens a
traversal across another tunnel, then universal traversal for G is NP-hard.



6 J. Ani, E. D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch

S'

S S'

(a)

S'

S S'

(b)

Fig. 3: Two cases for the form of
the gadget in Lemma 1, assuming
traversing the top tunnel to the
right opens the bottom tunnel to
the right. In (a) the bottom tunnel
is not traversable to the left in state
S and in (b) it is. Unfilled arrows
are traversals that may or may not
exist depending on the gadget. Un-
labled transitions may be to arbi-
trary states not specified here.

Proof. We will only use the two tunnels
involved in the opening transition from S
to S′ where S′ has some traversal which
was not possible in S. Suppose traversing
the top tunnel from left to right allows the
agent to open the left-to-right traversal on
the bottom tunnel. Then state S has one of
the two forms shown in Fig. 3, depending
on whether the bottom tunnel can be tra-
versed right to left in S. In either case, the
top tunnel may or may not be traversable
from right to left in S. Since S is a final
true 2-tunnel state, only the bottom tun-
nel is traversable in S′.

To show NP-hardness of universal
traversal with true 2-tunnel gadget G, we
reduce from reachability for G. Since the
gadget has a distant opening, reachability
is NP-complete [4]. We modify the system
of gadgets in an instance of the reachability
problem by adding a construction to each
gadget which allows the agent to go back
and make a traversal in it after reaching the win location. If the agent can reach
the win location, it can then use any gadgets it did not already use, and if it
cannot reach the win location, it cannot use the gadgets in this construction.

The construction is slightly different depending on whether the bottom tunnel
can be traversed from right to left in state S. We use the construction in either
Fig. 4 or Fig. 5. In either case, the agent cannot use the newly added gadgets
until it first reaches the win location. Once it reaches the win location, it can

S'

S'

Fig. 4: The construction to allow the
agent to use a gadget after reaching the
win location (the star), when the bot-
tom tunnel isn’t traversable in state S
(the case of Fig. 3a).

S'S'

Fig. 5: The construction to allow the
agent to use a gadget after reaching
the win location (the star), when the
bottom tunnel is traversable from right
to left in state S (the case of Fig. 3b).



Traversability, Reconfiguration, and Reachability in the Gadget Framework 7

open tunnels in the added gadgets, traverse the (top) gadget the construction is
attached to, and return. If the agent already used the gadget this is attached to,
it can instead use a traversal in each added gadget without visiting that gadget.
So it is possible to make a traversal in every gadget if and only if the original
reachability problem is solvable. 2

Now we will assume the final true 2-tunnel state has no distant opening.
If only one tunnel is traversable in this state, then it cannot be true 2-tunnel
because the other tunnel will never become traversable. So both tunnels are
traversable, and after making any traversal, there is only one tunnel which will
ever be traversable. With no distant opening, we first consider the case where
at least one of the tunnels is directed in the final true 2-tunnel state.

Lemma 2. Let G be a true 2-tunnel gadget and let S be a final true 2-tunnel
state of G. Suppose no transition from S across one tunnel opens a traversal
across the other tunnel. If, in S, some tunnel can be traversed in one direction
but not in the other, then universal traversal for G is NP-hard.

The remaining case is when, in the final true 2-tunnel state, there is no distant
opening and all tunnels are undirected. We branch into two cases one last time,
based on whether traversing one tunnel requires closing the other tunnel. These
can be found in the full version of the paper.

Open Problem 2 Is universal traversal restricted to planar systems of gadgets
NP-hard for all true 2-tunnel DAG gadgets?

3.2 One-State Gadgets

In this subsection, we consider universal traversal for k-tunnel gadgets with only
one state. The reachability problem is clearly in NL for such gadgets, but we
will see that universal traversal is often NP-complete.

A one-state k-tunnel gadget consists of directed and undirected tunnels, and
is determined by the number of each type; we assume there is no untraversable
tunnel since such a tunnel can be removed without affecting the problem. We
fully characterize the complexity of universal traversal for such gadgets. We only
prove a key lemma here, the rest can be found in the full version of the paper.

Theorem 3. Let G be a one-state k-tunnel gadget. If G has no directed tunnels,
then universal traversal for G is in L. Otherwise, if k ≤ 2 universal traversal for
G is NL-complete and if k ≥ 3 universal traversal for G is NP-complete.

Lemma 3. Universal traversal with any one-state k-tunnel gadget is in NL if
k ≤ 2.

