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Abstract16

We begin a general theory for characterizing the computational complexity of motion planning of17

robot(s) through a graph of “gadgets,” where each gadget has its own state defining a set of allowed18

traversals which in turn modify the gadget’s state. We study two general families of such gadgets19

within this theory, one which naturally leads to motion planning problems with polynomially bounded20

solutions, and another which leads to polynomially unbounded (potentially exponential) solutions.21

We also study a range of competitive game-theoretic scenarios, from one player controlling one robot22

to teams of players each controlling their own robot and racing to achieve their team’s goal. Under23

certain restrictions on these gadgets, we fully characterize the complexity of bounded 1-player motion24

planning (NL vs. NP-complete), unbounded 1-player motion planning (NL vs. PSPACE-complete),25

and bounded 2-player motion planning (P vs. PSPACE-complete), and we partially characterize the26

complexity of unbounded 2-player motion planning (P vs. EXPTIME-complete), bounded 2-team27

motion planning (P vs. NEXPTIME-complete), and unbounded 2-team motion planning (P vs.28

undecidable). These results can be seen as an alternative to Constraint Logic (which has already29

proved useful as a basis for hardness reductions), providing a wide variety of agent-based gadgets,30

any one of which suffices to prove a problem hard.31
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1 Introduction38

Most hardness proofs are based on gadgets — local fragments, each often representing39

corresponding fragments of the input instance, that combine to form the overall reduction.40

Garey and Johnson [10] called gadgets “basic units” and the overall technique “local replace-41

ment proofs”. The search for a hardness reduction usually starts by experimenting with42

small candidate gadgets, seeing how they behave, and repeating until amassing a sufficient43

collection of gadgets to prove hardness.44
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62:2 Toward a General Complexity Theory of Motion Planning

This approach leads to a natural question: what gadget sets suffice to prove hardness?45

There are many possible answers to this question, depending on the precise meaning of46

“gadget” and the style of problem considered. Schaefer [17] characterized the complexity47

of all Boolean constraint satisfiability gadgets, with a dichotomy between polynomial48

problems (e.g., 2SAT, Horn SAT, dual-Horn SAT, XOR SAT) and NP-complete problems (e.g.,49

3SAT, 1-in-3SAT, NAE 3SAT). At STOC’97, Khanna, Sudan, Trevisan, and Williamson [13]50

refined this result to characterize approximability of constraint satisfaction problems,51

forking into polynomial, APX-complete, Poly-APX-complete, Nearest-Codeword-complete,52

and Min-Horn-Deletion-complete. Introduced at CCC’08, Constraint Logic [7, 11] proves53

sufficiency of small sets of gadgets on directed graphs that always satisfy one local rule54

(weighted in-degree at least 2), in many game types (1-player, 2-player, and team games,55

both polynomially bounded and unbounded), although the exact minimal sets of required56

gadgets remain unknown.57

The aforementioned general techniques naturally model “global” moves that can be58

made anywhere at any time (while satisfying the constraints). Nonetheless, the techniques59

have been successful at proving hardness for problems where moves must be made local60

to an agent/robot that traverses the instance. For single-player agent-based problems, the61

doors-and-buttons framework (described in [9] and improved by [19] and [18]) is a good62

example of classifying a universe of abstract motion planning problems which can then be63

applied. In addition, the door gadget used to prove Lemmings [20] and various Nintendo64

games [2] PSPACE-complete served as a primary example of the form of gadget we wanted65

to generalize.66

In this paper, we analyze which gadgets suffice for hardness in a general semi-static67

motion planning problem where one or more agents/robots traverse a given environment,68

which only changes in response to the agent’s actions, from given start location(s) to given69

goal location(s). We study a very general model of gadget, where the gadget changes state70

when it gets traversed by an agent according to a general transition function, enabling71

and/or disabling certain traversals in the future. We study this model from the traditional72

single-robot (one-player) perspective, extending our initial work on this case [6], as well as73

from the perspective of two robots or teams of robots competing to reach their respective74

goals. We also analyze natural settings where the number of moves is polynomially bounded,75

because each gadget can be traversed only a bounded number of times, or more general76

settings where gadgets can be re-used many times and thus the number of moves can be77

exponential in the environment complexity. In each case, we partially or fully characterize78

which gadgets suffice to make the motion planning problem hard (NP-hard, PSPACE-hard,79

EXPTIME-hard, NEXPTIME-hard, or RE-hard, depending on the scenario), and conversely80

which gadgets result in a polynomially solvable problem (NL or P). Table 1 summarizes our81

results.82

1.1 Gadget Model and Motion-Planning Games83

In general, we model a gadget as consisting of a finite number of locations (entrances/exits)84

and a finite number of states; see Figure 1 for two examples. We may also consider a85

family of gadgets parameterized by the problem size. In this case we restrict the number of86

locations and states to be polynomial in the size of the problem. Each state s of the gadget87

defines a labeled directed graph on the locations, where a directed edge (a, b) with label s′
88

means that a robot can enter the gadget at location a and exit at location b, and that such a89

traversal forcibly changes the state of the gadget to s′. Equivalently, a gadget is specified90
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1-Player Game 2-Player Game Team Game

Polynomially
Bounded
(DAG gadgets)

NL vs. NP-
complete: full
characterization [§5]

P vs. PSPACE-
complete: full
characterization [§6]

P vs. NEXPTIME-
complete: full
characterization [§7]

Polynomially
Unbounded
(reversible,
deterministic
gadgets)

NL vs. PSPACE-
complete: full
characterization [§2]
Planar: equivalent
[§2.3]

P vs. EXPTIME-
complete: partial
characterization [§3]

P vs. RE-complete
(⇒ Undecidable):
partial
characterization [§4]

Table 1 Summary of our results for k-tunnel gadgets (with additional constraints listed in the
left column). A “full characterization” means that we give an easily checkable condition on the
allowed gadget set that determines the complexity of the corresponding motion planning problem;
a “partial characterization” means that we give two easily checkable conditions on the allowed
gadget set, one for the easy class and one for the hard class, each of which suffices to establish the
complexity of the corresponding motion planning problem.

by its transition graph,1 a directed graph whose vertices are state/location pairs, where a91

directed edge from (s, a) to (s′, b) represents that the robot can traverse the gadget from a to92

b if it is in state s, and that such traversal will change the gadget’s state to s′. Gadgets are93

local in the sense that traversing a gadget does not change the state of any other gadgets.94

A system of gadgets consists of gadgets, their initial states, and a connection graph95

on the gadgets’ locations. 2 If two locations a, b of two gadgets (possibly the same gadget)96

are connected by a path in the connection graph, then the robot can traverse freely between97

a and b (outside the gadgets). (Equivalently, we can think of locations a and b as being98

identified, effectively contracting connected components of the connection graph.) These are99

all the ways that the robot can move: exterior to gadgets using the connection graph, and100

traversing gadgets according to their current states.101

We define a general family of motion planning problems involving one or more robots,102

each with their own start and goal location, in a system of gadgets. In a one-player game,103

we are given a system of gadgets, a single robot that starts at a specified start location, and104

we want to decide whether there is a sequence of moves that brings the robot to a specified105

goal location. (This problem is perhaps the most common setting for robot motion planning.)106

In a two-player game, we are given a system of gadgets and the start and goal locations107

of two robots, and two players alternate moving their own robot by traversing a single gadget108

(entering at a location reachable from the robot’s current location via the connection graph).109

Both players have complete information about the locations of the robots, the locations of110

the gadgets, and the states of the gadgets. Here we count gadget traversals as costing one111

move, and view movement in the connection graph as instantaneous/free. The goal is to112

decide whether the first player has a forced win, that is, their robot can reach their goal113

location before the second player’s does, no matter how the second player responds to the114

first player’s moves. In a team game, there are more than two robots, each controlled by a115

1 In [6], the transition graph is called the “state space”, but we feel that “transition graph” more clearly
captures the automaton nature of transitions, which are discrete and directed.

2 In [6], locations could only be matched to exactly one other location and a ‘branching hallway’ gadget
was introduced to fulfill the need of the connection graph.

ITCS 2020
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1
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(a) The locking 2-toggle gadget (L2T). In the top
state 3, you can traverse either tunnel going down,
which blocks off the other tunnel until you reverse
the initial traversal.

2
1

1
2

(b) The 1-toggle gadget. Traversing the
tunnel reverses the direction that it can
be traversed.

Figure 1 Basic gadgets that can be simulated by any interacting-k-tunnel reversible deterministic
gadget, as shown in Section 2.1.

single player, and the robots/players are partitioned into two teams; the goal of each team116

is to get any one of its player’s robot to their goal location. Crucially, after a team game117

begins, each player has only partial information of the current gadgets’ states: they can only118

see the state of the gadgets reachable by their robot via the connection graph.119

We also define planar motion planning. In this case, the cyclic order of locations on120

a gadget is specified, and the system of gadgets must be embedded in the plane without121

intersections. Specifically, construct the following graph from a system of gadgets: replace122

each gadget with a wheel graph, which has a cycle of vertices corresponding to the locations123

on the gadget in the appropriate order, and a central vertex connected to each location.124

Connect locations on these wheels with edges according to the connection graph. The system125

of gadgets is planar if this graph is planar. In planar motion planning, we restrict the126

problem to planar systems of gadgets. Note that this allows rotations and reflections of127

gadgets, but no other permutation of their locations. In some contexts, one may want to128

disallow reflections of gadgets, which corresponds to imposing a handedness constraint on129

the planar embedding of each wheel.130

1.2 Gadget Types131

We define different subclasses of gadgets that naturally model motion planning where the132

number of moves is either polynomially bounded or unbounded (potentially exponential).133

In both cases, we require that the various states of a gadget differ only in their orientations134

of the possible traversals. More precisely, a k-tunnel gadget has 2k locations, paired in135

a perfect matching whose pairs are called tunnels, such that each state defines which136

direction(s) each tunnel can be traversed. All of the gadgets we consider in this paper are137

k-tunnel.138

In the polynomial case, we focus on “DAG” gadgets. First define the state-transition139

(multi)graph of a gadget to have a vertex for each state, and a directed edge from s to s′
140

for each possible traversal of the gadget in state s that leads to state s′. (This graph can be141

obtained from the transition graph by combining together all vertices with the same state.)142
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Then a gadget is a DAG if its state-transition graph is a directed acyclic graph. Such gadgets143

naturally lead to polynomially bounded motion planning, as every gadget traversal consumes144

potential within that gadget, as measured by the state (e.g., in a topological ordering of the145

state-transition graph). The total number of traversals is thus bounded by the total number146

of states in all gadgets in the system. (It is not enough to require that the transition graph147

be acyclic, because the robot can use the connection graph and other gadgets to reach other148

locations of this gadget in between traversals.)149

In the polynomially unbounded case, we focus on gadgets that are “deterministic” and150

“reversible”. A gadget is deterministic if its transition graph has maximum out-degree151

≤ 1; i.e., a robot entering the gadget at some location in some state can exit at only one152

location and in only one state. A gadget is reversible if its transition graph has the reverse153

of every edge, i.e., it is the bidirectional version of an undirected graph. Thus a robot154

can immediately undo any gadget traversal.3 Together, determinism and reversibility are155

equivalent to requiring that the transition graph is the bidirectional version of a matching.156

We also consider planar motion planning problems with a planar system of gadgets,157

where the gadgets and connections are drawn in the plane without crossings. Planar gadgets158

are drawn as small regions (say, disks) with their locations as points in a fixed clockwise159

order along their boundary. A single gadget type thus corresponds to multiple planar gadget160

types, depending on the choice of the clockwise order of locations. Connections are drawn161

as paths connecting the points corresponding to the endpoint locations, without crossing162

gadget interiors or other connections.163

The gadget model described above is an extension of the model introduced in [6], which164

characterized 2-state deterministic reversible k-tunnel gadgets that make for PSPACE-165

complete one-player games (polynomially unbounded), and showed that this characterization166

is the same when restricting to planar systems of gadgets. This prior result corresponds to167

the 2-state special case of our result in the bottom-left cell of Table 1. In this paper, we168

generalize that characterization to gadgets with arbitrarily many states, and generalize to169

2-player games, team games, and (polynomially bounded) DAG k-tunnel gadgets.170

1.3 Our Characterizations171

In each type of motion planning problem where we obtain a full characterization of easy vs.172

hard gadget sets (bounded one-player, bounded two-player, bounded team, and unbounded173

one-player), we identify a class of gadgets such that motion planning with any single gadget174

in that class is hard, while motion planning with any collection of gadgets not in the class is175

easy. Thus, we do not see a difference in hardness between one and multiple gadget types; it176

is not possible for two “easy” gadgets to combine into a hard motion planning problem. This177

result is in surprising contrast to Constraint Logic where multiple gadgets were required for178

hardness in any setting.179

For one-player motion planning, the key property of a gadget is interacting tunnels:180

the traversal of some tunnel must affect the traversability of some other tunnel in the same181

gadget.4 In the unbounded case (Section 2), we show that any such gadget (that is also182

reversible and deterministic) can be used to simulate two specific gadgets, the “locking 2-183

toggle” and “1-toggle” (shown in Figure 1), which together suffice to prove PSPACE-hardness.184

3 This notion is different than the sense of “reversible” in reversible computing, which would mean that
we could derive which move to undo from the current state; here the undoing move only needs to be an
option.

