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Abstract able whenever the parameter is reasonably small. In several

We demonstrate a new connection between ﬁxed_paramgﬁplicaﬁons, e.g., finding locations to place fire stations, we
tractability and approximation algorithms for combinatoridifefer exact solutions at the cost of running time: we can
optimization problems on planar graphs and their generaligdford high running time (e.g., several weeks of real time)
tions. Specifically, we extend the theory of so-called “bidit the resulting solution builds fewer fire stations (which are
mensional” problems to show that essentially all such pradXtremely expensive). . _ _
lems have both subexponential fixed-parameter algorithms A general result of Cai and Chen [16] says that if
and PTASs. Bidimensional problems include e.g. feedba&k NP optimization problem has an FPTAS, i.e., a PTAS
vertex set, vertex cover, minimum maximal matching, fa¥éth running time(1/)©")nO(), then it is fixed-parameter
cover, a series of vertex-removal problems, dominating Sr‘g@,ctable. Others [10, 17] have generalized this result to any
edge dominating set-dominating set, diameter, connecteBroblem with an EPTAS, i.e., a PTAS with running time
dominating set, connected edge dominating set, and céﬁl/f)no(l) for any functionf. On the other hand, no
nectedr-dominating set. We obtain PTASs for all of thesEeverse transformation is possible in general, because for
problems in planar graphs and certain generalizations; €¥@mple vertex cover is an NP optimization problem that is
particular interest are our results for the two well-knowixed-parameter tractable but has no PTAS in general graphs
problems of connected dominating set and general feedb@éRessP = NP).

vertex set for planar graphs and their generalizations, for Nonetheless, in this paper, we present a general (reverse)
which PTASs were not known to exist. Our techniques get,r,z:msformation from fixed-parameter algorithms to PTASs
eralize and in some sense unify the two main previous 4pt & broad class of optimization problems in planar graphs
proaches for designing PTASs in planar graphs, namely, 84t their generalizations.

Lipton-Tarjan separator approach [FOCS'77] and the Baker N the last three years, several researchers have ob-
layerwise decomposition approach [FOCS'83]. In partic@'ned .exponenual speedups in fixed-parameter algorlthms
lar, we replace the notion of separators with a more pow€g!L various problems on several classes of graphs. While
ful tool from the bidimensionality theory, enabling the firsf0st previous fixed-parameter algorithms have a running
approach to apply to a much broader class of minimizatiéie Of_O(QO(k)”O(l)) or worse, the exponential speedups
problems than previously possible; and through the use d€gult in subexponential algorithms with typical running
structural backbone and thickening of layers we demonstréitees of O(20(VF)0M). " For example, the first fixed-
how the second approach can be applied to problems withagameter algorithm for finding a dominating set of size

“nonlocal” structure. k in planar graphs[]2] has running tim@(8*n); sub-
sequently, a sequence of subexponential algorithms and
1 Introduction improvements have been obtained, starting with running

The recent theory of fixed-parameter algorithms and paraf?€ O(48V3%n) [, then O(2*™*n) [47], and finally

eterized complexity[[32] has attracted much attention in €253V k + n?® + k*) [36]. Other subexponential algo-

less than ten years of existence. In general the goal igitbms for other domination and covering problems on planar

understand when the exponentiality of NP-hard probleggphs have also been obtained [1. 3/18[5D, 46].

can be contained within a parameter of the problem that However, all of these algorithms apply only to planar

in some cases is independent of the problem size. Fix@gphs. In another sequence of papers, these results have

parameter algorithms whose running time is polynomial fbeen generalized to other classes of graphs that include pla-

fixed parameter values make these problems efficiently sghr graphs: map graphs_[22], bounded-genus gréphs [24],
single-crossing-minor-free graphs [29] 30], apex-minor-free

*MIT Computer Science and Artificial Intelligence Laboratory, 3graphs [28. 26], and{-minor-free graphs [24]. These algo-

Vassar Street, Cambridge, Massachusetts 02139, Udemaine , rithms [22]24] 30, 29, 23, 26] apply to several combinatorial
hajiagha }@mit.edu .




optimization problems related to domination and coveringapproach in[ll, 34, 37] which uses tools from approximation
All subexponential fixed-parameter algorithms develBaker's approach) to design fixed-parameter algorithms.
oped so far are based on showing a “treewidth-parameter Our original motivation was that the bidimensional-
bound”: any graph with parameter valiiehas treewidth at ity theory almost trivially gave us subexponential fixed-
most some functiorf (k). (A parametersimply assigns a parameter algorithms for some minor-bidimensional prob-
nonnegative integer to every graph.) In many cagék) is lems, such as general feedback vertex set, yet PTASs for
sublinear ink, oftenO(v/k). Combined with algorithms thatthese problems in planar graphs and their generalizations
are singly exponential in treewidth and polynomial in prolsuch as single-crossing-minor-free graphs remained elusive.
lem size, such a bound immediately leads to subexponenitiare we obtain an EPTAS for general feedback vertex set in
fixed-parameter algorithms. planar graphs and more generally single-crossing-minor-free
Essentially all treewidth-parameter bounds proved so fgaphs as a simple by-product of our general approach for
are captured by the broad class of “bidimensional” problemsnor-bidimensional parameters. Another motivating prob-
introduced in a series of papefs [30] 22| 24, 23]. Roughém is connected dominating set, which is bidimensional, yet
speaking, a parameterized problembidimensionalif the lacks a fast enough bounded-treewidth algorithm for the the-
parameter is large (e.g., linear) in a grid and closed wry to apply; indeed, the existence of subexponential fixed-
der contractionsdontraction-bidimensionalor closed un- parameter algorithms for connected dominating set in pla-
der minors finor-bidimensiongl (A parameter ixlosed nar graphs was implicitly asked by Alber et all [1]. Here
under an operation if performing that operation on a graple not only establish a subexponential fixed-parameter al-
never increases the parameter value.) Examples of bugtrithm for this problem (see Theorém18.1) but also use our
mensional problems include e.g. feedback vertex set, vaiachinery to obtain a PTAS for the same problem, which
tex cover, minimum maximal matching, face cover, a seriggs not previously known to exist.
of vertex-removal problems, dominating set, edge dominat- While our focus is on our general techniques, we point
ing set,r-dominating set, diameter, connected dominatirggit that the two problems mentioned above—general feed-
set, connected edge dominating set, connect@oiminating back vertex set and connected dominating set—are impor-
set, and planar set cover. Treewidth-parameter bounds have: problems that have been studied extensively in the lit-
been established for all bidimensional problems in plarenature. Feedback vertex set—finding a minimum-size set
graphs [[22], bounded-genus graphs|[24], single-crossirg-of vertices whose removal leaves the graph acyclic—is
minor-free graphs [30], and apex-minor-free graphs$l[23, 28],basic problem in graph algorithms with applications to
and for all minor-bidimensional problems i -minor-free e.g. deadlock resolution. The first approximation algorithms
graphs([24]. In particular, the established bound is sublindar this problem were @/(lgn)-approximation for general
for planar graphs, bounded-genus graphs, single-crossigigphs and &a0-approximation for planar graphs [9]. Subse-
minor-free graphs, and in some cases for apex-minor-figgently,2-approximation algorithms for general graphs have
graphs. In summary, bidimensionality is the most powerfoken discovered [7, 11]. Goemans and Williams$on [39] ap-
method so far for establishing treewidth-parameter bounulg the primal-dual method to obtain(&8/4)-approximation
and therefore for designing subexponential fixed-paramef@r this problem. Althoughd/4 > 2, the LP relaxation
algorithms, encompassing all such previous results for plaey consider has interesting implications on the Akiyama-
nar graphs and their generalizations. Watanabe Conjecture about the size of a feedback vertex set
In this paper, we demonstrate that bidimensionality ai a planar graph. Their results also apply to a generalized
lows us to not only design fast fixed-parameter algorithrfrm of feedback vertex set. The approximation factor of
but also to design fast PTASs. More precisely, we prove thiaé primal-dual method in undirected planar graphs has been
any bidimensional problem satisfying a few straightforwafdrther improved to two (see e.d.,[21]). Connected dominat-
constraints not only has a subexponential fixed-parameteriadr set—finding a minimum-size s& of vertices such that
gorithm but also has a PTAS for planar graphs and soesery vertex not inD is adjacent to at least one vertexiih
generalizations. Thus bidimensionality enables us to easd in addition the subgraph induced Byis connected—
ily obtain both subexponential fixed-parameter algorithnis a fundamental problem in connected facility location, a
and PTASs for a wide variety of problems in planar grapbssic problem in operations research and computer science;
and their generalizations, and provides a connection between e.g.[57, 48, 45]. Another more recent application of this
fixed-parameter tractability and approximation in this sgtroblem is in finding a “virtual backbone-based routing strat-
ting. In particular, our results lead to new PTASs for seegy” in a wireless ad-hoc network; see e.gl[4, 58]. The first
eral well-known problems that were previously not knowand so-far best approximation algorithm in general graphs is
to have PTASs on planar graphs. Our novel approach of tie (In A + O(1))-approximation of Guha and Khuller [44],
ing tools from fixed-parameter tractability to design PTASghereA is the maximum degree in the graph. For unit-disk
can be considered as the reverse of the layerwise-separajiaphs, several approximation algorithms have been devel-