Proof. We provide an algorithm which runs in nondeterministic logarithmic
space with an oracle for reachability in directed graphs. This shows that the
universal traversal problem is in NLNL. The algorithm can be adapted to run in
NL by first using the oracle to convert the problem to an instance of 2SAT. It
then solves this instance, since 2SAT is in NL.



8 J. Ani, E. D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch

The 2SAT formula has a variable for each tunnel in the system of gadgets; a
satisfying assignment will provide a set of tunnels we can traverse to solve the
universal traversal problem. For each gadget with tunnels x1 and x2, we have
a clause x1 ∨ x2 (if the gadget has only one tunnel, x1 = x2). For each pair of
distinct tunnels x and y, we query the reachability oracle to determine whether
there is a path from the exit of x to the entrance of y or from the exit of y to the
entrance of x (if x or y is undirected, we can use either location as the entrance
or exit). If there is no path in either direction, we have a clause ¬x ∨ ¬y.

We prove that this algorithm works, and then adapt it to an LNL algorithm
which is known to equal NL [6]. Suppose the universal traversal problem is
solvable, and consider the assignment which contains the tunnels which are used
in the solution. Since the solution must use a tunnel in every gadget, each clause
x1∨x2 is satisfied. If the solution uses both tunnels x and y, there must be a path
in some direction between x and y, namely the path the agent takes between
the two tunnels. For each clause ¬x ∨ ¬y in the formula, there is no such path,
so the solution does not use both tunnels x and y, so the clause is satisfied.

Now suppose the 2SAT formula is satisfiable, and consider the set T of tunnels
corresponding to true variables in a satisfying assignment. Because of the clauses
x1 ∨ x2, T must contain a tunnel in each gadget. We define a relation → on T
where x → y if there is a path from the exit of x to the entrance of y. As
suggested by the notation, this relation is transitive: if x → y → z, there is a
path from the exit of x to the entrance of y, across y, and then to the entrance
of z, so x → z. Since each clause ¬x ∨ ¬y is satisfied, for any distinct x, y ∈ T
we have x→ y or y → x. That is, → is a strict total pre-order.

Then there must be a (strict) total order ≺ on T such that x ≺ y =⇒ x→ y:
define another relation ∼ where x ∼ y if x = y or both x→ y and y → x. Then
∼ is clearly an equivalence relation, and → is a total order on T/ ∼. We can
construct ≺ by putting the equivalence classes under ∼ in order according to→,
and arbitrarily ordering the elements of each equivalence class.

This now shows that there exists a set of locations from which a universal
traversal is possible. The last step is to nondeterministically check that the start
location of the agent has no strict predecessor in the preorder. This can be
done by checking that the starting location is in the same equivalence class as
the minimal element in our chosen total ordering. The agent can traverse the
tunnels in T in the order described by ≺. This is a solution to the universal
traversal problem.

We run the algorithm in nondeterministic logarithmic space as follows. Begin
with an NL algorithm that solves 2SAT, and assume the input is given in a format
where we can check whether a clause a∨ b is in the formula by checking a single
bit for literals a and b. For example, the input can be given as a matrix with a
row and column for each literal. We run this nondeterministic 2SAT algorithm,
except that whenever we would read a bit of the input, we perform a procedure
to determine whether that clause is in the formula.

Suppose the algorithm to solve universal traversal wants to know whether
a ∨ b is in the formula. If a and b are both positive literals, we simply check



Traversability, Reconfiguration, and Reachability in the Gadget Framework 9

whether they correspond to tunnels in the same gadget. If a and b have different
signs, the clause is not in the formula. The interesting case is when a = ¬x and
b = ¬y for tunnels x and y, where we need to determine whether there is a path
from the exit of x to the entrance of y or vice-versa.

In this case, we nondeterministically guess whether the clause exists, and
then check whether the guess was correct. If we guess it does exist, we run a
coNL algorithm to verify that there is no path from the exit of x to the entrance
of y or vice versa; this can be converted to an NL algorithm. If the verification
succeeds, we proceed; if it fails, we halt and reject. Similarly, if we guess the
clause does not exist, we run an NL algorithm to verify that there is such a
path, proceeding on success and rejecting on failure.