4 This is roughly what [6] calls ‘non-trivial’ gadgets.

ITCS 2020
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This argument involves surprisingly little case analysis, in contrast to the prior work in this185

area [6], which simply enumerated and analyzed all 2-state gadgets. On the other hand,186

we show that any fixed collection of gadgets without interacting tunnels reduces (via a187

shortcutting argument) to graph traversal, which can be solved in NL. We furthermore show188

that this dichotomy still holds for 1-player planar motion planning (Section 2.3). In the189

bounded case (Section 5), we examine the naturally bounded class of DAG gadgets. We190

again obtain a somewhat more complicated full characterization, which mostly depends on191

the existence of interacting tunnels.192

For two-player motion planning, it turns out that interacting tunnels are not required for193

hardness. In the bounded case (Section 6), we show that PSPACE-completeness holds for194

any DAG gadget that is nontrivial, i.e., has at least one transition in some state. We show195

that any nontrivial DAG gadget can simulate one of two one-tunnel gadgets, “single-use196

unidirectional edge” or “single-use bidirectional edge”, and surprisingly either suffices to197

prove PSPACE-completeness. A single use-use edge is a transition in a gadget such that198

after taking that transition, there are no further transitions between the two associated199

locations. Obviously, two-player motion planning with trivial gadgets is in P: the robots200

can only traverse the connection graph, and one merely needs to see which is closer to their201

goal. In the unbounded case (Section 3), we show that any gadget with interacting tunnels202

suffices for EXPTIME-completeness, and it remains an open problem whether some weaker203

condition suffices.204

For team motion planning, interacting tunnels are again not required for hardness. In the205

bounded case (Section 7), we show that NEXPTIME-completeness holds for any nontrivial206

DAG gadget, again by showing that any single-use edge gadget suffices. In the unbounded case207

(Section 4), we again show that any gadget with interacting tunnels suffices for undecidability,208

and it remains an open problem whether some weaker condition suffices.209

Armed with the general framework of this paper, it should be much easier to prove210

hardness of most games that involve motion planning of robots in an environment with211

nontrivial local state. You simply need to pick a gadget that is hard according to our212

characterization (with the matching boundedness and number of players/teams), draw a213

single figure of how to build that gadget within the game of interest, and check that it214

is possible to connect these gadgets together. While this paper focuses on general theory215

building, we return to possible applications in Section 8.216

2 1-Player Unbounded Motion Planning217

In this section, we study reversible, deterministic gadgets, extending the work in [6] which218

only considered gadgets with two or fewer states. Here we give a complete categorization219

as either in NL or PSPACE-complete for reversible, deterministic gadget. For the NL half220

of the characterization, Theorem 2 below shows that 1-player motion planning problems221

with non-interacting-k-tunnel gadgets is in NL. For the PSPACE-completeness half of the222

characterization, we introduce a new base gadget, the locking 2-toggle (L2T) shown in223

Figure 1a. In Section 2.1 we show that all interacting-k-tunnel reversible deterministic224

gadgets are able to simulate the locking 2-toggle. Then in Section 2.2 we show that 1-player225

motion planning with locking 2-toggles is PSPACE-complete by simulating Nondeterministic226

Constraint Logic. Section 2.2 shows how to adapt the construction to show these gadgets227

remain PSPACE-hard even for the planar 1-player motion planning problem.228

I Lemma 1. 1-player motion planning with any set of gadgets is in PSPACE.229
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Proof. This was shown in [6], but included here for convenience. A configuration of the230

system of gadgets consists of the state of each gadget and the location of the robot, and231

has polynomial length. The algorithm that repeatedly nondeterministically picks a legal232

transition, and updates the configuration based on it, accepting when the robot reaches the233

goal location, decides the reachability problem in nondeterministic polynomial space. By234

Savitch’s theorem, the problem is in PSPACE. J235

I Theorem 2. 1-player motion planning with any k-tunnel gadget that does not have236

interacting tunnels is in NL.237

Proof. We first show that if a system of such gadgets has a solution, then it has a solution238

which visits each location at most once. Suppose there is a solution, and consider the last time239

a solution of minimal length visits a previously visited location, assuming there is any such240

time. Let v be the vertex of this last self-intersection. After leaving v for the last time, every241

transition the robot makes is through a tunnel that it had not previously traversed. Since the242

gadget does not have interacting tunnels, these tunnels have the same traversability when243

the robot goes through them as they do originally. We modify the solution by ‘shortcutting’:244

remove the portion of the solution between the first visit to v and the last visit to v, so the245

robot only visits v once, and skips the loop that begins and ends at v. The new path is still a246

solution: the segment before v is identical to the unmodified solution, and the segment after247

v consists of tunnels whose traversability is not changed before the robot goes through them.248

The shortcut path is shorter than the original solution, which was assumed to be minimal.249

Thus a solution of minimal length has no self-intersections.250

We’ll want to treat the system of gadgets as though it were a directed graph by replacing251

each tunnel with an edge in the appropriate direction, or a pair edges if it is traversable in252

either direction. We can locally walk through all the available transitions in a gadget, assess253

which locations they lead to, and non-deterministically pick one to try, allowing this to be254

executed in NL. A path from the start location to the end location in this graph is exactly a255

solution for the system of gadgets with no self-intersections; the traversability of each tunnel256

used in such a solution does not change before the tunnel is used.257

Since reachability in directed graphs is in NL, the motion planning problem is also in NL.258

Moreover, if the gadget has any state in which a tunnel can be traversed in one direction but259

not the other, the motion planning problem is NL-complete, and otherwise it is in L. J260

2.1 Reducing to Locking 2-Toggles261

In this section, we introduce the locking 2-toggle shown in Figure 1a, and we show that262

all interacting-k-tunnel reversible deterministic gadgets can simulate it. The proof first263

examines what constraints on a gadget are implied by being interacting-k-tunnel, reversible,264

and deterministic, and goes on to identify that all such gadgets have a pair of special states265

with some useful common properties. From this pair of states we construct a 1-toggle, and266

then combine that with our special states to build a locking 2-toggle. One of the major267

insights is identifying this special pair of states which belongs to all gadgets in the class, and268

after that the primary challenge is in preventing undesired transitions, which are plentiful269

when allowing such a wide class of gadgets.270

I Theorem 3. Every interacting-k-tunnel reversible deterministic gadget simulates a locking271

2-toggle.272

Proof. We begin by examining an arbitrary interacting-k-tunnel reversible deterministic273

gadget, as shown in Figure 2. Because the gadget has interacting tunnels, we can find a pair274

ITCS 2020
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1
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?
2

?

? 1 

3

2

Figure 2 An arbitrary interacting-k-tunnel reversible deterministic gadget. Hollow arrows
indicate traversals that may or may not be possible. Solid or absent arrows indicate traversals that
are or are not possible, respectively.

1
?

2

?

? 1 

3

2

(a) State graph, refining Figure 2.

1
? 2

(b) Simulating a one-directional edge.

Figure 3 An arbitrary interacting-k-tunnel reversible deterministic gadget which has no one-
directional edge.

of states in which traversing the top line can change the traversability of the bottom line to275

the right. Since it is also reversible, the inverse transition is also possible, so traversing the276

top line can change in either direction the left-to-right traversability of the bottom line. Then277

without loss of generality, the gadget has the form shown in Figure 2: in state 1, traversing278

the top line to the right switches to state 2, and the bottom line is not traversable to the279

right. In state 2, traversing the top line to the left switches to state 1, and the bottom line280

is traversable to the right, say to state 3 (which may be the same as state 1). All other281

traversals may or may not be possible in either state, indicated by the question marks.282

I Lemma 4. Every interacting-k-tunnel reversible deterministic gadget simulates a one-283

directional edge, that is, a tunnel which (in some state) can be traversed in one direction284

but not the other.285

Proof. If in some state, some edge in the gadget can be traversed in one direction but not286

the other, then it is a one-directional edge. Otherwise, the gadget has the form shown287

in Figure 3a. Then the construction in Figure 3b is equivalent to a one-directional edge:288

currently the gadget is in state 1, so the path from the bottom to the top is blocked by the289

bottom edge, but from the top, you can go across the top edge, switching the gadget to state290

2, and then back across the bottom edge. J291

I Lemma 5. Every interacting-k-tunnel reversible deterministic gadget simulates a 1-toggle292

(Figure 1b).293

Proof. By the previous lemma, we can build a one-directional edge, which has the structure294

shown in Figure 4a: in state 1, we can traverse the edge to the right and switch to state 2,295

but not to the left. In state 2, we can undo this transition, and possibly also traverse the296

edge to the right. The construction in Figure 4b is then a 1-toggle. In the current state, it297

can be traversed to the right but not to the left because of the gadget on the left. After298

making this traversal, it becomes the rotation of the current state, and it cannot be traversed299

to the right again because of the gadget on the right. J300
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1
2

2
?1

(a) Form of state graph.

2 1?

(b) Simulating a 1-toggle.

Figure 4 A one-directional edge gadget.

?

? 1 

3 ? 

3
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Figure 5 An arbitrary interacting-k-tunnel reversible deterministic gadget and a 1-toggle
simulate a locking 2-toggle.

To build a locking 2-toggle, we put the arbitrary gadget (in state 2), an antiparallel pair301

of 1-toggles, and the rotation of the arbitrary gadget (also in state 2) in series, as in Figure 5.302

Currently, the top edge is traversable to the left and the bottom edge is traversable to the303

right, but not in the other direction. After traversing the top edge to the left, the 1-toggles304

prevents us from traversing either edge to the left, and the leftmost gadget (in state 1)305

prevents us from traversing the bottom edge to the right, so the only legal traversal is going306

back across the top edge to the right. Similarly after traversing the bottom edge, the only307

legal traversal is across the bottom edge in the opposite direction. Thus this construction is308

equivalent to a (antiparallel) locking 2-toggle.309

Traversing the simulated locking 2-toggle takes either 4 or 6 transitions of the raw gadget,310

depending on whether it contains a one-directional edge (from Lemma 4). For simplicity,311

we can include additional gadgets (e.g. another pair of 1-toggles) to ensure it always takes312

exactly 6 transitions; this will be relevant to timing considerations in multiplayer games. J313

2.2 PSPACE-hardness314

In this section, we show that 1-player motion planning with the locking 2-toggle is PSPACE-315

complete by a reduction from Nondeterministic Constraint Logic (NCL). See Appendix A.1316

for a definition of NCL. We represent edges by pairs of locking 2-toggles. The construction317

requires edge gadgets which are directed and can be flipped, as well as AND and OR318

(a) An AND vertex gadget. The leftmost
edge has weight two and is pointing in (up).
The other edges have weight one and are
pointing away (down).

(b) An OR vertex gadget. All edges are
weight 2. The leftmost edge is pointing in
(up), the middle edge is free, and the right-
most edge is pointing away (down).

Figure 6 Vertex gadgets in the NCL reduction.

ITCS 2020
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(a) An edge gadget pointed up, in the un-
locked state. The gadget is accessed by the
loose end on the left.

(b) The same edge gadget in the locked state.