oped (see e.d.[4,52]), culminating with a recent PTAS [1%joth approaches.

There are two main general approaches for designing First in Sectiong {45 we generalize the separation ap-
PTASs for problems on planar graphs. The first approgotoach to obtain PTASs for all bidimensional problems that
is based on planar separatadrs|[51]. The approximation algatisfy a few straightforward constraints, and to general-
rithms resulting from this approach are generally impracteations of planar graphs. In particular, this includes all
cal; for example, just to achieve an approximation rati@,of problems and graph classes for which subexponential fixed-
the base case of the planar-separator approach requiregparameter algorithms have been obtained. Our technique is
haustive solution of graphs of up 83" vertices [20]. To based on evenly dividing the optimum solution instead of the
address this impracticality, Bakér [8] introduced the secowdiole graph, using a tree decomposition found by treewidth-
approach for PTASs in planar graphs, based on decomppproximation algorithms for certain classes of graphs, and
sition into overlapping subgraphs of bounded outerplanarit;ging the small treewidth guaranteed by bidimensionality.
Specifically, Baker’s approach obtaifist-¢)-approximation Evenly dividing the optimum solution is difficult because we
algorithms with running times 0£°(1/¢)n0() for many do not know the optimum solution; nonetheless, we show
problems on planar graphs, such as maximum independéat such a division can be done approximately using exist-
set, minimum dominating set, and minimum vertex coveng constant-factor (or even logarithmic-factor) approxima-
Eppstein[[34, 33] generalized Baker's approach to a broatlens. We also use the fast fixed-parameter algorithms from
class of graphs called graphs of bounded local treewidthe bidimensionality theory to remove an extra log factor in
i.e., where the treewidth of the subgraph induced by ttiee exponent of the running time. Through our approach we
set of vertices at distance at mastfrom any vertex is immediately obtain an EPTAS for general feedback vertex
bounded above by some functigty) independent of. Re- set in planar and more generally single-crossing-minor-free
cently there has been much work on graphs of bounded loggdphs. Combined with our fixed-parameter results men-
treewidth [374B[ 29, 26, 24, B4,123]. In particular, Epgioned above, we obtain a PTAS for connected dominat-
stein [34] characterized all minor-closed families of grapfieg set in planar and single-crossing-minor-free graphs. For
that have bounded local treewidth, showing that they are pitgese problems in bounded-genus graphs and apex-minor-
cisely apex-minor-free graphs, where apex graphhas a free graphs, we also obtain “almost PTASs” with almost-
vertex whose removal leaves a planar graph. Khanna @sdynomial running time.©(¢'¢7) for fixed <[] We refer
Motwani [49] use Baker's approach in an attempt to sythe reader to Corollarigs 4.3 apd]5.1 for a complete list of
tactically characterize the complexity class of problems agportant problems for which we obtain new PTASs and al-
mitting PTASSs, establishing a family of problems on plananost PTASs.
graphs to which it applies. Frick and Grohe|[37] use Baker's Second in Sectiof|6 we generalize Baker's approach
approach to obtain efficient (near-linear) algorithms to deévhich is generally considered faster than the previous ap-
cide arbitrary properties definable in first-order logic. proach) to obtain PTASs for nonlocal problems using two

Unfortunately, both of these approaches for PTASs finain techniques. Our first technique is to use a constant-
planar graphs seem to be limited, at least in their currdagtor (or even logarithmic-factor) approximation to the
use. In the separation approach, the separator is boundegrablem as a “backbone” for achieving the needed nonlocal
terms ofn (O(y/n)), which can be large compared to the cogroperty. Of course, we cannot use the entire approximate
of the optimal solution. As a result, the approach has beggiution, so we take &(¢) fraction by slicing at (intersect-
used so far only in a few limited minimization problems (tthg with) a small number of layers in the graph and remov-
the best of our knowledge, just vertex cover|[53] and forniizg the rest. Now we are left with two challenges: we need
of TSP [41[ 6] 40,_42]) where, after some graph reductioitsrestore the nonlocal property of the full backbone, and we
(linear kernelization), the cost of the optimum solution careed the subproblems in the layers between these slices to
be lower bounded in terms of. For example, Grohe [43]form a global solution comparable to the overall optimum.
states that dominating set is a problem “to which the techhe second technique addresses both of these problems by
nique based on the separator theorem does not apply”. @ing thicker subproblems extending beyond the slices by
the other hand, all applications of Baker’'s approach so fatlogn) layers instead of the usu&(1) in Baker's ap-
are to optimization problems arising from “local” properproach. Of course, the devil is in the details. We are left with
ties (such as those definable in first-order logic). Intuitivelifje task of solving the subproblems, which are a generalized
such local properties can be decided by locally checking éorm of the original problem in order to restore the nonlo-
ery constant-size neighborhood. In particular, this restrictioal property of the backbone. For connected dominating set,
has limited attempts at characterizing the complexity classtbése generalized subproblems can be solved using our fixed-
problems admitting PTASS [3[7, 49].