Consider the computation branches which have not rejected after this process.
If the clause exists, the branch which attempted to verify it does not exist has
entirely rejected, and the branch which attempted to verify it does exist has
succeeded in at least one branch. So there is at least one continuing branch, and
every such branch believes that the clause exists. Similarly if the clause does not
exist, we end up with only branches which guessed that it does not exist. 2

4 Gadget Reconfiguration

In this section we study the question of whether an agent has a series of moves
after which the system of gadgets will be in some target configuration. In Section
4.1 we show that for reversible deterministic gadgets the reconfiguration problem
is always PSPACE-complete if the reachability problem is PSPACE-complete.
Section 4.2 shows some methods for constructing new PSPACE-complete gad-
gets from known ones and shows the reconfiguration problem can be PSPACE-
complete even when a gadget does not change traversability. Finally, in Sec-
tion 4.3, we show an interesting connection between reconfiguration problems
and bounded reachability problems, expanding the classes of gadgets known to
be in NP. We also exhibit, a gadget for which the reachability question is NP-
complete but the reconfiguration question is in P.

Definition 4. For a finite set of gadgets F , reconfiguration for F is the
following decision problem. Given a system of gadgets consisting of n copies of
gadgets in F , a target configuration for that system of gadgets, and a starting
location is there a path the agent can take from the starting location which makes
the configuration of the system of gadgets equal to the target configuration?

4.1 Reconfiguring Reversible Gadgets

Theorem 4. For any set of reversible gadgets containing at least one gadget
which is able to change state, there is a polynomial-time reduction from reacha-
bility with those gadgets to reconfiguration with those gadgets.

Proof. We use the same technique as used to show that reconfiguration Nonde-
terministic Constraint Logic is PSPACE-complete [5]. We are given an instance



10 J. Ani, E. D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch

of the reachability problem, which is a network of gadgets with a target location.
At the target location, add a loop with a single gadget which permits a traversal
which changes its state. For the reconfiguration problem, we set the target states
of all but the newly added gadget to be the same as the initial states, and we set
the target state of the added gadget to be one reachable by making a traversal in
the loop. If the reachability problem is solvable, the reconfiguration problem can
be solved by navigating to the target location, traversing the loop through the
added gadget, and taking the inverse transitions of the path taken to the target
location to restore all other gadgets to the initial state. If the reconfiguration
problem is solvable, its solution must involve visiting the added gadget, so the
reachability problem is solvable. 2

4.2 Verified Gadgets and Shadow Gadgets

In this section we will discuss a technique for generating gadgets for which the
reconfiguration and reachability problems are computationally hard. The main
idea is constructing a gadget which behaves well when used like a gadget with
a known hardness reduction, but might also have other transitions which are
allowed but put the gadget into some undesirable state.

First, we will pick some base gadget which we want to modify. Next we will
add additional shadow states to the gadget and additional transitions with the
restriction that all newly added transitions must take the gadget to a shadow
state. We call such a construction a shadow gadget of the base gadget. This
has the nice property that if the agent takes any transition not be allowed in
the base gadget, then the gadget will always stay in a shadow state after that
transition.

Theorem 5. Reconfiguration with a shadow gadget is at least as hard as recon-
figuration with the base gadget.

Corollary 1. There is a gadget which never changes its traversability but with
which reconfiguration is PSPACE-complete.

Fig. 6 contains a diagram of the 2-toggle which is PSPACE-complete for
reachability [3] and an example of a shadow 2-toggle which is PSPACE-complete
for reconfiguration and is a gadget which never changes traversability (if there
is a transition from some location a to another location b in any state, there
must be a transition from a to b in every state). In fact all tunnels are always
traversable in both directions. Finally, the figure shows a verified 2-toggle which
is PSPACE-complete for reachability and a construction we will discuss next.

A verified gadget is a shadow gadget with some additional structure. From
a shadow gadget we add two more locations, the verifying locations to the
gadget. We may also add verified states which can only be reached by tran-
sitions from the added locations while the gadget is in normal states. We now
add transitions among the verifying locations such that these locations can be
connected in a series, there is always a traversal from the first to the last location
if the gadget is in a normal state, and there is no such traversal if the gadget is
in a shadow state. We call this added traversal the verification traversal .



Traversability, Reconfiguration, and Reachability in the Gadget Framework 11

(a) 2-toggle (b) Shadow 2-toggle

(c) Verified 2-toggle

Fig. 6: Examples of a PSPACE-complete gadget and constructions of a shadow
gadget and verified gadget based on it.