Figure 7 Edge gadget in the NCL reduction.

vertex gadgets which apply constraints on how many edges must be directed towards them319

at any given point in time.320

I Theorem 6. 1-player motion planning with the locking 2-toggle is PSPACE-complete.321

Proof. Motion planning with the gadget is in PSPACE by Lemma 1. We use a reduction from322

Nondeterministic Constraint Logic (NCL) to show PSPACE-hardness. See Appendix A.1 for323

a definition of NCL.324

The edge gadget, shown in Figure 7, contains two locking 2-toggles, each of which is325

also attached to a vertex gadget. It is oriented towards one of the vertices, can be either326

locked or unlocked. Specifically, the edge gadget is unlocked (Figure 7a) if either locking327

2-toggle is in the middle state (with both lines traversable), and locked (Figure 7b) otherwise.328

It is oriented towards the vertex attached to the locking 2-toggle whose edge not accessible329

from the edge gadget is traversable. The robot can access the free line on the left. If the edge330

gadget is unlocked, the robot can traverse a loop through one edge of each locking 2-toggle331

to change the orientation of the edge gadget. The edge gadget switches between being locked332

and unlocked when the robot moves through a vertex gadget to traverse one of the edges not333

accessible from the edge gadget.334

The vertex gadgets are shown in Figure 6. The robot can access the free line on the335

top, and traverse loops to lock and unlock edge gadgets, enforcing the constraints of vertices.336

Specifically, if all three edges are pointing towards an AND vertex, the robot can traverse a337

loop to lock both weight-1 edges and unlock the weight-2 edge, or vice versa. If multiple edges338

are pointing towards an OR vertex, the robot can traverse a loop to unlock the currently339

locked edge and lock another edge. Observe that for both vertex gadgets, the sum of the340

weights of locked edges does not change.341

Given an NCL graph, we construct a maze of locking 2-toggles. Each edge in the342

graph corresponds to an edge gadget (Figure 7). Each locking 2-toggle in the edge gadget343

corresponds to a vertex incident to the edge. When three edges meet at a vertex, we put a344

vertex gadget on the locking 2-toggles corresponding to that vertex. We use an AND vertex345

gadget (Figure 6a) or an OR vertex gadget (Figure 6b) depending on the type of vertex.346

The vertical ‘entrance’ line on each vertex gadget and horizontal ‘entrance’ line on each edge347

gadget is connected to the starting location. Each edge is oriented as in the NCL graph.348

For each vertex, we pick a set of edges initially pointing at the vertex with total weight 2.349

The edge gadgets corresponding to the chosen edges are locked, and other edge gadgets are350
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unlocked. The goal location is placed inside the edge gadget corresponding to the target351

edge so that it is reachable if and only if the target edge is unlocked.352

If the original NCL graph is solvable, the robot can perform the same sequence of edge353

flips, visiting vertex gadgets to lock and unlock edges as necessary, and reach the goal location.354

If the robot can reach the goal location, the same sequence of edge flips solves the NCL355

graph. So the maze is solvable if and only if the NCL graph was. J356

This reduction is also possible without edge gadgets, and leads to a system with only one357

L2T for each constraint logic edge. We use edge gadgets because the reduction is easier to358

understand, and adaptations of this construction in Sections 2.3, 3, and 4 will need them.359

I Corollary 7. 1-player motion planning with any interacting-k-tunnel reversible deterministic360

gadget is PSPACE-complete.361

Proof. Hardness follows from Theorems 3, and 6. For any such gadget, we have a reduction362

from mazes of locking 2-toggles to mazes of that gadget by replacing each locking 2-toggle363

with a simulation of one built from the arbitrary gadget. Motion planning with the gadget is364

in PSPACE by Lemma 1. J365

2.3 Planarity366

In this section, we show that interacting-k-tunnel reversible deterministic gadgets are367

PSPACE-complete even for the planar 1-player motion planning problem. We once again368

work with the locking 2-toggle, showing that each of its planar versions can simulate each369

other. From there we use the crossing locking 2-toggle to build an A / BA crossover, which is370

less powerful than a full crossover but will suffice to make our reduction in Section 2.2 planar.371

An interesting question is whether the locking 2-toggle is powerful enough to build a full372

crossover, which can be done with any of the 2 state gadgets. Although not needed here, it373

would allow the multiplayer game results later in this paper to carry over to the planar case.374

Recall for the planar problem we allow rotations and reflections of gadgets. This leaves375

three distinct embeddings of the locking 2-toggle into a plane: parallel, antiparallel, and376

crossing, shown in Figure 8, and which we abbreviate PL2T, APL2T, and CL2T. (Up to377

only rotation, there are four, the other being the antiparallel locking 2-toggle with the other378

handedness). We will allow reflections of gadgets, so these are the three kinds of locking379

2-toggles we will consider.380

I Lemma 8 ([6]). Parallel, antiparallel, and crossing locking 2-toggles all simulate each381

other in planar graphs.382

Proof. Figure 9 shows APL2T simulating CL2T, Figure 10 shows CL2T simulating PL2T,383

and Figure 11 shows PL2T simulating APL2T. Note that we use both APL2Ts of both384

handednesses, so we need to be able to reflect gadgets. J385

I Theorem 9. Every interacting-k-tunnel reversible deterministic gadget simulates each type386

of locking 2-toggle in planar graphs.387

Proof. We follow the proof of Theorem 3. As before, we assume that traversing a line to388

switch from state 1 to state 2 makes a traversal on another line legal. This new traversal can389

be parallel to, antiparallel to, or cross the first traversal; we consider each case. If the new390

traversal is parallel, the construction in the proof of Theorem 3 works to simulate an APL2T391

in a planar graph.392
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(a) A parallel locking 2-toggle
(PL2T).

(b) An antiparallel locking 2-
toggle (APL2T).

(c) A crossing locking 2-toggle
(CL2T).

Figure 8 Types of locking 2-toggles in planar mazes.

Figure 9 APL2T simulating CL2T.
(Based on [6, Figure 4].)

Figure 10 CL2T simulating PL2T.
(Based on [6, Figure 5].)

Figure 11 PL2T simulating APL2T. (Based on [6, Figure 13].)

1
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? 1 2
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Figure 12 The antiparallel case of an arbitrary interacting-k-tunnel reversible deterministic
gadget.
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Figure 13 An arbitrary antiparallel interacting-k-tunnel reversible deterministic gadget and a
1-toggle simulate a PL2T.
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Figure 14 The crossing case of an arbitrary interacting-k-tunnel reversible deterministic gadget.

If it is antiparallel, the gadget has the form shown in Figure 12. Either the gadget has a393

one-directional edge, or it has the form in Figure 3a, and simulates a one-directional edge by394

the construction in Figure 3b. Thus it simulates a 1-toggle by the construction in Figure 4b.395

Then the construction in Figure 13 simulates a PL2T: currently either edge can be traversed396

to the left, if the top edge is traversed, the left gadget blocks the bottom edge, and if the397

bottom edge is traversed, the right gadget blocks the top edge.398

Finally, if the new traversal crosses the first traversal, the gadget has the form shown in399

Figure 14. Either it has a one-directional edge, or the construction in Figure 15 simulates400

a one-directional edge, similarly to Lemma 4. So the gadget simulates a 1-toggle by the401

construction in Figure 4b. Then the construction in Figure 16 simulates a PL2T, similarly402

to the previous case.403

Once the gadget simulates some locking 2-toggle, we can use Lemma 8 to simulate all404

three types. J405

I Theorem 10. 1-player planar motion planning with any interacting-k-tunnel reversible406

deterministic gadget is PSPACE-complete.407

Proof. We begin by constructing some weak crossover gadgets. The crossover locking 2-toggle408

is itself a very weak crossover. We use it to construct an A/BA crossover , shown in409

Figure 17a. Calling the traversal from top to bottom A and that from left to right B, we can410

perform either of the sequences A and BA. Since everything is reversible and deterministic,411

we can also undo those sequences. The A/BA crossover is sufficient for the rest of the proof;412

we abbreviate it as shown in Figure 17b.413

We modify the proof of Theorem 6, giving a reduction from planar NCL to planar mazes414

with locking 2-toggles. By Theorem 9, this is sufficient to show PSPACE-hardness. Our415

gadgets use PL2Ts, CL2Ts, and A/BA crossovers; they do not use APL2Ts.416

?

2

Figure 15 A crossing interacting-k-tunnel reversible deterministic gadget simulates a one-way
edge.
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1

?3
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Figure 16 An arbitrary crossing interacting-k-tunnel reversible deterministic gadget and a
one-toggle simulate a PL2T.

The edge gadget is shown in Figure 18, and vertex gadgets are shown in Figure 19. Given417

a planar NCL graph, we construct a mazes as follows.418

Pick a rooted spanning tree of the dual of the NCL graph, directed away from the root;419

the robot will use this tree to navigate the graph. The system of gadgets will contain a420

vertex for each face f of the NCL graph, which is a vertex of the spanning tree.421

For each edge of the graph, we place an edge gadget. When an edge is in the spanning422

tree, we orient it so that the A/BA crossover points, from entrance to exit, in the same423

direction as the edge points in the spanning tree (left to right in Figure 18, and away from424

the root). If an edge is in the spanning tree and has target f , we connect its exit to f . For425

each edge e, we connect its entrance to the vertex f corresponding to the face containing its426

entrance, i.e. the face adjacent to e to which we can connect its entrance without crossings.427

If e is in the spanning tree, this connects the entrance of e to the source f of e.428

Now we place a vertex gadget of the appropriate type for each vertex of the NCL graph,429

so that the gadget shares a PL2T with each incident edge gadget. AND vertex gadgets must430

be oriented so the weight-2 edge has the appropriate PL2T (the bottom one in Figure 19a).431

The entrance of each vertex gadget is connected to the vertex f corresponding to the face432

containing the entrance.433

We set each edge gadget to the orientation of its corresponding edge. For each vertex, we434

select edges directed towards it with total weight 2, and set the selected edges to locked and435

other edges to unlocked. The goal location is placed inside the target edge so that reaching436

it requires flipping the target edge. The starting location is the vertex corresponding to the437

root of the spanning tree.438

Play on this maze proceeds as follows: the robot travels down the spanning tree, crossing439

edges until it reaches some face. It goes into an edge or vertex attached to that face, and440

manipulates it. Then the robot travels back up the spanning tree and down a different441

branch, manipulating another edge or vertex, and so on. The edge and vertex gadgets enforce442

the NCL constraints. If the target edge can be flipped, the robot can reach the goal location.443

Thus the maze is solvable if and only if the NCL graph was. The maze is planar by its444

construction, using the planarity of the NCL graph.445

This completes the proof of PSPACE-hardness. Containment in PSPACE is by Lemma 1,446

so the problem is PSPACE-complete. J447

3 2-Player Unbounded Motion Planning448

In this section, we analyze 2-player motion planning games with k-tunnel reversible deter-449

ministic gadgets. We show that any such game which includes an interacting-tunnels gadget450

is EXPTIME-complete. We do so by a reduction from 2-player unbounded constraint logic,451

allowing us to reuse some of the work in the prior section. In addition to building the single452

player AND and OR vertices, we show how to adapt the gadgets to allow different players to453
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(a) Simulating an A/BA crossover using
CL2Ts.

(b) A state diagram and notation for the
A/BA crossover.

Figure 17 An A/BA crossover gadget: the robot can traverse top to bottom (A), or traverse
left to right (B) and then top to bottom. Thinking of the gadget as a crossing pair of 1-toggles, the
vertical 1-toggle is always traversable, and the horizontal 1-toggle is traversable when the vertical
one is pointing down.

Figure 18 An edge gadget for planar graphs, currently unlocked and directed up. This is
analogous to Figure 7, with two changes. First, the bottom PL2T is ‘twisted’ to have the same
handedness as the top PL2T for connecting to vertex gadgets; the CL2T is sufficient for the crossing
caused by this. Second, the A/BA crossover allows the robot to cross the edge from left to right,
regardless of the state of the edge. We call the line on the left the entrance and the line on the
right, on the other side of the A/BA crossover, the exit.
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(a) An AND vertex for planar graphs.
Currently the weight-2 edge, connected
at the bottom PL2T, is directed towards
the vertex and locked, and both weight-1
edges are directed away. If the weight-1
edges become directed towards the ver-
tex, the robot can visit the vertex gad-
get and traverse a loop through all three
PL2Ts, locking the weight-1 edges and
unlocking the weight-2 edge. The CL2T
is a sufficient crossover.

(b) An OR vertex for planar graphs. Currently
the edge containing the bottom PL2T is directed
towards the vertex, and the other edges are di-
rected away. If multiple edges are ever directed
towards the vertex, the robot can visit the vertex
gadget, unlock the locked edge, and lock another
edge.