In this paper we demonstrate that the bidimensionality 1This time bound is substantially better than the existing notion of

theory enables us to bypass these limitations and generafisasipolynomial timep©(s™). Also, Iglgn is at mosts for n < 2%,
which is nearly the number of particles in the known universe.




parameter algorithm mentioned above. A final challengeDsriniTiON 2.1. ([54]) A tree decompositiomf a graphG =
that the running time of this algorithm is superpolynomial}, E), denoted byi"D(G), is a pair (x, T') in whichT = (I, F')
(1gn)®Ue™) because the thickness of a subproblem is novise tree andy = {x. | i € I} is a family of subsets df (G) such
function ofn, ©(Ign), instead of a constant as in Baker's aghat: (1) Uc; xi = V; (2) for each edge: = {u,v} € E there
proach. Using planarity of the subproblems, or more speSts ani € I such that both, and v belong tox;; and (3) for
ically their low outerplanarity, together with properties of & v € V. the setofnodegi € I | v € x;} forms a connected

. . . : fr.
simple, direct, and efficient construction of a tree decomposé'ij-btree ©

tion for such graphs of low outerplanarityl [1./13], we obtain 1o distinguish between vertices of the original gra@hand

in Section[ ¥ more efficient encodings of subproblems augttices of 7" in TD(G), we call vertices ofl' nodesand their

reduce the running time 2" = n9M) for fixed ¢. correspondingy;’s bags The maximum size of a bag iiD(G)
Last but not least, bidimensionality provides new stroriginus one is called thevidth of the tree decomposition. The

connections between fixed-parameter algorithms, apprds@ewidthof a graphG;, denoted bytw(G), is the minimum width

mation algorithms, and the two existing approaches to firfyer all possible tree decompositions@f

ing PTASs in planar graphs and their generalizations. [n EPPStein [[34] introduced the notion of “bounded local

particular, essentially every bidimensional problem has b&ﬁemdth , Which is a generalization of the notion of treewidth. A

graph hadounded local treewidtfor locally bounded treewidihf,

a subexponential fixed-parameter algorithm and a PTASf(E? all » € N, the treewidth of the-neighborhood of every vertex

S,UCh graphs. At a.deeper level, Ba'lkgr's approach itself Car_lu 8 V(G) is bounded above by a functigf(r). Indeed, the bidi-

viewed as a special case of the bidimensional theory, as iishsionality of diameter, or more precisely the resulting parameter-

just a combination of a “shifting strategy” and the bidimeRreewidth relation, was the point of Eppstein’s work (deg [25]) in

sionality of the diameter of a graph [25]. The bidimensiomtroducing such a class of graphs.

ality of diameter, or more precisely the resulting parameter- A graph is called aapex graptif deleting one vertex produces

treewidth relation, was the point of Eppstein’s wdrkl|[34]. a planar graph. Eppstein [34] showed that a minor-closed graph
class€ has bounded local treewidth if and only&fis H-minor

2 Definitions and Preliminary Results free for some apex grapH. In particular, he proved that any apex-

. . - . inor-f | f hs h t t doubl tial local
Our graph terminology is as follows. All graphs are finite, smplénmor ree class of grapns has at most doubly exponential foca

’ . . Oo(r . g

and undirected, unless indicated otherwise. For a g@phve treEWIch, ie.f(r) =22 el _See alsa[25] for a simpliied proof
denote its vertex set by (G) and its edge set by(G). Let and slightly bet'ferboundg. Itis known that' planar graphs, bounded-
n = [V(G)| denote the number of vertices whéhis clear from 9€NUS graphs [;;4], an_d single-crossing-minor-free graphs [29] have
context. For every nonempt’ C V(G), the subgraph ofy linear local treewidth, |.§f(r) = O(r). Recently, the authqrs [26]
induced byl is denoted by[IV]. We define the-neighborhood proveq that all apex-rplnor-frge classes of graphs have linear chal
of a vertex setS C V(G), denoted byNZ(S), to be the set of treewidth. We use this linearity of local treewidth throughout this
vertices at distance at mosfrom at least one vertex &f C V/(G); PapPer- . o . )
if $ = {v} we simply use the notatioZ; (v). Thediameterof G, A simpler kind of apex graph issingle-crossing graptwhich
denoted byZiam(@), is the maximum over all distances betweef@n be drawn in the plane with at most one crossing. Single-
pairs of vertices of5. We assume the reader is familiar with othegrossing-minor-free graphs have been studied in[[58, 20, 29].
general concepts of graph theory such as directed graphs, trees, and
planar graphs. The reader is referred to standard references3forBidimensionality
appropriate background [14]. In addition, for exact definitions %1:

ade

various NP-hard graph-theoretic problems in this paper, the re der” of bidimensionalitvas a general aporoach for obtain-
is referred to Garey and Johnsonl[38]. y Y 9 PP

Given an edge: — {z,y} of a graphG, the graphG//e is ing treewidth-pa_rameter b_ounds and s_ubexp_onential fixed-
obtained fromG by contracting the edge that is, to gelG/e we Parameter algorithms. This framework is sufficiently broad
identify the verticesr andy and remove all loops and duplicatdhat an algorithmic designer only needs to check two simple
edges. A grapt{ obtained by a sequence of edge contractionspgoperties of any desired parameter to determine the appli-
said to be acontractionof G. A graph H is aminor of a graph cability and practicality of the approach. Indeed, the bidi-
G, denotedd = G, if H is a subgraph of a contraction 6f. A mensionality theory captures essentially all subexponential
graph clasg’ is minor-closedf any minor of any graph it is also - algorithms obtained so far, and in this paper we show that
a member ofC. A minor-closed graph class is H-minor-freeif the theory extends to obtain PTASs as well.

H ¢ C. For example, a planar graph is a graph excluding both - pefine theparametercorresponding to an optimization
Ks,3 and K as minors. problem to be the function mapping graphs to the solution