Theorem 6. Reachability with a verified gadget is at least as hard as reachability
with the base gadget.

4.3 Reconfiguration and DAG-like Gadgets

In [4] we study DAG gadgets as a naturally bounded class of gadgets. We now
consider a generalized class of gadgets and describe cases in which the reacha-
bility question remains in NP.

For a finite family of gadgets F , we call a gadget F -DAG-like if its state
graph can be decomposed into disjoint subgraphs for which those subgraphs are
gadgets in F and the transitions between these subgraphs are acyclic. We call
the transitions between the subgraphs F -DAG-like transitions.

With this notion, one may wonder what gadgets can be used in an F -DAG-
like gadget and have the resulting reconfiguration or rechability problem with
that gadget gadget still be in NP. We then show that if F is a family of gadgets
for which the reconfiguration problem is in NP, then the reconfiguration and
reachability problems for F and for F -DAG-like gadgets are also in NP. We call
a finite set of gadgets NPReDAG if they are all F -DAG-like for some fixed
family F for which the reconfiguration problem is in NP. Proofs can be found in
the full version of the paper.

Theorem 7. Reconfiguration with any NPReDAG set of gadgets is in NP.

Theorem 8. If reconfiguration with some set of gadgets is in NP, than reacha-
bility is also in NP.

4.4 Reconfiguration Can Be Easier

In this section we introduce the Labeled Two-Tunnel Single-Use gadget for which
the reachability question is harder than the reconfiguration problem. The La-
beled Two-Tunnel Single-Use gadget is a DAG gadget where going through either
tunnel closes both of them; however, the states are distinguished based on which
tunnel was traversed. This is a DAG gadget with a forced distant door closing,
so it is NP-complete by Theorem 22 in [4]. We give a polynomial time algorithm
for the reconfiguration problem in the full version of the paper.



12 J. Ani, E. D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch

Theorem 9. Reconfiguration with the Labeled Two-Tunnel Single-Use gadget is
in P.

Open Problem 3 Is there a gadget which has different traversability in each
state, and reachability with the gadget is NP-complete, but reconfiguration with
the gadget problem is in P?

4.5 Reconfiguration with 1-tunnel

Just as with universal traversal, moving to reconfiguration can also be NP-hard
with 1-tunnel gadgets. As an example we show that reconfiguration with a diode
and a single-use gadget is NP-complete. A diode is a 1-state gadget which only
allows traversals from loaction A to location B. A single-use gadget is a two
state gadget in which state 1 allows a traversal between locations A and B
which changes the gadget to state 2. State 2 has no traversals. The reduction is
from Hamiltonian path.

Theorem 10. Reconfiguration with the diode and the single-use gadget is NP-
complete.

Open Problem 4 For what classes of 1-tunnel gadgets is reconfiguration NP-
complete? What about PSPACE-complete?

Acknowledgments. This work grew out of an open problem session and a
final project from MIT class on Algorithmic Lower Bounds: Fun with Hardness
Proofs (6.892) from Spring 2019.

References

1. H. A. Akitaya, E. D. Demaine, A. Gonczi, D. H. Hendrickson, A. Hesterberg, M. Ko-
rman, O. Korten, J. Lynch, I. Parada, and V. Sacristán. Characterizing universal
reconfigurability of modular pivoting robots. In 37th International Symposium on
Computational Geometry, 2021.

2. J. Balanza-Martinez, A. Luchsinger, D. Caballero, R. Reyes, A. A. Cantu,
R. Schweller, L. A. Garcia, and T. Wylie. Full tilt: Universal constructors for
general shapes with uniform external forces. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2689–2708. SIAM, 2019.

3. E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy. Computational complexity
of motion planning of a robot through simple gadgets. In Proceedings of the 9th
International Conference on Fun with Algorithms (FUN 2018), pages 18:1–18:21,
La Maddalena, Italy, June 2018.

4. E. D. Demaine, D. Hendrickson, and J. Lynch. Toward a general theory of motion
planning complexity: Characterizing which gadgets make games hard. In Proceed-
ings of the 11th Conference on Innovations in Theoretical Computer Science (ITCS
2020), pages 62:1–62:42, Seattle, Washington, January 2020.

5. R. A. Hearn and E. D. Demaine. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation.
Theoretical Computer Science, 343(1–2):72–96, 2005.

6. N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17(5):935–938, 1988.


	Traversability, Reconfiguration, and Reachability in the Gadget Framework