Figure 19 NCL vertex gadgets for planar graphs, analogous to the gadgets in Figure 6. In each
gadget, each of the three PL2Ts is also part of an edge gadget. The robot enters at the line on the
left, called the entrance, traverses loops that enforce the NCL constraints, and then leaves at the
entrance.

have control of different edges. We also build up the needed infrastructure to enforce turn454

taking in the simulated game.455

The construction of crossovers using interacting-k-tunnel reversible deterministic gadgets456

with two states should allow one to show hardness for the planar version of this problem with457

those gadgets and any others that simulate them. Care must be taken with the layout, timing,458

and interaction between crossovers so we do not go on to prove such a result in this paper.459

Unfortunately, the crossover created by the locking 2-toggle in Section 2.3 does not suffice and460

thus leaves the question partially open. In addition, the question of noninteracting-k-tunnels461

reversible deterministic gadgets has not been resolved. We are not able to show problems462

with such gadgets are easy, and Section 6 suggests they should be at least PSPACE-hard.463

I Lemma 11. 2-player motion planning with any set of gadgets is in EXPTIME.464

Proof. A configuration of the maze consists of the state of each gadget and the location465

of the robot, and has polynomial length. There is a polynomial-space alternating Turing466
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A

B

C 

D

Figure 20 The timer gadget used in the 2CL reduction, made of PL2Ts and 1-toggles. In order
to travel between A and B, a player must travel between C and D three times. The timer can be
extended to the right; two iterations are shown.

machine which nondeterministically guesses moves for each player and keeps track of the467

configuration, using existential quantifiers for player 1 and universal quantifiers for player 2.468

This Turing machine accepts exactly when player 1 has a forced win. Thus the problem is in469

APSPACE = EXPTIME. J470

I Theorem 12. 2-player motion planning with the locking 2-toggle gadget is EXPTIME-471

complete.472

Proof. This game is in EXPTIME by Lemma 11. We use a reduction from 2-player Constraint473

Logic (2CL) to show EXPTIME-completeness. See Appendix A.1 for a definition of 2CL.474

We begin by describing a timer gadget, shown in Figure 20. Suppose one player has475

access to the bottom line. They can enter the gadget at A, and begin going through the476

timer, eventually reaching a victory gadget at B. The timer has two key properties:477

1. Reaching B takes a number of transitions exponential in the size of the timer. In order to478

get from A to B, the player goes though the top PL2T to C, recursively travels from C to479

D, goes around the loop through the top two PL2Ts, goes back from D to C, traverses the480

bottom loop, once again goes from C to D, and finally proceeds to B. If traveling between481

C and D takes m transitions, then traveling between A and B takes 3m+ 6 transitions.482

If the timer gadget is repeated k times, it takes at least 3k transition to get from A to B.483

2. A player in the timer has an opportunity to exit the timer at least every 2 turns, and484

exiting takes 1 turn; in particular, they can always exit within 3 turns while progressing485

the timer. The player uses a 1-toggle to exit to the bottom line. They can then later486

reenter using the same 1-toggle, resuming their work on the timer where they left off. If487

the player is in the timer, the next step in progressing the timer is either traversing a488

loop between to PL2Ts, which takes 2 transitions, or moving horizontally between timer489

segments, which takes 1 transition. Thus in 3 transition, the player can complete the490

current or next step and exit to the bottom line.491
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The constraint logic gadgets are similar to those used in Theorem 6 for the 1-player game,492

with the modification shown in Figure 21. We have added 1-toggles allowing a player at an493

edge to visit and configure the incident vertices, without allowing the player to travel to494

other edges. Each player’s goal location is inside the gadget corresponding to their target495

edge, so that they can reach it if they can flip the edge.496

Unlike the 1-player version, we need gadgets to enforce the turn order. The overall497

construction is shown in Figure 22. The maze consists of three main regions: the White area,498

the Black area, and the constraint logic. Each player will spend most of their time in their499

own area, occasionally entering the constraint logic to flip an edge. The players’ areas are500

designed to enforce turn order and progression of the game. A player can never enter the501

other player’s area.502

There is a single L2T separating the constraint logic area from each player’s area. This503

prevents both players from being in the constraint logic at the same time.504

Each player’s area contains an edge selection gadget, which consist of a locking 2-toggle505

for each edge they can control. The other line in the L2T is accessible by entering the506

constraint logic area and passing through a delay line four 1-toggles, and is connected to the507

corresponding edge gadget. In order to access an edge gadget, the player must activate the508

appropriate L2T, which requires deactivating the previously activated L2T. This ensures that509

only one edge gadget is accessible by each player at any time. There is a 1-toggle separating510

the edge selection gadget from the rest of the player’s area, so that switching the selected511

edge requires at least 4 turns (we use one tunnel of a L2T for a 1-toggle).512

Each player’s area has a timer, of length tw for White and tb for black. If a player finishes513

their timer, they win.514

Each player begins inside their edge selection gadget, and White goes first. The game515

begins with White picking an edge and going to the constraint logic area, while Black goes516

to their timer.517

A round of normal play proceeds as follows:518

White moves from edge selection to the constraint logic area. Black is currently in their519

timer.520

White enters the constraint logic, walks to their selected edge, and flips it. Black continues521

working on their timer.522

White returns through their constraint logic delay line. Once they pass the first 1-toggle,523

Black finishes their current step in the timer and exits, moving towards edge selection.524

White begins working on their timer. Black selects an edge, enters the constraint logic,525

and flips the edge.526

Black returns through their constraint logic delay line. Once they pass the first 1-toggle,527

White exits their timer and moves to edge selection.528

White selects an edge as Black enters their timer.529

Suppose Black has just flipped an edge gadget; they have nothing to do but return530

through the delay line of length 4. When Black is past the first 1-toggle, White will leave531

their timer to flip an edge. Black might try turning around to go back to the constraint logic532

area. It takes Black at least 6 turns to flip the edge back, during which White has enough533

time to select an edge and reenter their timer. The game is now in the same situation as534

before, except that White has progressed their timer; thus Black does not want to do this.535

Black might instead try waiting at the central L2T after White has selected an edge.536

White will then go to their timer, forcing Black to exit eventually. When Black is not next537

to the central L2T, White exits their timer and moves to constraint logic. Because of the538

1-toggle separating edge selection from the central L2T, for Black to change their selected539
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Figure 21 A modified edge gadget for the 2CL reduction. A player can visit the vertex gadgets
attached to the edge gadget, and then return to the edge gadget.

edge, they must spend multiple turns away from the L2T, allowing White to enter constraint540

logic; similarly if Black works on their timer, White can enter constraint logic. So Black has541

no choice but to pass the turn to White.542

Since White can always exit their timer within 3 turns, and Black has three more 1-toggles543

to get through when White begins looking to exit, White will reach edge selection before544

Black can reach edge selection, so White will be the first player ready to enter constraint545

logic again. Nothing Black can do will prevent White from taking the next turn in the 2CL546

game. Similarly after White flips an edge, Black will be able to take a turn next. So either547

player can force the alternation of constraint logic turns.548

The sizes of the timers are chosen to satisfy the following. First, if White cannot win the549

constraint logic, Black should win, so Black’s timer is shorter: tb < tw. Second, if White can550

win the constraint logic game, White should win first, even if Black ignores the constraint551

logic game and just works on their timer. If the constraint logic graph has n edges, it takes at552

most 2n constraint logic turns for White to win. Each constraint logic turn for White takes553

6 turns to select an edge and return to the constraint logic, 8 turns to cross the constraint554

logic delay line twice, 4 turns to access and flip an edge, and up to 5 turns to access and555

configure an incident vertex, so 25 turns in total during which Black can work on their timer.556

Both players might be in their timers simultaneously at most 4 times each cycle, and each557

time for at most 4 turns, so Black spends at most 41 turns in their timer for each constraint558

logic turn. Thus, since it takes Black at least 3tb turns to win through the timer, we need559

41 · 2n < 3tb ; tb = n+ 6 suffices, and we can set tw = 2n+ 12.560

Using these timer sizes, it is clear that the constraint logic game will resolve before either561

timer if the players follow normal play. We need the timers so that Black cannot force a562

draw by sitting in the constraint logic forever, preventing White from winning; White will563

progress on their timer if Black attempts this.564

Hence White has a forced win in the motion planning game if and only if they have a565

forced win in the constraint logic game. Since 2CL is EXPTIME-complete, the 2-player566

game on systems of locking 2-toggles is EXPTIME-hard. The maze used in the reduction567

has only O(n) L2Ts. J568
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To edge gadgets

Timer tw

White

White 
 start 

Edge selection 

Timer tb

Black 

Black 
 start 

Edge selection 

To edge gadgetsConstraint Logic 
Figure 22 The overall structure and turn enforcement gadget. Each player’s edge selection area

has a L2T for each edge that player can flip; four are shown for each player. The bottom line from
each such L2T connects to the corresponding edge gadget. The timers are as shown in Figure 20,
with tw and tb repetitions. The inside connection to each timer is connected to its access line, and
the outside connection (to a win gadget) is at B in Figure 20. The goal location past each timer is
for the player whose side it is on.

I Theorem 13. 2-player motion planning with any interacting-k-tunnel reversible determin-569

istic gadget is EXPTIME-complete.570

Proof. This game is in EXPTIME by Lemma 11. We adapt the 2CL reduction in the proof571

of Theorem 12. Replace each locking 2-toggle in that 2CL reduction with the simulation of a572

locking 2-toggle from the arbitrary gadget in Theorem 3. In the new maze, each tunnel in a573

simulated L2T takes 6 transitions to traverse, so the game goes 6 times slower.574

The simulation still works with two players, as long as both players do not have access to575

the gadget at the same time. Each L2T in the turn enforcement area is accessible only by576

one player, and only one player can be in the constraint logic area at any time. The only577

L2T both players have simultaneous access to is the central gadget which gives access to the578

constraint logic area, so we look more carefully at that gadget.579

The state with both edges traversable is shown in Figure 5 (the 1-toggle simulation still580

works). Note that the simulation is of an APL2T, but the gadget in the 2CL reduction is a581

PL2T; this is not a problem because we are not concerned with planarity. Suppose both582

players approach the gadget, one from the right on the top line and one from the left on the583

bottom line. Whoever reaches the gadget first should ‘win the race,’ and lock out the other584

player. The simulation implements this correctly, provided that the player who arrives first585

is a full turn ahead in the L2T maze, or 6 turns ahead in the new maze. The only time the586

players might be within 6 turns of each other is at the very beginning of the game, so we put587

a delay of 6 turns for Black to get from their start location to edge selection to ensure White588

wins the race by 6 turns. If a player would arrive less than 6 turn before the other player,589

they should go to their timer instead; since this is a zero-sum game and the players would590

have to collaborate to break the simulation, one player will choose not to.591

The other way players can interact at this gadget is when one player is exiting the592

constraint logic area, and the other player is waiting just outside and enters as soon as they593

can. The state of the simulation is shown in Figure 23 (the other possible state is symmetric).594
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Figure 23 Another state of the construction shown in Figure 5. The leftmost gadget is in state
1, and the rightmost gadget is in state 3.

One player, say White, has traversed the top edge to enter the constraint logic area, and595

is about to exit by traversing the top line to the right. Black is waiting at the left end596

of the bottom line, ready to enter the constraint logic area. The leftmost gadget prevents597

Black from making any transitions until White begins exiting. Once White begins exiting,598

the leftmost gadget switches to state 2, so Black can follow parallel to White and one turn599

behind. As long as White continues through the construction at full speed, Black interacts600

with the construction as though White has already finished their traversal, so it correctly601

simulates a L2T. Again breaking the simulation would require the players to cooperate, and602

the game is zero-sum, so at least one player will ensure the simulation works. J603

4 Team Unbounded604

In this section, we show that team imperfect information games with interacting-k-tunnel605

reversible deterministic gadgets is RE-complete, implying the problem is Undecidable. The606

reduction is from Team Private Constraint Logic (TPCL); see Appendix A.1 for a definition.607

We use many of the ideas and constructions from Section 3, but various modifications are608

needed to deal with the additional player and the model of player knowledge. Recall in609

this model we have three players on two different teams, each controlling a single robot.610

All players start knowing the configuration of the entire game; however, after that point611

players can only observe the states of the gadgets that their robots can reach via the612

connection graph. Adaptations for the planar version and the complexity of such games with613

noninteracting-tunnel gadgets remains open as in Section 3.614

I Lemma 14. Team motion planning with any set of gadgets is in RE (recursively enumer-615

able).616

Proof. Suppose the White team has a forced win on some system of gadgets, and consider617

the tree of possible positions when White follows their winning strategy. The branches in618

the tree correspond to choices the Black team might make. Since White forces a win, every619

branch of the tree is finite. Since Black has finitely many choices at each turn, the tree is620

finitely branching, so by Kőnig’s infinity lemma [14], the tree is finite. In particular, there is621

a finite bound on the number of turns it takes for White to win, so the winning strategy can622

be described in a finite amount of space. So there are countably many potential winning623

strategies, and we can sort them lexicographically.624

Given a potential winning strategy, the problem of determining whether it is actually a625

winning strategy is decidable: an algorithm can explore every choice Black might make, and626

see whether White always wins. There are only finitely many choices to check because the627

strategy only describes a finite number of turns.628

We use the following algorithm to determine whether White has a forced win. For each629

potential winning strategy in lexicographic order, check whether it is a winning strategy.630
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If it is, accept. This algorithm accepts whenever White has a forced win, and runs forever631

otherwise, so it recognizes the games in which White has a forced win. J632

Although [7] only mentions undecidability and not RE-completeness, it follows that TPCL633

is RE-complete. Containment in RE is given by an argument nearly identical to the proof of634