The notion of treewidth was introduced by Robertson av lue of the optimization pbroblem: this converts anv opti-
Seymour [[54] and plays an important role in their fundamentaf P P ' Y op

work on graph minors. To define this notion, first we consid&Zation problem into a parameterized problem. A param-

the representation of a graph as a tree, which is the basis of 8l§ffized problem i&(r)-minor-bidimensionaif the param-
algorithms. eter is at leashk(r) in anr x r “grid-like graph” and if the

parameter does not increase when taking minors. A parame-

Irseries of papers[[30, 22, 24, 123] introduce the the-



terized problem i%.(r)-contraction-bidimensionaf the pa- the problem can be approximated within a factorfin
rameter is at leadt(r) in anr x r “grid-like graph” and if the ¢(n) time. Then there is &l + ¢)-approximation algorithm
parameter does not increase when contracting edges. Oumtgese running time isO(nf(n,0(a?/e)) + n3g(n))
sults of course depend on the functiofr). For all bidimen- for planar and single-crossing-minor-free graphs and
sional parameters considered in this papér) = O(r?). O(nf(n,0(a?lgn/e)) + n?g(n)) for bounded-genus
An example of a different kind of bidimensional parametgraphs.
is diameter (not interesting from an approximation point of
view, but the basis of locally bounded treewidth), which has More generally, this theorem holds whenever the minor-
h(r) = ©(log r) [25]. bidimensional problem has an exact algorithm with run-
Treewidth-parameter bounds have been established™td time f'(n, k) wherek is the size of the optimal solu-
all minor-bidimensional prob|ems iRl -minor-free graphs tion. In the theorem we use the bidimensional property that
for any fixed graphH [24, [23]. In this case, the no-k = O(y/tw(G)). Without this property, we would replace
tion of “grid-like graph” is precisely the regular x » the instances of (n, tw(G)) with f'(n, tw(G)?). In gen-
square grid. However, contraction-bidimensional proBtal it is harder forf’(n, O(a*lg® n/e?)) to be polynomial
lems (such as dominating set) have proved substantidl§cause the typical dependencekds at lease”.
harder. In particular, the largest class of graphs for which This theorem has several inmediate consequences:
a treewidth-parameter bound can be obtained is apex-minor- _ o) B
free graphs instead of general-minor-free graphs[[23]. COROLLARY 4.1. g(Llj)pposeg(n) =n” anda = O(1).
Such a treewidth-parameter bound has been obtained 'fof (12, w) w7, then we obtain a PTAS for pla-
all contraction-bidimensional problems in apex-minor-fre8ar and single-crossing-minor-free graphs. fitn, w) =
graphs[23]. In this case, the notion of “grid-like graph” i§°*’n°("), then we obtain a PTAS for bounded-genus
anr x r grid augmented to have, for each vertéx]) edges 9graphs. If f(n,w) = 20(wlgw)pO()  then we obtain
from that vertex to nonboundary vertices. (H&»¢él) de- an almost-PTAS for bounded-genus graphs.f(if, w) =
pends orl.) Unfortunately, this treewidth-parameter bounti(w)n”'"), then we obtain an EPTAS for planar and single-
is large in general: the treewidth is at mgstk)O(V®) for Crossing-minor-free graphs.
e L : :
00 Himariona paaneld ot & S S0OOAT: oo 42 Sppssets) - 1) and 0 -
apex—minor—frée graphs, such a bound is known only for tﬁorl Iaz{alrfai (c;léilﬁ) I:-czrco)::izo-(rlrii,ntgre-fr: evge ?;tﬁi: a PTAS
special cases of dominating set and vertex caver [26, 24]. b 9 9 graphs.
The biggest graph classes for which we know @oroLiaRy 4.3. There is an EPTAS for feedback ver-
sublinear ('ndeed_O(\/E_))_ treewidth-parameter bound fofey set, face cover, vertex cover, minimum maximal match-
all @(rQ)—cpntractlon-b|d|menS|onaI problems are singlgng and a series of vertex-removal problems in planar and
crossing-minor-free graphs and bounded-genus graphs. §igfje-crossing-minor-free graphs. There is an almost-PTAS
single-crossing-minor-free graphs [30] 29] (in particular, plgs ) of these problems in bounded-genus graphs. Further-

nar graphs.[22]), the notion of *grid-like graph™is an< r more, there is a PTAS for vertex cover in apex-minor-free
grid partially triangulated by additional edges that preserygaphs,

planarity. For bounded-genus graphs|[31], the notion of

“grid-like graph” is such a partially triangulatedx r grid The last result follows from the reduction from vertex

with up to g additional edges (“handles”), wheteis the cover to dominating sef [24, Lemma 5.1] together with the

genus of the original graph. (The same result was estal%: bound for dominating set in apex-minor-free graphs [26].

lished for a subset of contraction-bidimensional problems,

calleda-splittable problems, previously in [24].) 4.1 Separation Property. Our PTAS for minor-
bidimensional parameters requires three additional

4 Generic PTAS for Minor-Bidimensional Parameters  straightforward conditions on the problem, all of which are

We consider families of problems in which we are given@mmonly satisfied. Specifically, for the duration of this
graph and our goal is to find a minimum-size set of verticEgction, a problem has tlseparation propertyf it satisfies
and/or edges satisfying a certain property. In this section iA following three conditions:

prove the following result. 1. If a graphG hask connected component:, Ga, . .., Gy,
then an optimal solution fof is the union of optimal solu-
THEOREM4.1. Consider a ©(r?)-minor-bidimensional tions for each connected componéht

problem that satisfies the separation property describech. There is a polynomial-time algorithm that, given any graph
below. Suppose that the problem can be solved on a graph G, given any vertex cutC whose removal disconnects
G with n vertices inf(n,tw(G)) time. Suppose also that  into connected componentsi, Go, ..., G, and given an



optimal solution S; to each connected compone@; of arbitrary subsets of vertices and/or edges in a low-treewidth
G — C, computes a solutio for G such that the numbergraph. Here a tree decomposition gives us extensive addi-
of vertices and/or edges ii within the induced subgraphtional structure to find such balanced partitions.

G|C U UierV(Gy)] consisting ofC' and some connected

components ofy — C'is 3_,., |S:| = O(|C|) foranyI C LEMMA 4.1. For any graphG, for any tree decomposition
{1,2,...,k}. In particular, the total cost of is at most of G of widthw, and for any sef5 of vertices and/or edges,
OPT(G — C) + O(|C)). we can remove all{ w+-1) vertices in some bag so that each

3. Given any graphG, given any vertex cut’, and given an femaining connected component has at mé&$t2 vertices
optimal solutionOPT to @, for any unionG’ of some and/or edges frons.
subset of connected componentsdf- C, |OPT N G'| =

IOPT(G")| + O(|C)). COROLLARY 4.4. For any graphG, for any tree decompo-

sition of G of widthw, and for any sefS of vertices and/or

Condition 2 states that the extra cost introduced kyiges, we can remove aff (w + 1) vertices in some bag and
“merging” the components of/ — C' along the cutC is cluster the remaining connected components into exactly two
o(|C)). groups such that the number of vertices and/or edges ffom
in each group is at moge/3)|S].

4.2 Algorithm. The algorithm proceeds as follows: )
Now we proceed to the analysis.

1. Maintain an overall vertex cu in the original graph; initially
C=0. LEMMA 4.2. Let3 > 1/(1+1/(4a+a)) and suppose that

2. Maintain a set of graphs and their approximate solution co&gPT(G” is sgfﬁciently large. If SteE] 3_ of the algorithm
according to thev-approximation algorithm. Initially, this set SPIitS graphG into graphsGl‘ and G using cutC, then
consists of just the input graph. |OPT(G;)| < BIOPT(G)| fori € {1,2}.

3. For any graphG in this set whosex-approximate solution Proof. First we bound the ratio between the weights of the
cost is larger thah(e), we cut the graph into two replacemenheavier group and the lighter group chosen in Jig¢p 3. By
graphs as follows: Corollary [4.4, there is a bag’ in the tree decomposi-

tion of G whose removal disconnect§! into two groups

(a) Compute a tree decomposition@fof width w approx- ;, and G, such that OPT(G) is roughly evenly split be-
imately equal to the treewidthw (G) of G. For planar yeen G: and G2. More precisely, if we defineOPT, =
graphs[56]andsingle-crossing-minor-freegraphs;[Z%PT(G) N Gi, then LIOPT| < |OPT;| < 2|OPTY|.

we obtain a constant-factor approximatiom; = Define OPT; = OPT(G;) and assume by symmetry that
O(tw(G)). In general, we obtain a log-OPT approx;{opT,| > [OPT,|. By the Separation Property (3DPT,| =
imation [5]: w = O(tw(G) lg tw(G)). |OPT;|£6(|C|) = |OPT,|+6(,/|OPT]|lg |OPT|). Therefore,

(b) For each node in the tree decomposition, considgtOPT:| — O(y/|[OPT[Ig|OPT|) < |OPTy| < 2|OPTy| +
the cut formed by the vertices in the corresponding(,/]OPT|lg |OPT|).
bag. Apply thea-approximation algorithm to each By the separation property,/OPT| < |OPT:| +
connected component resulting from the cut, and cahPT,| + O(,/|OPT|lg|OPT|), or equivalently |OPT| —
the approximate solution cost theeight of the con- O(\/mlg‘OPTD < |OPTy| + |OPTs|. Thus,|OPT| —
nected component. Cluster the connected compone@té\/mlg |OPT|) < 2max{|OPT}|,|OPT,|} = 2|OPTy|
into two groups by repeatedly placing the heaviest OBy our assumption thaaPT2| > |OPT,|.
nected component into the lighter group. Among all” g, any § > 0, if OPT is sufficiently large,
cuts, choose the one for which the ratio between thg |OPT| < 6|OPT| and (1 — 6)|OPT| < 2|OPTs|.

weights of the heavier group and lighter group is CIOSrhUS, [OPT| < 2-°.|OPTs|. Therefore, for any de-

est tol. Add the vertices of this cut to the overall vertex . 1—5 ..
sired & > 0, we can choose’ sufficiently small so that

gx(t)(;ozi;):two replacement graphs are formed by th§|OPT2\ ~ §|OPTs| < |OPTy| < 2/OPTa| + &'|OPTs|.
Because /(1/2 —6') > 2+ 48 > 2+ 4, (1/2 - §')|OPT,| <
4. Replace each graph in the set with its connected componettd T1| < 1/2;_.5,|OPT2\: . .
Apply the f(|H|, tw(H))-time algorithm to find the optimal The algorithm considers the-approximate solutioMAPX;
solution to each grapH in the set. Combine these solutiondor Gi-  Because [OPTi| < [APXi| < o|OPTil,
into an approximate solution for the original input graph usintf - |APXa2| < |APX;| < 1735 [APXz|. Therefore, APX;
the Separation Property. (and hence each connected componemiBK;) has size at most

A(APX,| + |APX,|) whereA = 1/ (1+ WT—‘S) Repeat-
4.3 Analysis. Before we can analyze the approximatiogdly adding the largest connected component to the smallest group
ratio and running time of our algorithm, we need two basigcording to Step 3b of the algorithm results in a clustering into
results. These results generalize existing results on septwa-groupsG; andGs where};—i\APX(G;N < |APX(GY)| <

tors in low-treewidth graphs[13] to balanced partitions gf-3 |APX(Gb)|.



The algorithm considers this clustering for kdgas wellas all O((|JOPT(G)|1g|OPT(G)])/(1/b(e)(1 — +/B))). The PTAS
other bags, and takes the clustering that is most balanced. Therefieeds this error to be at mQﬂOPT(G)| This bound is guaran-
the clustering found by the algorithm satisfies the balance propeg¥d to hold ifs(e) > (21g|OPT(G)|+1)% Applying the Separation

e2(1-v/B)?
above. Call the two groups in this clusterigyy andG.. Define Property withC' = V/(G), we know that| OPT(G)| = O(n).
APXZ, OPT“ andOPT as before but with7; replaced b)GZ Therefore it suffices to sétz) > © (

Because}OPTz\ < |APXZ\ < a|OPTZ| a<1+x)\OPT2| < 2(1 f)z
|OPT,| < 210 OPT,|. By minor bidimensionality and the COROLLARY 4-5-.” we setb(e) = @(1/.(6 (1 - \/3)2)),
separation propertylOPT| + |OPTs| < |OPT|. Therefore, _thenthe runnln%tlme oftr‘(g—i-g)-approxmatlon algquthm
IOPT;| < L |OPT| = L |OPT|. Thus we S O(nf(n,0(a*/e)) + ng(n)) for planar and single-

T raarn R CT R ot crossing-minor-free graphs an@(nf(n,O(a?1gn/e)) +

obtain the theorem witg = 1/ (1 + W#;g'_m) Because n°g(n)) for bounded-genus graphs.

8" > 0 can be chosen arbitrarily smalf, can be made arbitrary Proof. A simple asymptotic analysis shows tha{1—+/5) ~ 8>
close tol/ (1 + m) O and thusb(e) ~ 64a*/c*. Therefore the size of the optimal
solution for every graph in the final set (in Sfgp 4ita* /<%). B
In the following results we let3 denote any numberbidimensionality, the treewidth of these graph®igx* /<). There
satisfying the condition in Lemnfa 4.2. areO(n) such graphs, so we mak¥n) calls to the exact algorithm
with running time f(n, O(a?/¢)). In Step[3b we make(n?)
LEMMA 4.3. The size of the overall vertex cutallsto thea-approximation algorithmQ(n) for each candidate

2
lg O

is  O(OPT(G)|/(+/b(e)(1 — +/B))) for planar cut Steq] B iterate®(n) times, so we mak&(n?) calls to the
and single-crossing-minor-free graphs, and gpprommatlon algorithm with running timg(n). a

O((|OPT(G)|1g [OPT(G)))/(Vb()(1 = /B))) for This result proves Theorefm #.1.
bounded-genus graphs.
; Generic PTAS for Contraction-Bidimensional