Lemma 14. The proof of undecidability is ultimately by a reduction from acceptance of a635

Turing machine on an empty input, which is RE-complete, implying that TPCL is RE-hard.636

I Theorem 15. Team motion planning with the locking 2-toggle gadget is RE-complete (and637

thus undecidable).638

Proof. Containment in RE is given by Lemma 14. For RE-hardness, we use a reduction from639

TPCL, with a similar construction as in the proof of Theorem 12. The overall construction640

is shown in Figure 24. Capital letters label L2Ts, and lowercase letters label lengths of delay641

lines. The two tunnels in the same L2T are labelled the same, instead of being positioned642

next to each other. The three players B, W1, and W2 each have their own region. Each643

region contains an edge selection area with k edges initially active, access to the constraint644

logic, and some additional gadgets. We need to ensure the following:645

1. Turn order is enforced. That is, the players take turns in the order B, W1, W2, and646

neither team can gain anything by deviating from this. We use L1 and L2 to prevent B647

from being in the constraint logic area at the same time as W1 or W2, and appropriate648

delays to ensure each player is ready for their turn. The timer in W2’s region forces B to649

eventually pass the turn to W1.650

2. Each player can flip up to k edges each turn. If k edges are initially accessible for each651

player, the edge selection area allows them to select any k of their edges, and a player652

must end their turn in order to change their selection.653

3. The White players have the correct information about the state of the game. Each of654

them has a visibility area, which allows them to see the orientation of the appropriate655

constraint logic edges. We must not allow W1 and W2 to both access the same L2T, as656

they could then use it to communicate. So we need a more complicated mechanism to657

prevent both White players from being to the constraint logic area at the same time.658

For visibility, we modify the edge gadget as shown in Figure 25. The appropriate line is659

connected to each White player’s visibility area if they should be able to see that edge.660

A round of normal play proceeds as follows:661

B begins their turn by passing down through L1 and L2. W1 waits next to V , and W2662

walks through their timer.663

B flips some edges, and returns, passing V . When W1 sees this happen, they go to their664

visibility area, and then select k edges. W2 continues in the timer.665

B finishes exiting through the delay b. Once B has passed L1, W1 enters the constraint666

logic area. W2 reaches the end of the timer, finds S to be closed, and comes back.667

B is stuck on the side of L1 away from the constraint logic area, and can select edges.668

W1 flips edges and returns to just below L1. W2 goes to their visibility area, and then669

selects edges.670

After a number of turns large enough that both White players are definitely ready, W1671

exits L1. The same round, W2 enters L2, passing the turns from W1 to W2.672

W2 takes their turn. B waits just to the right of L2, and W1 waits above X.673

W2 exits L2 and goes to the timer. B passes through L2 to take their turn, and W1 waits.674

We place each player’s starting location to be at the end of a chain of 1-toggles leading675

to their region, so they arrive after an appropriate delay. We can set B to have no delay and676
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W1 and W2 to have 2k delay, so B has time to select edges before the White players arrive.677

The first turn has slightly strange timing since W2 starts the timer later than normal, but678

this is not important.679

We consider ways in which player might deviate from normal play, and see that in each680

case they do not gain anything by deviating.681

B enters the constraint logic through L2 as soon as W2 passes L2 on their way out, at682

which point W2 enters the timer. B need to be able to take a full turn and go back through683

S before W2 reaches the end of the timer; this takes up to 2(b+ c+ 2) + 2 + 11k turns, since684

flipping each edge now takes up to 11 turns. So we need t > 2(b + c + 2) + 2 + 11k. The685

timer forces B to return through S within t+ 2 turns, since otherwise W2 wins.686

The gadget V lets W1 know when B is done, since W1 can see whether B is past V while687

waiting at L1. Specifically, W1 waits until they see B stay past V for 2c turns, and then688

return. For B to be unable to flip edges after this, we need 4c > t. Then W1 goes to visibility689

and sees the current configuration, selects k edges for their next turn, and waits at L1 again.690

For W1 to have time to do this before B gets out, we need b > 2k + 2.691

Once B exits L1, W1 goes in and flips edges. The delay d ensures that if W1 (or W2)692

flips any edges, then B will be ready for their next turn; we need 2d > 2k + 4. W2 returns693

through the timer, checks visibility, and selects edges. If W2 enters constraint logic before W1694

leaves, B can win through X and Y , so W2 must wait until W1 leaves. The White players695

coordinate using the fact that the length of an entire round is bounded, so they can wait696

long enough to ensure that they are both ready, and then W1 exits X immediately before697

W2 enters Y . Since W1 was past L1, B is locked outside of L1, so W2 can get past L2; the698

W1 can safely pass the turn to W2.699

While W1 is past X, B might try going through Z and X, trapping W1. In this case, W2700

can win through Z, so B will only go through Z if both X and Y are traversable.701

During W2’s turn in the constraint logic, W1 must not be past X to prevent B from702

winning through X and Y . So B can go through L1, and go through L2 as soon as W2 exits.703

That is, W2 cannot pass the turn back to W1.704

W2 might try to stay in the timer, forcing B to stay out of the constraint logic to prevent705

W2 from winning through S. Then W1 might be able to take extra turns in the constraint706

logic. If the White team attempts this, B will win through P and Q. If B goes through R707

and P when Q is not traversable in order to trap W1, W2 will win through R; these three708

L2Ts are analogous to X, Y , and Z.709

Assuming the constraints mentioned are satisfied, no player or team can usefully deviate710

from normal play, and normal play simulates the TPCL game. Thus White has a forced win711

in the team motion planning game if and only if they have a forced win in the TPCL game.712

We can satisfy all the constraints, e.g by b = 2k+3, c = 8k+7, d = k+3, and t = 31k+27713

(the constraints are not tight, but they suffice). The number of L2Ts in the resulting system714

of gadgets is only linear in the number of edges in the constraint logic graph. J715

I Theorem 16. Team motion planning with any interacting-k-tunnel reversible deterministic716

gadget is RE-complete.717

Proof. Containment in RE is given by Lemma 14. For RE-hardness, we adapt the TPCL718

reduction in Theorem 15 to work for the arbitrary gadget. As in the 2-player case of719

Theorem 3, it is almost sufficient to replace each L2T with the simulation in Theorem 3. We720

examine the L2Ts that are shared between two players.721

First, L1 and L2 are analogous to the central L2T in Theorem 3: if two player are racing722

to enter, the player who should win is at least 6 turns ahead, and if one player exits and723
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Figure 24 The turn enforcement gadget for the team game. Each player has their own region
which contains an edge selection area, a path to the edge gadgets they can control, and some other
constructions. Each White player has a visibility area which allows them to see the state of some
edge gadgets in constant time. There is no good layout for the whole gadget, so we use pairs of
1-toggles that share a (capital) label to represent L2T. Long boxes with lowercase labels represent
chains of 1-toggles with length given by the label. The win gadgets are for the obvious players, and
the tunnels currently not traversable (P , Q, R, S, X, Y , and Z) will directed toward the win gadget
when they become traversable.

another enters, is works correctly.724

For S, P , Q, R, X, Y , and Z, we use a single copy of the arbitrary gadget with 5 extra725

gadgets for delay, instead of the simulation. Considering the gadget as in Figure 2, we use726

state 1, and put the bottom edge in the position next to a win gadget. For S, Q, Y , R, and727

Z, if the bottom edge is traversed from state 2, the game is over, so the gadget is never in728

a state other than 1 or 2 while the game is going. For P and X, we know that B cannot729

safely wait past those gadgets, so the game must be about to end in Black victory if they730

ever reach state 3.731

For V and the visibility gadgets on edges, we use the construction in Figure 26. B has732

three paths to choose from in the process of crossing the bottommost 1-toggle, and always733

two of them are align with that 1-toggle, so B has two options. The White player, say W1734

can see the state of a gadget in all three paths, and thus determine the orientation. If W1735

goes through one of these gadgets, B will use the other path. If there were only one path,736

W1 could go through the gadget, forcing B to either not flip that edge or get a gadget into737

an unknown state (for L2Ts, we used the fact that W1 could never traverse that tunnel in738

one direction). This visibility gadget allows W1 to see the orientation of a constraint logic739

edge or V without being able to interfere.740

Once we make these replacements, the new maze with the arbitrary gadget has a forced741

win by White if and only if the maze with L2Ts did. J742
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W1 visibility

W2 visibility

Figure 25 An edge gadget for the TPCL reduction. This is the same as a 2CL edge gadget,
except two L2Ts have been added that allow W1 or W2 to see the state of the edge if it is connected
to their visibility area, but they cannot make any transitions.

5 1-Player Bounded Motion Planning743

In this section, we consider a broad class of gadgets which are naturally in NP and give a744

dichotomy classifying them as NP-complete or in NL. We examine all gadgets in tunnels745

whose state-transition graph forms a DAG. We will call these DAG gadgets for short. Our746

proof of hardness further applies to a larger class of gadgets, however a full classification of747

more general, simple to describe classes of gadgets will require more insight or much more748

case-work. Also, our constructions require the use of a crossover gadget.749

The results in this section can be seen as similar to Viglietta’s Metatheorem 1 about750

location traversal (being implemented by the interacting tunnels in gadgets) and single-use751

paths [19]. It also bears resemblance to Metatheorem 4 about pressure plates which only affect752

one door [19]. However, our proof goes through 3SAT rather than Hamiltonian Path, uses a753

different underlying model which makes different features salient, and gives generalizations754

in a different direction. Structurally the proof follows that used to show Mario as well as755

many other games are NP-hard [1].756

I Lemma 17. All DAG gadgets contain a single-use transition unless they are a transitionless757

gadget.758

Proof. First, find a node which only has transitions to terminal states, ones with no759

possible further transitions. To find one, begin by removing all terminal states from the760

graph. Of the remaining nodes, all of them which are now terminal states must have pointed761

to at least one terminal state in the original graph or it would have been removed, and it762
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Figure 26 A visibility gadget for the TPCL reduction. The Black player can travel between
the top and bottom, and a White player can enter the side to see which direction was traversed
most recently.

must have only pointed to terminal states or it would not be a terminal node. Terminal nodes763

have no transitions. Thus the node we discovered has an available transition which closes all764

tunnels in the new state. The gadget starting from that state is a single-use gadget. J765

In a system of gadgets, each DAG gadget can only be traversed polynomially many times.766

This is the core reason that motion planning involving these gadgets is always in NP.767

I Lemma 18. 1-player motion planning with any set of DAG gadgets is in NP.768

Proof. If a gadget and its state is a sink in the state-transition graph, then no transitions769

are available from that state. Each time a gadget is traversed the state of the gadget is770

moved down the graph. All paths from any vertex to a leaf are of polynomial length and771

thus each gadget can only be traversed polynomially many times before it no longer has any772

open tunnels. Thus we can give a polynomial size witness consisting of the order in which773

gadgets are visited, as well as the transition made at each gadget. To verify this certificate774

we check that each specified transition is legal, and that the location after each transition is775

connected to the location before the next transition in the witness. J776

Recall from Theorem 2 that all gadgets without interacting tunnels are in NL. Thus one777

might hope to show that all interacting-k-tunnel DAG gadgets are NP-complete. This is true778

for deterministic gadgets but false in general; nondeterministic gadgets require a more careful779

categorization. We will define two behaviors a DAG gadget might have, ‘distant opening’780

and ‘forced distant closing,’ and show that either behavior guarantees NP-hardness, while781

having neither one puts the gadget in NL.782

A distant opening in a DAG gadget is a transition in some state across a tunnel which783

opens a different tunnel.784

I Lemma 19. 1-player motion planning with any k-tunnel DAG gadget with a distant opening785

is NP-hard.786
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Proof. We show this problem is hard by a standard reduction from 3SAT. See Appendix A.2787

for a definition of 3SAT.788

We construct our reduction as follows. We use the tunnel which is traversed in the distant789

opening and one of the tunnels it opens. Each literal in a 3-CNF formula will be represented790

by those two tunnels in a single gadget, in the state of the distance opening. Each variable791

xi is represented by a connection to two different paths, one which goes through the opening792

transitions for the xi literals, and one for the ¬xi literals. We place a single-use gadget at793

the start and end of each branch of each variable to ensure only one side of the variable794

is traversed. The single-use gadget prevents the agent from returning on the same branch,795

and if the agent returns via the other branch, they will not be able to proceed to the next796

variable.797

Each clause contains connections between the openable tunnels for each of its literals. All798

variable gadgets are laid out in series followed by the clause gadgets, with the goal location at799

the end of the clause gadgets. Each clause gadget can only be traversed if at least one of its800

corresponding variable gadgets has been traversed, allowing at least one passage to be open.801