Proof. Define thelevel of each graph in the final set in Stgp Parameters

to be 0. Define thelevel of each graph that is split in Stép 3
to be1 larger than the maximum level of each of the two piecésonsider a problen where the input is a graph and the
resulting from the split. LetK:, K, ..., K, be the graphs at output is a minimum-size sétof vertices and/or edges with
level ¢ > 1. From the algorithm we obtain a vertex cut in the certain property. Thegeneralized fornof such a problem
original graphG whose removal leaves a graghf consisting P s another problem where the input is a graph and &'set
of exactly K1, K, ..., K}, as disconnected pieces. By minorgf vertices and the output is a minimum-size Setf vertices
bidimensionality,|OPT(G")| < |OPT(G)|. By the Separation 4q/0r edges such thdU C'U E(G[C)) satisfies property.
E;?f;{g;;FZT({S%LJGE?PTB(KT_)Q“Tmai ||81;¥( )) |‘ Thecostof such a solution is the size 6f, not counting the
b(=)/B°". Thereforep < |OPT)(/ &) /o). = sizeofC U E(G[C]). (Thus ana-approximatio_n algorithm
The size of the cut introduced in Step 3 for splittig is for the ge_nerfill_zed form of problemis an algo_rlthm whose
w(K;) + 1, which isO(,/[OPT(K;)|1g |OPT(K;)|). The total outputS is within ana chtor_of the opt|mql size 0f.) In
cut size over allk,’s is O(Y>"_, \/JOPT(K;)|lg|OPT(K;))), other words, we get.vertlc_e.s(ﬁand edges .uE(G[C}) “for
which is at mostO(3>?_, /JOPT(K;)|lg|OPT|). This sum free” (assuming their addition helps to satisfy
is maximized when|OPT(K;)| = |OPT(G)|/p. Thus the TLeorem5.1. Consider a  contraction-bidimensional
total cut size at level is O(y/py/|OPT(G)|lg |OPT(G)]) = problem that satisfies the separation property described
O(IOPT(G)|1g|OPT(G)| - B~ 1/2/\/b(e)). ~ Therefore, pojqy, Suppose that the generalized problem can be
the total cut size is O (3.2, |OPT(G)|1g[OPT(G)I solved on a graphG with n vertices in f(n,tw(G))

VIA

ﬂ“‘””/\/b(e)) = O('Opf/(%l(gl'_ojg)(c”). For planar time. Suppose also that the generalized problem can
and single-crossing-minor-free graphs, we avoidgi©PT (K;)| be apprOXImaFed within a_ factor Qb‘ in g(n) tlme.
factor and thus thig |OPT(G)| factor. g Then there is a (1 + e¢)-approximation algorithm

whose running time isO(nf(n,0(a?/e)) + n3g(n))
THEOREM4.2. The approximate solution produced by théor planar and single-crossing-minor-free graphs and
algorithm is within a factor ofl + ¢ times optimal if we set O(nf(n,O(a?lgn/c)) + n3g(n)) for bounded-genus
b(e) = Q(1/(£2(1 — +/B)?)) for planar and single-crossing- graphs (or any graph class where the parameter satisfies the
minor-free graphs ané(e) = Q((1g% n)/(e2(1—+/B)?)) for  O(Vk) parameter-treewidth bound).

general graphs. Corollaried 4.l anfl 4|2 therefore also generalize to the

Proof. We concentrate on the case of general grap@ntraction-bidimensional case under the additional assump-
planar and  single-crossing-minor-free  graphs  simptions stated in Theorem 5.1. In addition, we obtain the fol-
omit the log factor. Lemma[4]3 bounds the error byowing corollary about specific problems:



COROLLARY 5.1. There is a PTAS for dominating set, edge
dominating set,r-dominating set, and clique-transversal
set in apex-minor-free graphs. There is a PTAS for con-
nected dominating set, connected edge dominating set, and
connectedr-dominating set in planar and single-crossing-
minor-free graphs; and almost-PTASs for the same problems
in apex-minor-free graphs. Furthermore, all of these PTASs
are EPTASSs for planar graphs.

Here we use that dominating set, and therefore any
parameter bounded above by dominating set, satisfiegthe
bound for apex-minor-free graphs [26].

5.1 Separation Property. For contraction-bidimensional
parameters, the exact requirements on the problem are

(b) For each node in the tree decomposition, consider the

cutC’ formed by the vertices in the corresponding bag.
For each connected componekit resulting from the
cut, apply then-approximation algorithm to the graph
G[X U C’] with vertex setC’ U (C; N X), and call
the approximate solution cost theeight of the con-
nected componenX. Cluster the connected compo-
nents into two groups by repeatedly placing the heavi-
est connected component into the lighter group. Among
all cuts, choose the one for which the ratio between the
weights of the heavier group and lighter group is closest
to 1. Add the vertices of this cuf” to the overall vertex
cutC'. For each of the two groups, we take the union

of all connected components in the group and form the
graphG;[Y U C']. The two graphs resulting from the
two groups are the replacement graphsdor

slightly different but similarly straightforward. The main

distinction is that the connected components are always corf- For graphG; in the set whose-approximate solution cost is

sidered together with the cGt. Specifically, for the duration at mosth(e), find the optimal solution to the O@l(?g%?!l)zeodgot)-

of this section, a problem has tiseparation propertyf it lem with graph(z; and vertex se(’; using a2 V=t

satisfies the following two conditions: flxled-parameter algorithm. (For planar and s'lngle-crossmg-
minor-free graphs, we can in fact use any fixed-parameter

algorithm for the treewidth parameter.) For graphs in
the set whosex-approximate solution sef is larger than
C; U E(G[C;]), we use the existing-approximate solution.

1. There is a polynomial-time algorithm that, (a) given any graph
G, (b) given any vertex se€, (c) given a set of graphs
{G1,G2,...,G,} such that{V(G;) — C | 1 < ¢ <
r} partitions V(G) — C, and (d) given a solutiors; to
the generalized problem for each gra@h with vertex set
C N V(G;), computes a solutiols to the original problem
for G such that the number of vertices and/or edgesSin
within any unionG’ = U;crG; of some of theG;'s is
Y icr 1Si| £ O(|C)) forany I C {1,2,...,r}. In particular
the total cost ofS is at mosty_;_, |S:| + O(|CY).

6. Combine these solutions into an approximate solution for the
original input graph using the Separation Property.

Analysis sketch. The main difference in the analysis,
compared to the minor-bidimensional case of Sedtion 4, is
' that for some of the graph; in the final set in Step|5 we

use approximate solutions instead of exact solutions. This

2. Given (a) any graplt, (b) any vertex set’, (¢) a setof graphs 4 roximation happens only when the vertex@gbecomes
éfrlt.tgﬁswa?i Scﬁjcgntgig)véfgpt’imil |sollut§iog)PST 7% too large. In this case we charge the excess cost from the
G anv union@ — U. G of some of theG.'s. ] c approximate solution to the nodes in that vertex@ut We

, any union .c1G; of some of theG;'s, I C !

{1,2,...,r} satisfieSOPT N G| = [OPT(G")| + O(|C). argue that' each node 6fge'ts charged to at most'tW|cej, once
on each side of the recursion where that nod€' @ split.
A smaller difference is that, as we split, we increase the

T , o _ sums of the sizes of the optimal solutions among the graphs

1. Maintain an overall vertex cut’ in the original graph. Ini- i, the set, because of the duplication of nodes in the vertex
tially C = 0. setC. As a result, most bounds gain lower-order terms.

2. Maintain a set of graph§Gi1, G, ... ., G }. Initially, this set These terms can be compensated by enlartfingslightly.
consists of just the input graph.

3. Maintain, for eachi € {1,2,...,r}, the a-approximate 6 APTAS for Graphs of Locally Bounded Treewidth
Z(r)]lolljt\l/zrr]tecfzg tzecgﬁnﬁzgiiéd problem involving grah The main result of this section is as follows.