The agent can reach the goal location exactly when it has a path through the variable gadgets802

which makes each clause gadget traversable, which corresponds to a satisfying assignment of803

the 3-CNF formula. J804

When a transition across a tunnel closes another tunnel, the situation is more complicated,805

since the agent may be able to cross the same tunnel through a different transition, choosing806

not to close the other tunnel. For distant openings, the agent always chooses to open the807

other tunnel. We will now consider only monotonically closing DAG gadgets, which are808

DAG gadgets with no distant openings. We clarify some terminology regarding k-tunnel809

DAG gadgets. A transition is an edge in the transition graph, which is a legal move between810

locations which changes the state of the gadget. A traversal in a state is an orientation of811

a tunnel which is open in that state. A traversal may correspond to multiple transitions; a812

gadget being deterministic is equivalent to each traversal having only one transition. An813

orientation of a set of tunnels in a state contains, for each tunnel in the set, a single814

traversal of the tunnel the state.815

For NP-completeness one might suggest there exist a traversal such that all of its816

transitions close some other traversal. However, this fails in a simple two tunnel case where817

one transition closes one direction of the other tunnel and the other transition closes the818

other direction. This leads us to a more complex definition. A forced distant closing in a819

state of a DAG gadget is a traversal across a tunnel in that state and an orientation of some820

other tunnels in the state such that, for each transition corresponding to the traversal, the821

transition closes some traversal in the orientation. The size of a forced distant closing is the822

number of traversals in the orientation.823

I Lemma 20. 1-player motion planning with any monotonic k-tunnel DAG gadget with a824

forced distant closing is NP-hard.825

Proof. Consider all states which have forced distant closings, and let s be such a state that826

is minimal in the state-transition DAG, so that after making a transition from state s there827

are no forced distant closings. We will use a forced distant closing in s with smallest size;828

say this forced distant closing traverses tunnel t and has size i. We chain the i tunnels in the829

orientation for the forced distant closing, in the directions specified by the orientation, to830

make what is effectively a single long tunnel r. We will use the tunnels t and r in a reduction831

from 3SAT, and they have two important properties:832
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If the agent traverses t, it cannot later traverse r: since we are using a forced distant833

closing, after traversing t at least one (oriented) tunnel in r is not traversable. Since834

there are no distant openings, this tunnel cannot become traversable again.835

The agent can traverse r from state s: in state s, each tunnel in r is open. The agent836

begins by traversing the first tunnel in r. This cannot be a forced distant closing for the837

remaining i− 1 tunnels, since we assume the smallest forced distant closing has size i. So838

the agent can choose a transition which leaves the remaining tunnels in r open. After839

this first traversal, there are no more forced distant closings, so the robot can always840

choose a transition which leaves the remaining tunnels in r open.841

We can now describe the reduction, which is very similar to the reduction in the proof of842

Lemma 19. Each literal in a 3-CNF formula is represented by a gadget in state s, with the843

tunnels r chained together. Each variable xi is represented by a connection to two different844

paths, one which goes through t for the xi literals, and one for the ¬xi literals. We place a845

single-use gadget at the start and end of each branch of each variable to ensure only one side846

of the variable is traversed. The single-use gadget prevents the agent from returning on the847

same branch, and if the agent returns via the other branch, they will not be able to proceed848

to the next variable.849

When the agent goes through the xi (resp ¬xi) path of a variable, it closes r in the gadget850

for each literal xi (¬xi), which corresponds to assigning xi to false (true). This is reversed851

from the reduction for gadgets with distant openings.852

Each clause contains connections between the r for each of its literals. All variable gadgets853

are laid out in series followed by the clause gadgets, with the goal location at the end of the854

clause gadgets. Each clause gadget can only be traversed if at least one of its corresponding855

variable gadgets has not been traversed, leaving at least one passage r open. The agent can856

reach the goal location exactly when it has a path through the variable gadgets which leaves857

each clause gadget traversable, which corresponds to a satisfying assignment of the 3-CNF858

formula. J859

I Lemma 21. 1-player motion planning with any monotonic k-tunnel DAG gadget with no860

forced distant closing is in NL.861

Proof. The proof follows that of Theorem 2, though we must be more careful to account862

for optional distant closings. As in Theorem 2, if a system of gadgets has a solution, then a863

solution of minimal length does not intersect itself. This only requires that the gadget has864

no distant openings, since then making transitions can never increase traversability, and the865

shortcutting argument applies.866

We locally convert the system of gadgets into a directed graph, and show a path in the867

graph from the start location to the goal location corresponds to a solution to the system of868

gadgets which does not intersect itself. Given a (not self-intersecting) path in the graph, we869

follow the corresponding path through the system of gadgets. When we make a traversal, we870

must pick a transition to avoid closing tunnels we will need later. This is always possible871

because there are no forced distant closings; we can always choose a transition which does872

not close any traversal in the orientation consisting of the traversals the path will later take.873

By doing this, we ensure that every traversal we need is available when we get to it, so the874

system of gadgets is solvable.875

Suppose there is a solution to the system of gadgets that does not intersect itself. Since876

it uses each tunnel at most once, and the gadget has no distant openings, the traversability877

of each tunnel does not change before the solution uses it. Thus the solution is also a path878

in the directed graph.879
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So the system of gadgets has a solution iff there is a path from the start location to the880

end location in the directed graph. Since we can locally convert the system of gadgets to the881

graph in logarithmic space and solve reachability in NL, the motion planning problem is in882

NL. J883

Combining Lemmas 17, 18, 19, 20, and 21, we have our dichotomy:884

I Theorem 22. 1-player motion planning with a k-tunnel DAG gadget is NP-complete if885

the gadget has a distant opening or forced distant closing, and otherwise is in NL.886

It is natural to wonder whether this condition for hardness can be checked in polynomial887

time. That is, is there a polynomial-time algorithm which determines whether 1-player888

motion planning with a given DAG gadget is NP-complete? For all of our other dichotomies,889

the question of whether a gadget of the appropriate type satisfies the condition for hardness890

is clearly in P; in fact, in L. But a forced distant closing involves an orientation of the tunnels891

in the gadget, so there may be exponentially many potential forced distant closings to check.892

We will show that whenever it is necessary to search through each potential forced distant893

closing, the number of states of the gadget is exponential in the number of tunnels, so the894

search takes time polynomial in the number of states.895

First, it is easy to determine whether a DAG gadget has a distant opening in polynomial896

time, since we can iterate through the transitions and see whether each one opens another897

tunnel. So we consider gadgets with no distant openings, and wish to determine whether898

they have a forced distant closing.899

I Lemma 23. Suppose a monotonic DAG gadget has a state s with k open tunnels, and900

there are no forced distant closings from states reachable from s. Then the gadget has at least901

2k states reachable from s.902

Proof. For each subset of the open tunnels in s, we will find a state that has exactly those903

tunnels open. Since there are 2k such subsets, this implies there are at least 2k states.904

Assume without loss of generality that each tunnel is traversable from left to right in state s.905

Given a subset X of the open tunnels, we perform transitions starting from s as follows.906

For each tunnel not in X, traverse the tunnel repeatedly until it is closed in both directions;907

this must happen eventually because the gadget is a DAG. At each traversal, choose a908

transition which does not close any other tunnel from left to right. If there were no such909

choice of transition, that traversal with all other tunnels oriented from left to right would be910

a forced distant closing, which does not exist by assumption.911

After making these transitions, we have closed each tunnel not in X without closing any912

tunnels in X. Since the gadget is monotonic, we have not reopened any tunnel. So the final913

state has exactly the tunnels in X open. J914

I Theorem 24. Deciding whether a 1-player motion planning with a k-tunnel DAG gadget915

is NP-complete can be done in polynomial time.916

Proof. The following algorithm checks in polynomial time whether 1-player motion planning917

with a given a DAG gadget is NP-complete.918

For each transition, see whether it is a distant opening. If it is, accept.919

Iterate through the states of the gadget in reverse order; i.e. check each state reachable920

from s before checking s. For each state, and for each traversal from that state:921
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Suppose the state has k open tunnels other than the tunnel of the traversal. If every922

transition corresponding to the traversal leaves fewer than k of these tunnels open,923

accept.924

Enumerate the 2k orientations of these k open tunnels, and check for each orientation925

whether it is a forced distant closing with the traversal. If it is, accept.926

Reject.927

If the gadget has a distant opening, the algorithm notices it in the first step. Otherwise,928

we check for each state and traversal whether it has a forced distant closing. If every transition929

for a traversal reduces the number of other open tunnels, than any orientation of the other930

tunnels gives a forced distant closing. Otherwise, we check for each orientation whether it931

gives a forced distant closing. So the algorithm accepts exactly when the gadget has a distant932

opening or a forced distant closing, which is when 1-player motion planning with the gadget933

is NP-complete by Theorem 22.934

The only step of the algorithm which does not obviously take polynomial time is running935

through all 2k orientations of tunnels. Suppose the algorithm reaches this step for some936

state and traversal. Then there are no forced distant closings after making a transition from937

this state, since we would have accept already if there were. Also, there is some transition938

corresponding to the traversal which leaves all k other open tunnels open. By Lemma 23,939

there are at least 2k states reachable after making this transition. In particular, the gadget940

has more than 2k states, so enumerating the 2k orientations takes time polynomial in the941

number of states. Thus the algorithm runs in polynomial time. J942

6 2-Player Bounded Motion Planning943

In this section, we show that it is PSPACE-complete to decide who wins in a 2-player944

race with any nontrivial DAG gadget (having at least one transition). To do so we give a945

construction that shows hardness for single-use paths and single-use one-way gadgets by a946

reduction from QBF. A simpler construction is possible, but this construction is more easily947

adapted to the team game in Section 7. This gives us a nice example of the 2-player local948

motion planning problem fitting into the canonical complexity class for two-player bounded949

games. It is also of interest because of how incredibly simple this gadget is. Two-location950

gadgets trivially do not have interacting tunnels (there is no other tunnel to interact with)951

and thus the 1-player version of these problems are contained in NL by Theorem 2.952

I Lemma 25. 2-player motion planning with any set of DAG gadgets is in PSPACE.953

Proof. Since each gadget can undergo only a polynomial number of transitions, the length954

of the game is polynomially bounded. An alternating Turing machine which uses ∀ states to955

pick Black’s moves and ∃ state to pick White’s moves can simulate the game in polynomial956

time, so the motion planning problem is in AP = PSPACE. J957

I Lemma 26. 2-player motion planning with the single-use bidirectional gadget is PSPACE-958

complete.959

Proof. Containment in PSPACE follows from Lemma 25. For PSPACE-hardness, we reduce960

from quantified boolean formulas (QBF). See Appendix A.2 for a definition of QBF.961

We begin by describing the gadgets used in the reduction. The variable gadget is shown in962

Figure 27. Most of the gadget is two branches, corresponding to a variable and its negation.963

Each branch has a series of forks separated by single-use paths. There will be a number of964
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forks depending on the number of occurrences of a literal in the formula; two forks are shown.965

Each side of each fork has two single-use paths in series. The game will be constructed so966

that White always prefers the top side of a fork to be traversable, and Black prefers them to967

be not traversable; the top of a fork will be used later in evaluating the formula.968

During the game, both players will pass through each variable gadget, with one player969

taking each of the two branches. White will take the bottom side of each fork on their branch,970

and Black will take the top side. Afterwards, only the branch which White took will have971

forks whose top sides are traversable. Thus we consider the assignment of the variable to be972

the literal corresponding to the branch White takes.973

Suppose both players are at the left end of a variable gadget, and it is Player 1’s (who974

may be White or Black) turn. Player 1 picks a branch, and Player 2 must walk down the975

other branch. Player 1 arrives at the right end of the branches immediately before Player 2.976

If Player 1 proceeds along the bottom path, Player 2 wins, so Player 1 must take the top977

path, which takes one turn longer. After traversing the variable gadget, both players are at978

the right end, and it is Player 2’s turn, so the other player gets to choose a branch in the979

next variable gadget.980

The clause gadget is shown in Figure 28. There are three paths from the left end to981

the right end, corresponding to the literals in a clause. Each path goes through a fork in a982

variable gadget. After variables are assigned, the single-use paths on each end of the fork are983

used, as are either those on the top or those on the bottom of each fork. If the top single-use984

paths are used, that path through the clause gadget is blocked, and if the bottom paths985

are used, that path is open. White will ultimately win by traversing each clause gadget, so986

White prefers to use the bottom side of a fork, and Black prefers to use the top side.987

Each path has a large amount of delay (gadgets in series) before and after the fork, so that988

trying to use the clause gadget during variable assignment results in losing before reaching989

the end of the delay.990

The race gadget is shown in Figure 29. It ensures both players proceed though variable991

gadgets as fast as possible. Let Player 1 be the player who reaches the race gadget first in992

this situation, immediately before Player 2; they are also the player who did not pick the993

assignment of the last variable. If Player 1 takes the bottom path, Player 2 will win, so994

Player 1 takes the top path. Then Player 2 takes the bottom path, and now the two players995

have been separated.996

If Player 1 arrives more than a turn ahead of Player 2, they can take the bottom path.997

The next turn, before Player two can do anything at the race gadget, Player 1 wins. If Player998

2 reaches the race gadget first, they can take the top path and win.999

Given a quantified boolean formula with V variables and C clauses, we construct a system1000

of gadgets as follows. We assume the QBF has alternating quantifiers beginning with ∃.1001

There is a series of variable gadgets connected end-to-end corresponding to the variables of1002

the formula, in the order of quantification. The goal location inside each variable gadget1003

is a win for alternating players, beginning with Black. The branches of the variable gadget1004

corresponding to x correspond to the literals x and ¬x. Each branch of that variable gadget1005

has enough forks that each instance of a x or ¬x in the formula corresponds to a fork, and1006

the two branches have the same number of forks.1007

There is a clause gadget for each clause in the formula, connected in series. The three1008

branches of a clause gadget correspond to the three literals in the clause. Each branch goes1009

through the fork in the appropriate variable gadget corresponding to that instance of the1010

literal. The delay before and after each fork consists of 9C + 3V single-use paths. The right1011

end of the last clause is connected to a White goal location.1012
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P2 win

Figure 27 A variable gadget. The players arrive at the left, each take one path across, and exit
at the right.

A race gadget is connected to the right end of the last variable gadget, with the goal1013

locations such that Player 1 is the player with a win gadget inside the last variable gadget. The1014

path with a White win gadget, which Black will walk down, is followed by C(18C+6V +1)+21015

of single-use paths in series leading to a Black win gadget. The other path, which White will1016

walk down, is connected to the first clause gadget.1017

Both players begin at the left end of the first variable gadget, and White goes first.1018

The game begins with White choosing a branch of the first variable gadget, corresponding1019

to a choice of variable, and Black taking the other branch. Then Black chooses a branch of1020

the second variable gadget, choosing the assignment of the variable based on the path White1021

is forced to take. The players continue to take turns assigning variables. If either player1022

deviates from this, such as by going into the delay in a clause gadget or by going backwards1023

along another path, the other player will reach the race gadget first and win; the delay in1024

clause gadgets is long enough to ensure that they do not have time to get through the clause1025

gadget before losing. Otherwise both players arrive at the race gadget, and are sent down1026

different branches.1027

White then proceed through each clause in series. Each branch of a clause is traversable if1028

and only if the corresponding literal is true (since White took the bottom side and Black took1029

the top side of each clause). The single-use paths between forks ensure that White cannot do1030

anything other than progress through each clause gadget. If the formula is satisfied, White1031

has a path through the clauses, and wins after C(18C + 6V + 1) turns. If the formula is not1032

satisfied, Black, who is walking down their long path, wins after slightly longer. Thus White1033

has a forced win if and only if the quantified formula is true. J1034

I Lemma 27. 2-player motion planning with the single-use one-way gadget is PSPACE-1035

complete.1036

Proof. We again reduce from QBF. In the reduction in Lemma 26, neither player ever has1037

to move through a single-use gadget to the left. Thus we can replace each bidirectional1038

single-use gadget with a one-way single-use gadget pointing to the right, and the reduction1039

still works. J1040

I Corollary 28. 2-player motion planning with any nontrivial DAG gadget is PSPACE-1041

complete.1042

Proof. As noted in Section 5 all DAG gadgets contain a single-use transition. This can be1043

bidirectional or one-way, which are both shown to be PSPACE-hard in Lemmas 26 and 27.1044

Containment in PSPACE is given by Lemma 25. J1045
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Figure 28 A clause gadget. Each literal is also part of a variable gadget. Each branch has a
long series of gadgets so that it takes a large amount of time to traverse.

P2 win

P1 win 

Figure 29 A race gadget. If Player 1 arrives at the left immediately before Player 2, each player
ends up on one of the right exits. Otherwise, the player who arrives first wins.
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7 Team Bounded Motion Planning1046

In this section we characterize the complexity of team imperfect information motion planning1047

games with DAG gadgets. Since DAG gadgets are inherently bounded, the problem is in1048

NEXPTIME, shown in Lemma 29. We go on to show in Lemma 30 that any nontrivial1049

DAG gadget is NEXPTIME-complete by first giving a reduction from dependency quantified1050

boolean formula (DQBF) for the single-use gadget. We then show that this proof adapts for1051

single-use one-way gadgets. Since all DAG gadgets with at least one transition contain at1052

least one of these, we achieve hardness for all such DAG gadgets.1053

I Lemma 29. Team motion planning with any set of DAG gadgets is in NEXPTIME.1054

Proof. A partial history for a player is the sequence of visible gadget states and moves1055

made by that player, up to some point in the game. A strategy is a family of functions,1056

one for each White player, that assign to each possible partial history a legal move from the1057

position at the end of the partial history.1058

Since the gadget is a DAG, the game lasts a polynomial number of turns. Each player1059

has polynomially many choices for each move, so there are only exponentially many possible1060

sequences of moves, and only exponentially many possible partial histories for each player.1061

Thus a strategy can be written in an exponential amount of space.1062

To determine whether White has a forced win in the team game, first nondeterministically1063

pick a strategy. Then, for each possible sequence of moves the Black players could make,1064

simulate the game with the White players following the strategy. If Black ever wins, reject;1065

if White always wins, accept. This nondeterministic algorithm accepts if and only if there1066

is some strategy White can use to force a win. The algorithm runs in exponential time1067

because there are exponentially many sequences of moves the Black players might make, and1068

the game for each such sequence takes a polynomial amount of time to simulate. Thus the1069

algorithm decides the team game on systems of the gadget in NEXPTIME. J1070

I Lemma 30. Team motion planning with the single-use bidirectional gadget is NEXPTIME-1071

complete.1072

Proof. Containment in NEXPTIME follows from Lemma 29. For NEXPTIME-completeness,1073

we reduce from dependency quantified boolean formulas (DQBF). See Appendix A.2 for a1074

definition of DQBF. In this reduction White represents the existential variables and Black1075

represents the universal variables.1076

The reduction uses the same gadgets as that in Lemma 26, except that the clause gadget1077

is modified as in Figure 30. This allows the White player checking the formula to try each1078

literal, and return to the start of the clause gadget if the literal is false. This is necessary1079

because the White player cannot see the state of the literals until arriving at them. For1080

variable gadgets, we do not include the portion with a win gadget for Player 2 (the rightmost1081

quarter or so in Figure 27), since we no longer want players to alternate choosing variables.1082

We construct the system of gadgets as follows. The overall structure is shown in Figure 31.1083

For each set of variables ~x1, ~x1, ~y1, and ~y2, there is a corresponding set of variable gadgets1084

(without the win gadget component) connected in series, followed by a race gadget. For1085

simplicity, we will put C forks in each branch of each variable, where the formula has C1086

clauses, though usually we need much fewer. Then each variable gadget takes k = 3C + 11087

turns to traverse. We call the top path of a race gadget the fast exit and the bottom path1088

the slow exit, since (in normal play) the first (second) player to arrive leaves through the1089

fast (slow) exit. It will become clear which player each win gadget in a race gadget is for.1090
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The turn order will be B, then W1, then W2. Both B and W1 start at the beginning1091

of the variable gadgets for ~x1. W2 starts next to a delay line of length d1. The fast exit of1092

the race gadget for ~x1 and the end of this delay line both connect to the beginning of the1093

~x2 variable gadgets. The slow exit connects to a delay line of length d2. The end of this1094

delay line and the fast exit of the ~x2 race gadget connect to the beginning of the ~y1 variable1095

gadgets, and the slow exit connects to a delay line of length d3. The end of this delay line is1096

connected to the slow exit of the ~y1 race gadget and the beginning of the ~y2 variable gadgets.1097

The fast exit of the ~y1 race gadget is connected to yet another delay line of length d4. The1098

slow exit of the ~y2 race gadget is connected to a long delay line of length d5 followed by a1099

win gadget for B, and the fast exit is connected to a longer delay line of length d5 + 3.1100

This all serves to accomplish the following. First, B chooses the assignment for ~x11101

accompanied by W1, so W1 learns the assignment. Then B and W1 are separated, and B1102

assigns ~x2 accompanied by W2. Next, W1 chooses ~y1 accompanied by B, and finally W21103

chooses ~y2 accompanied by B. The delays d1 through d4 are chosen so that the White players1104

arrive at exactly the right time; we have d1 = |~x1|k + 1, d2 = |~x2|k − 1, d3 = |~y1|k, and1105

d4 = |~y2|. If a player deviates during variable assignment, they will arrive at their next race1106

gadget too late, and lose.1107

The end of the final delay line for W1, of length d4, is connected to the first clause gadget,1108

and the clause gadgets are connected in series corresponding to the clauses of the formula.1109

The delay lines in each branch of each clause gadget have length V k, where V is the number1110

of variables; this ensures that if a player enters one of the delay lines during variable selection,1111

an opponent will reach a race gadget and win before they accomplish anything. The end of1112

the last clause gadget is connected to a win gadget for W1. When W1 reaches each clause1113

gadget, they try the literals one at a time. When they cross the delay line to the fork, if1114

the fork is traversable, they move on to the next clause. Otherwise they return through the1115

other delay line and try the next literal. Each clause takes up to 6V k + 1 turns to cross.1116

If the formula is satisfied, W1 eventually gets through all the clauses and wins. Otherwise,1117

B wins after walking through their delay line of length d5, which we can set to C(6V k+1)+1.1118

We have seen that no player or team can benefit by deviating from normal play, and1119

normal play is equivalent to the game corresponding to the DQBF. Thus White has a forced1120

win if and only if the DQBF is true. J1121

I Lemma 31. Team motion planning with the single-use one-way gadget is NEXPTIME-1122

complete.1123

Proof. The reduction in Lemma 30 still works when we replace each single-use bidirectional1124

gadget with a one-way bidirectional gadget. We have to be a bit more careful than in1125

Lemma 27: of the two paths in a clause gadget from the beginning to a fork, we need one1126

path to point to the right and the other to point to the left, allowing W1 to return from that1127

fork. All other gadgets point to the right. J1128

I Corollary 32. Team motion planning with any nontrivial DAG gadget is NEXPTIME-1129

complete.1130

Proof. Every DAG gadget has a single-use transition, which may be either bidirectional or1131

one-way. Both cases are shown to be NEXPTIME-hard in Lemmas 30 and 31. Containment1132

in NEXPTIME is Lemma 29. J1133
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Figure 30 A clause gadget for team games. There are now two paths from the entrance of the
clause to each fork, so the White player traversing the clause can return if they discover the fork is
not traversable.