4. For any graphG; in this set whosex-approximate solution THEOREM6.1. For any ¢ > 0, the minimum connected
cost is larger thah(s) and whosex-approximate solution setdominating set problem on minor-closed graphs of lo-
S'is at most as large &, U E(G[Ci]), we cut the graphiinto cally bounded treewidth has an approximation scheme
two replacement graphs as follows: with approximation ratio 1 + ¢ and running time

(a) Compute a tree decomposition 6 of width w ap- nC((1/9)1e(1/)lglen),

proximately equal to the treewidtbw(G;) of G;. ) -
For planar graphd [56] and single-crossing-minor-free The proof of this theorem captures the main ideas of

graphs([29], we obtain a constant-factor approximatioRUr extension of Baker’s approach to nonlocal properties like
w = O(tw(G5)). In general, we obtain a log-OPT apconnected dominating set. In particular, the same approach
proximation [5]:w = O(tw(G;) lg tw(G,)). can be used to obtain analogous results for connected vertex

5.2 Algorithm. The algorithm proceeds as follows:



cover, connected edge-dominating set, and connected We are now ready to describe the algorithm.

dominating set. In Sectidr] 7, we show how we can reduce First we compute thé3 + §)-approximate solutior’3
the running time frormm©(2l27) to0 n) | j.e., obtaining a from Theorem 683. Lek = qggig(lgn +1). We
PTAS, on planar graphs. We conjecture that in fact the sagi@&ume that is small enough so that > 4(lgn + 1);
trick can be applied to obtain a PTAS for apex-minor-fregherwise, the(3 + d)-approximate solutionB gives the

graphs. _ o ~ desired approximation factor.
The f0||0W|ng generallzatlon of connected domlnatlng Next we decompose the vertex set @finto vertex
set plays an important role in our algorithms. sets such that the subgraph induced on each set has small

DEFINITION 6.1. The generalized connected dominatin&loQarithmiC) treewidth. In a breadth-first search tree from
set (GCDS)problem is defined as follows. Given a graph an arbitrary vertex) € V(G), let L, denote the set of
and a setl C V(G) calledthe interiof determine a subsetVertices atayer (or levelor distancé & in the tree. Also Igt
D of V(G) of minimum size with the property that, for ever?[ev fl'= LeU Leyy U -+~ Ly denote several consecutive
connected componeft of I, the dominating vertices in or [aYers. Then the vertex sets in our decomp_osmon are as
neighboringC, DN (C'UN(C)), dominateC' and belong to follows: for 1 < i < k andj > 0, we defineL;; =
one connected component@fD)]. LIG =Dk +i—2(gn +1),jk+i+2(1gn + 1) — 1].
By the results of Demaine and Hajiaghayi [26], the
In particular, if we sef = V/(G), then the GCDS prob- yreewidth of anyr consecutive layers in a graph from a
lem is the same as the connected dominating set problemyjnor-closed class of graphs of locally bounded treewidth
In Sectiorf 6.1L, we describe the APTAS algorithm except at mostcr + d for some constants andd. Thus, the
for one dynamic programming subroutine. In Secfior] 6 geewidth ofG|[L;;] is at most(k + 4(lgn + 1)) + d. Using
we prove correctness and analyze the approximation rafif.aigorithm of Amir[[5], we construct a tree decomposition
We require a dynamic programming subroutine for GCDS @fwidth at mostil (c(k + 4(lgn + 1)) + d) for eachG/[L;]
graphs of bounded treewidth given by the following theoreny; O(23-698(c(k+4(1g n+1)+d)py3+2) time. Note that we could

THEOREM®6.2. The GCDS problem for given gragiiand NOt use existing exact tree-decomposition algorithms [12]

set] can be solved in im®(w® - [V(G)|) when a tree because the running time would be too high. o
decomposition of width for G is given. We solve a GCDS instance on eak}) with the interior

_ _ defined as the séf; = L[(j—1)k+1i, jk+i—1]. In contrast
We omit the proof of this theorem because of lack @ Baker's approach, here the number of layers (thickness)
space in this extended abstract. Even this theorem solg@sside the interior i€ (Ign). This aspect plays a crucial
an open problem of[1]. Previously it was not believed thgjle in Lemma[6Jl. By Theorem 6.2, we can compute
such nonlocal properties as connected dominating set catlgl optimal solution®pt;; for each instanc&[ L], I;; in
be captured by bounded-treewidth dynamic programs. — O((k + 2(Ign + 1))*+2(en+D |V (G[L,;])|) time.
Let OptZ = szooptij U B;, WherEBi = UjZOBij and
6.1 Algorithm. In this section, we present the APTAS3,; = BN (L[(j — 1)k +4,(j — 1)k + i + 1] U L[k +
algorithm for connected dominating set in a minor-closgd- 1, jk + 4]). Here we see another of the main differences
class of graphs of locally bounded treewidth. As a startii@m Baker's approach: the auxiliary approximate solution
point, we consider a simple constant-factor approximatigh serves as a “backbone” to connect adjacéntt;;’s.
for connected dominating set: Because, for fixed, each vertex of7 appears in at most

THEOREM6.3. For any § > 0, there is a(3 + 4)- two L's, computing eactOpt; takesO((k + 2(lgn +

k+2(lgn+1) i
approximation algorithm for the connected dominatin%;)) n) time,

X We takeOpt,, to be the solution of minimum weight
set problem on minor-closed graphs of locally bounded .
treewidth. amongOpty, Opta, . .., Opty, as our solution on grapty.

In the next subsection, we show that it has at most a ratio
Proof. Using the algorithm of Eppsteiri [34] or Demaine and + ¢ of the optimal. A time bound of©((1/)18(1/2)lglgn)
Hajiaghayi [26], we know that dominating set has a PTAS dollows immediately from the time needed to construct the
minor-closed graphs of locally bounded treewidth. Now, one cage decompositions, the number®@pt;’s, and the time to
easily observe that for any dominating 2in a connected graph compute each of them.
G, we can add at most|D| — 2 vertices to makeD connected
(by adding two vertices we can decrease the number of conne eéi

. ~— ~6.2 Correctness and Approximation Factor. First, we
components by one). Thus we obtain a connected dommatmgsﬁ%w the correctness of the algorithm. By the properties of
whose size i§1+6")OPT +2(1+6")OPT —2 whereOPT is the Y - BY Prop

size of a minimum dominating set and thus a lower bound on thptij 's, Opt; is a dominating set fof (for fixed, each ver-

size of a minimum connected dominating set. The result follo€X @PPears once in some interior $gtand thus dominated
immidiately by takings’ = /3. o by atleast one vertex). This meafigt,, is a dominating set



for graphG. Next, we consider the connectivity @fpt,,. two groups of CC vertices that are disconnected’ilout some
For any; and for any connected componénbf the interior pairs must be connected for a solution to GCDS. If we connect any
of L,,;, if a connected componefit’ of B,, has a vertex in two CC vertices from the two groups, we will re-obtain the desired
C, thenC’ must connect to the connected compon@ptfor ~ connectivity. Any pair of CC vertices that must be connected for a
C. In this way D¢ makes up the connections of backbdhe solution to GCDS myst belong to a common coqnected component
lost from cutting a part if€'. Thus, the connectivity apt,, © Cl1] (by definition of GCDS). Therefore, if we start from
follows from the connectivity of the backborig This is the suc_h a pair of CC vlertlces and explore neighboring CC vertices,
. o which all come from/;; and thus the same connected component of
main part where we use the f:onnectlwty _Of backbéne G|[I};], we eventually obtain two CC vertices whose corresponding
We now compare the size @pt,, with respect t0 @ connected components @ are at distance at most three (because
globalOPT, i.e., a minimum connected dominating set ove p7;; is a dominating set fof,;). Hence, there are at most two
the whole grapltz. More precisely, we show th Zjﬁ;“' < vertices in a connected component of,a which connect these