8 Applications1134

In this section we give examples of some known hard problems whose proofs can be simplified1135

by using this motion planning framework.1136

8.1 PushPull-1F1137

In this section, we use the results of this paper to provide a simple proof that a Sokoban1138

variant called PushPull-1F is PSPACE-hard, by reducing from motion planning in planar1139

systems of locking 2-toggles (Section 2.3). This problem, and many related problems, were1140

considered in [5] and were shown to be PSPACE-complete in [15] by a reduction from1141

nondeterministic constraint logic; our reduction is much more straightforward using the1142

infrastructure of the gadget framework.1143

I Definition 33. In PushPull-1F, there is a square grid containing movable blocks, fixed1144

blocks, an agent, and a goal location. The agent can freely move through empty squares, but1145

can’t move through blocks. The agent can push or pull one movable block at a time. The1146

agent wins by reaching the goal location. The corresponding decision problem is whether a1147
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W1 start

B start x1 race
W2 start 

delay

x2 race

delay

y1 race

delay

y2 race

delay clauses win 

delay win 

delay

Figure 31 The high-level structure of the DQBF reduction.

given instance of PushPull-1F is winnable.1148

In the notation ‘PushPull-1F,’ ‘PushPull’ indicates that the agent can both push and1149

pull, ‘1’ indicates the number of blocks which can be moved at a time, and ‘F’ indicates the1150

existence of fixed blocks [5].1151

I Theorem 34 ([15]). PushPull-kF is PSPACE-hard for k ≥ 1.1152

Proof. We reduce from 1-player planar motion planning with locking 2-toggles, shown1153

PSPACE-complete in Theorem 10. The (planar) connection graph is implemented using1154

tunnels built with fixed blocks, and the agent and target location are placed appropriately.1155

It suffices to build a gadget which behaves as a locking 2-toggle.1156

Such a gadget is shown in Figure 32. The two tunnels, currently both traversable, go1157

from top to left and right to bottom. They interact in the center, where traversing either1158

tunnel requires pushing a block into the middle square, which blocks the other tunnel. This1159

is surrounded by four 1-toggles, which prevent additional traversals which aren’t possible1160

in a locking 2-toggle. Each 1-toggle is a room with 3 blocks, which can only be entered on1161

one side. Upon entry, the agent can move the blocks to reveal the other exit, but doing so1162

requires blocking the entrance taken, which flips the 1-toggle.1163

J1164

8.2 Mario Kart1165

Mario Kart is a popular Nintendo racing game whose computational complexity was considered1166

in [3] which showed NP-completeness for 1 player races and PSPACE-completeness for 21167

player races with reductions from 3SAT and QSAT respectively. Using results from this1168

paper, the 2 player proof now only needs a single, simple gadget, reducing a several page1169

proof to a paragraph.1170

I Theorem 35. Deciding if a player can force a win in two player Mario Kart is PSPACE-1171

hard.1172

Proof. A single-use one-way gadget can be constructed from a ramp and Dash Mushroom1173

in Mario Kart. We place a ramp before a gap in the track long enough that a racer going at1174

the normal maximum speed will not be able to make the jump and will fall onto another1175

track that will take a long time to reach the finish line, ensuring they lose. However, this1176

gap is small enough that, if the player uses a Dash Mushroom before, the increase in speed1177

will allow them to make the jump. We put a single Dash Mushroom power-up before each1178

ramp, ensuring the first racer to arrive can pick up the item and use it to cross the gap.1179

To ensure a racer does not pick up the item and then keep it for later use, we precede the1180

mushroom and ramp with a one-way gadget implemented by a long-fall. Along with the1181

trivial existence of crossovers and the finish line as a location based win condition, Mario1182

Kart is PSPACE-hard by Theorem 27. J1183
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Figure 32 A locking 2-toggle in PushPull-1F.

9 Open Problems1184

This paper characterizes the complexity of two large classes of gadgets (DAG gadgets and1185

reversible deterministic gadgets). Ideally, we could fully characterize the complexity of motion1186

planning for every gadget type (and set of gadgets) as being easy or hard. There are many1187

specific steps we might take towards this grand goal:1188

1. Is 2-player motion planning with 1-toggles EXPTIME-complete? This would complete1189

our characterization for 2-player games with k-tunnel reversible deterministic gadgets.1190

As an easier target, we could prove PSPACE-hardness, perhaps by adapting the 2-player1191

proof for one-way closing gadgets.1192

2. Can we extend our characterizations of k-tunnel reversible deterministic gadgets to remove1193

one of these restrictions? Specifically, non-tunnel gadgets, non-reversible gadgets, and1194

nondeterministic gadgets are all interesting (and challenging) goals.1195

3. Which motion planning problems remain hard on planar systems of gadgets, like we1196

proved for 1-player reversible deterministic? Are there any examples of gadgets where1197

the planar version of the motion planning problem has a different complexity?1198

While we focused in this paper on general theory building, we can also explore the1199

application of this motion planning framework to analyze the complexity of specific problems1200

of interest. We conjecture that the results of this paper simplify many past hardness proofs,1201

which can now be reduced to one or two figures showing how to build any hard gadget1202
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according to our characterization, and how to connect gadgets together. See the hardness1203

surveys [8, 11, 12, 4] for a large family of candidate problems. Of course, we also hope that1204

this framework will enable the solution of many open problems in this space.1205
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A Problem Definitions1264

In this appendix, we give formal definitions for the known hard problems used in this paper.1265

In the paper we use single player, 2-player, and team imperfect information versions of1266

Constraint Logic and Boolean Formula Games. The exact problems are specified in the1267

following sections.1268

A.1 Constraint Logic1269

Constraint Logic [7, 11] is a uniform family of games — one-player, two-player, or team, with1270

both bounded and unbounded variants — with the appropriate complexity in each case (as1271

in Table 1). We will only describe the unbounded variants of Constraint Logic, as we use1272

formula games for our bounded reductions. We also do not describe zero-player Constraint1273

Logic, as we do not need it here.1274

In general, a constraint graph is an undirected maximum-degree-3 graph, where each1275

edge has a weight of 1 (called a red edge) or 2 (called a blue edge). A legal configuration1276

of a constraint graph is an orientation of the edges such that, at every vertex, the total1277

incoming weight is at least 2. A legal move in a legal configuration of a constraint graph is1278

a reversal of a single edge that results in another legal configuration.1279

In 1-player Constraint Logic (also called Nondeterministic Constraint Logic or1280

NCL), we are given a legal configuration of a constraint graph and a target edge e, and we1281

want to know whether there is a sequence of legal moves ending with the reversal of target1282

edge e. In this game, two types of vertices suffice for PSPACE-completeness: an OR vertex1283

has exactly three incident blue edges, and an AND vertex has exactly one incident blue1284

edge and exactly two incident red edges. We can also assume that each OR vertex can be1285

assigned two “input” edges, and the overall construction is designed to guarantee that at1286

most one input edge is incoming at any time; thus, we only need a “Protected OR” gadget1287

which does not handle the case of two incoming inputs. Furthermore, the problem remains1288

PSPACE-complete for planar constraint graphs.1289

In 2-player Constraint Logic (2CL), each edge of a constraint graph is also colored1290

either black or white, and two players named Black and White alternate making valid moves1291

where each player can only reverse an edge of their color. Given a legal configuration of a1292

constraint graph, a target white edge for White, and a target black edge for Black, the goal1293

is to determine whether White has a forced win, i.e., a strategy for reversing their target1294

edge before Black can possibly reverse their target edge. In this game, six types of vertices1295

suffice for EXPTIME-completeness: and and or vertices where all edges are white, and1296
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vertices where all edges are black, and vertices where the blue edge is white and one or both1297

of the red edges are black, and degree-2 vertices where exactly one edge is black.1298

In Team Private Constraint Logic (TPCL), there are two players on the White1299

team and one player on the Black team, who play in round-robin fashion. In each move,1300

the player can reverse up to a constant number k of edges of their color. Each player has1301

a target edge to reverse, and can see the orientation of a specified set of edges, including1302

edges of their own color and edges incident to those edges. Given a legal configuration of a1303

constraint graph, the goal is to determine whether the White team has a forced win; i.e.,1304

whether one of the White players can reverse their target edge before Black can. In this1305

game, all possible black/white colorings of and and or vertices suffice for RE-completeness.1306

(Only undecidability has been claimed before, but RE-completeness follows by the same1307

arguments.)1308

A.2 Formula Games1309

A 3-CNF formula is a boolean formula ϕ of the form C1 ∧ · · · ∧ Ck, where each clause1310

Ci is the disjunction of up to three literals, which are variables or their negations. An1311

assignment for such a formula specifies a truth value for each variable, and is satisfying1312

if the formula is true under the assignment.1313

In 3SAT , we are given a 3-CNF formula, and we want to know whether it has a satisfying1314

assignment. 3SAT is NP-complete [10].1315

A partially quantified boolean formula is a formula of the form Q1x1 : · · · : Qnxn : ϕ,1316

where Qi is one of the quantifiers ∀ or ∃, xi is a (distinct) variable, and ϕ is a 3-CNF formula.1317

An assignment for a partially quantified boolean formula specifies a truth value for each1318

variable in ϕ that is not any xi, called free variables. For a partially quantified boolean1319

formula ψ = Q1x1 : · · · : Qnxn : ϕ with n > 0, let ψ′ = Q2x2 : · · · : Qnxn : ϕ. Given an1320

assignment S for ψ, define assignments S + x1 and S + ¬x1 for ψ′ which assign the same1321

truth value as S to each free variable of ϕ and assign ‘true’ and ‘false’ to x1, respectively.1322

The truth value of ψ under S is defined recursively as follows:1323

If n = 0 (so ψ = ϕ), ψ is true under S if and only if ϕ is true under S.1324

If n > 0 and Q1 = ∀, ψ is true under S if and only if ψ′ is true under both S + x1 and1325

S + ¬x1.1326

If n > 0 and Q1 = ∃, ψ is true under S if and only if ψ′ is true under at least one of1327

S + x1 and S + ¬x1.1328

A quantified boolean formula is a partially quantified boolean formula with no free1329

variables. A quantified boolean formula has only one assignment (which is empty), so we say1330

it is true if it is true under this unique assignment.1331

The truth value of a quantified boolean formula ψ = Q1x1 : · · · : Qnxn : ϕ is equivalent to1332

whether ∃ has a forced win in the following game: two players ∃ and ∀ choose an assignment1333

for ϕ by assigning variables in the order they are quantified, with player Qi choosing the1334

truth value of xi. ∃ wins if the assignment satisfies ϕ.1335

In QBF , we are given a (fully) quantified boolean formula, and we want to know whether1336

it is true. QBF is PSPACE-complete, even if we restrict to formulas with alternating1337

quantifiers beginning with ∃. This restriction is equivalent to that ∃ and ∀ take alternating1338

turns, with ∃ going first [10].1339

A dependency quantified boolean formula is a formula of the form ∀x1 : · · · : ∀xm :1340

∃y1(s1) : · · · : ∃yn(sn) : ϕ, where xi and yj are (distinct) variables, ϕ is a 3-CNF formula,1341

and sj is a subset of {xi | i ≤ m}. We also require that every variable in ϕ is some xi or1342
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yj (ϕ has no free variables). A strategy for a dependency quantified boolean formula is a1343

collection of functions fj : {true, false}sj → {true, false} for j = 1, . . . , n. A strategy solves1344

a dependency quantified boolean formula if for every map S : {xi | i ≤ m} → {true, false},1345

the assignment given by xi 7→ S(xi) and yj 7→ fj(S|sj ) satisfies ϕ. Intuitively, yj is only1346

allowed to depend on the variables in sj . A quantified boolean formula is a special case1347

of a dependency quantified boolean formula, where each sj = {xi | i < k} for some k. A1348

dependency quantified boolean formula is true if there is a strategy that solves it.1349

The truth value of a dependency quantified boolean formula ∀x1 : · · · : ∀xm : ∃y1(s1) :1350

· · · : ∃yn(sn) : ϕ is equivalent to whether the ∃ team has a forced win in the following game,1351

which puts a team of one player ∀ against a team of players ∃j for j = 1, . . . , n: ∀ picks a1352

truth value for each xi. ∃j sees the truth value for each element of sj (and nothing else) and1353

picks a truth value for yj . The ∃ team wins if the resulting assignment satisfies ϕ.1354

In the DQBF problem, we are given a dependency quantified boolean formula, and1355

we want to know whether it is true. DQBF is NEXPTIME-complete even if we restrict to1356

formulas of the form ∀~x1 : ∀~x2 : ∃~y1(~x1) : ∃~y2(~x2) : ϕ, where ~xi and ~yi may contain multiple1357

variables, and each variable in ~yi can depend on all the variables in ~xi. This restriction is1358

equivalent to requiring that the ∃ team has two players who each choose multiple variables,1359

and they see disjoint exhaustive subsets of the variables ∀ picks [16].1360


	Introduction
	Gadget Model and Motion-Planning Games
	Gadget Types
	Our Characterizations

	1-Player Unbounded Motion Planning
	Reducing to Locking 2-Toggles
	PSPACE-hardness
	Planarity

	2-Player Unbounded Motion Planning
	Team Unbounded
	1-Player Bounded Motion Planning
	2-Player Bounded Motion Planning
	Team Bounded Motion Planning
	Applications
	PushPull-1F
	Mario Kart

	Open Problems
	Problem Definitions
	Constraint Logic
	Formula Games