1+e. two connected components. We add these two vertic&s and
Before starting the proof, we need the following fact§e resulting connections, restoring the property thas a tree.
and the following important lemma. Because these new vertices do not belongy;to- I;;, they will not
be removed as degree-two vertices in the future.
FacT 6.1. Each vertex of3 appears in at most foubpt;, By the end of this process, we have connected any two
1<i<k. CC vertices that should be connected for a solution to GCDS,

without having increased the total number of vertices of the forest.
However, these connections may use vertices outBige but a
solution to GCDS must be containedis;. We claim that, in fact,

. Il vertices in the forest are inside ;. Define theheightof a vertex
intersect, becausé > 4(lgn + 1) (see the statement sz) be the number of edges along a shortest path to a CC vertex

Theorerr@l). This implies that each vertex appears (Paughly corresponding to which layer surroundifjgcontains the
exactlyk + 4(Ign + 1) setsL;;. vertex). Thus we view CC vertices mves Along any path from a

leaf to a vertex of height, at least h/2| of the vertices must have
LEMMA 6.1. LetOPT be an optimal solution to connectedjegree at least three. Hence, the number of leaves below a node of
dominating set in the whole gragh, let L;; = L[(j —1)k+ heighth must be at least."/2!. Because there are at mesieaves,
i—2(lgn+1), jk+i+2(1gn+1)—1] bek+4(lgn+1) layers the height of any node is at mdstg n + 1. Therefore, every vertex
of this graph, and leOpt;; be the solution to the GCDSin the forest is contained ifi;;, so we obtain a solution to GCDS
dynamic program in layei;; with interior I,; = L[(j — of the desired size. O

D)k +1i,jk + i —1]. Then we havgOPT N L;j| > |Opt;|. Roughly speaking, Lemnja 6.1 implies that the thickness that
. ] we have considered for boundary layersIig; is enough to get
Proof. We claim that we can redud®PT' N Li; to a solution to ¢onnected all connected components of dominating vertices in its
GCDS inG[L;] without increase in size. This claim immediatelyyierior.
implies the lemma becaus®@pt;; is a solution of minimum size Using Lemma[6]1 and Facfs p.1 afid]6.2, we have
to GCDS. Consider the intersecti6hPT;; = OPT N I;; where [Fac(6.1]~% _ k By
I =L{(j—1 . ) ; B I |Optm| < > iz [Opti|+4|B| < 30, ijo |Opti; |+
i = L[(j —1)k+1i—1, jk+1] consists ofl;; plus one additional [LemmaBd]x~F

layer on each side. We easily observe #dtT;; is a dominating (12+49)[OPT| < > ic1 2j>0 [OPTN Lij|+(12+
set forI;;. The only issue is that some verticesGiPT}; are not 45)|OPT|=IFaC2 k. + 40gn + 1) + 12 + 46) - |OPT.
connected but need to be for a solution to GCDS. Recalling thatk = m(lgn + 1), we have|Opt,| <

To abstract the connectivity requirements, we define a graphy g ,,41)+12445 OPT| < (1 L (4+12448) (g nt1) ) OPT| =
H as follows. Start with the subgraph@finduced byOPT —I;;. k Sh= (Ig n+1)/[(16+46)<] -
For each connected componefitof OPT;;, we add a vertexc (1 +¢)|OPT]|, as desired.
to H and connect it to every vertex of H that has a neighbor
in connected componer® in the original graphG. We call 7 PTAS for Planar Graphs
Ch a connected cfompqnent_ (C@prtex; inté:itively, it r:eﬂ;;rg;ents In this section we prove the following strengthening of
the contraction of vertices in a connected compone - .
Because) PT is a connected dominating séf, is connected. Theore@ for planar graphs:

To fix the connectivity requirements, we maintain a forest iRHEOREM7.1. For any ¢ > 0, the minimum connected
H, consisting initially of just a spanning tree &f. We repeatedly dominating set problem on planar graphs has a polynomial-
perform one of the following two modifications to a tréein the time approximation scheme that achieves an approximation
current forest. First, we try to remove froffi any vertexv that ratio 1 + ¢ in n2(1/9 time.

leaves connected all CC vertices that should be connected in a

GCDS solution. This operation splifs into possibly several treesAt & high level, our PTAS for planar graphs has only two
in the forest. Second, if there exist two degree-two verticemd differences compared to the APTAS for graphs of bounded

vin Li; — I}; connected by an edge ifi, then we remove both local treewidth from Sectiop| 6. First, we change the layer-
uw andwv from T. As a result of this removal, we obtain exactlyng of the graph from breadth-first layers to the “outerplanar

FACT 6.2. For fixedi, L;; and L;(;;1) intersect only in
two consecutive layers. Howevér; and L;(; o) do not



layering” of Baker’s original papel[8]. Second, we replade in H-minor-free graphs, and ever®(r?)-contraction-
the dynamic program for graphs of bounded treewidth witlidimensional parametér in apex-minor-free graphs, sat-
a new dynamic program for graphs of bounded “outerpliafy a treewidth-parameter bound ©f(G) = O(vk). This
narity” (a stronger condition than bounded treewidth). Thesult allows us to extend our approximation algorithms for
main difference is that the dynamic program must expldibunded-genus graphs from Theorgmg 4.1 5.1 +0
the planarity of the original graph and the bounded outeninor-free and apex-minor-free graphs, respectively.
planarity of the subgraph given to the dynamic program, so Another recent result is a®(1)-approximation algo-
that its running time i2°@n°M) instead ofw®®)n®™) . rithm for treewidth in H-minor-free graphs[[35]. Us-
The basic idea is that we encode the second and third caog-this algorithm instead of th@(lg OPT)-approximation
dinates of colors more efficiently using the planar structuoé [5], we avoid thelgn term in the bounds of Theorem
of the graph, leading to Catalan structures (which have and5ll. Thus we extend our bounds and PTASs for
dinality 2°(*)) instead of general partition structures (whichlanar and single-crossing-minor-free graphs to apply to

have cardinalitys®(®)). H-minor-free graphs fo®(r2)-minor-bidimensional prob-
In the absence of space, we omit the formal proof in tHsms and to apex-minor-free graphs fo(r2)-contraction-
extended abstract. bidimensional problems. This PTAS result is the most gen-

, i eral one could hope for in the context of bidimensionality.
8 Discussion
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