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Abstract
We introduce a new framework for designing fixed-parameter al-
gorithms with subexponential running time—2O(

√
k)nO(1). Our

results apply to a broad family of graph problems, calledbidi-
mensional problems, which includes many domination and cov-
ering problems such as vertex cover, feedback vertex set, min-
imum maximal matching, dominating set, edge dominating set,
clique-transversal set, and many others restricted to bounded-genus
graphs. Furthermore, it is fairly straightforward to prove that a
problem is bidimensional. In particular, our framework includes
as special cases all previously known problems to have such subex-
ponential algorithms. Previously, these algorithms applied to planar
graphs, single-crossing-minor-free graphs, and map graphs; we ex-
tend these results to apply to bounded-genus graphs as well. In a
parallel development of combinatorial results, we establish an up-
per bound on the treewidth (or branchwidth) of a bounded-genus
graph that excludes some planar graphH as a minor. This bound
depends linearly on the size|V (H)| of the excluded graphH and
the genusg(G) of the graphG, and applies and extends the graph-
minors work of Robertson & Seymour.

Building on these results, we develop subexponential fixed-
parameter algorithms for dominating set, vertex cover, and set cover
in any class of graphs excluding a fixed graphH as a minor. In
particular, this general category of graphs includes planar graphs,
bounded-genus graphs, single-crossing-minor-free graphs, and any
class of graphs that is closed under taking minors. Specifically, the
running time is2O(

√
k)nh, whereh is a constant depending only

on H, which is polynomial fork = O(log2 n). We introduce
a general approach for developing algorithms onH-minor-free
graphs, based on structural results aboutH-minor-free graphs at the
heart of Robertson & Seymour’s graph-minors work. We believe
this approach opens the way to further development for problems
onH-minor-free graphs.
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1 Introduction

Dominating setis a classic NP-complete graph optimiza-
tion problem which fits into the broader class ofdomina-
tion and coveringproblems on which hundreds of papers
have been written; see e.g. the survey [23]. A sample ap-
plication is the problem of finding sites for emergency ser-
vice facilities such as fire stations. Here we suppose that
we can afford to buildk fire stations to cover a city, and
we require that every building is covered by at least one
fire station. This problem isk-dominating set (finding a
dominating set of sizek) in the graph where edges repre-
sent suitable pairings of fire stations with buildings. In this
application, we can afford high running time (e.g., several
weeks of real time) if the resulting solution builds fewer fire
stations (which are extremely expensive). Thus, we prefer
exactfixed-parameteralgorithms (which run fast provided
the parameterk is small) over approximation algorithms,
even if the approximation were within an additive constant.
The theory of fixed-parameter algorithms and parameterized
complexity has been thoroughly developed over the past few
years; see e.g. [11, 15, 17, 18, 20, 2].

In the last two years, several researchers have obtained
exponential speedups in fixed-parameter algorithms for var-
ious problems on several classes of graphs. While most
previous fixed-parameter algorithms have a running time
of O(2O(k)nO(1)) or worse, the exponential speedups re-
sults in subexponential algorithms with running times of
O(2O(

√
k)nO(1)). For example, the first fixed-parameter al-

gorithm fork-dominating set in planar graphs [15] has run-
ning timeO(11k|G|); subsequently, a sequence of subex-
ponential algorithms and improvements have been obtained,
starting with running timeO(46

√
34kn) [1], thenO(227

√
kn)

[24], and finally O(215.13
√
kk + n3 + k4) [18]. Other

subexponential algorithms for other domination and cov-
ering problems on planar graphs also have been obtained
[1, 2, 7, 26, 22].

However, all of these algorithms apply only to pla-
nar graphs. In another sequence of papers, these results
have been generalized to other classes of graphs: map
graphs [11], which include planar graphs;K3,3-minor-free



graphs andK5-minor-free graphs [14], which include pla-
nar graphs; and single-crossing-minor-free graphs [13, 14],
which includeK3,3 or K5-minor-free graphs. These algo-
rithms [11, 13, 14] apply to dominating set and several other
problems related to domination, covering, and logic.

Algorithms forH-minor-free graphs for a fixed graph
H have been studied extensively; see e.g. [8, 21, 9, 25, 28].
In particular, it is generally believed that several algorithms
for planar graphs can be generalized toH-minor-free graphs
for any fixedH [21, 25, 28].H-minor-free graphs are very
general. The deep Graph-Minor Theorem of Robertson &
Seymour shows that any graph class that is closed under
minors is characterized by excluding a finite set of minors.
In particular, any graph class that is closed under minors
excludes at least one minorH.

Our results. We introduce a framework for extending
algorithms for planar graphs to apply toH-minor-free graphs
for any fixedH. In particular, we design subexponential
fixed-parameter algorithms for dominating set, vertex cover,
and set cover (viewed as one-sided dominating in a bipartite
graph) forH-minor-free graphs. Our framework consists of
three components, as described below. We believe that many
of these components can be applied to other problems and
conjectures as well.

First we extend the algorithm for planar graphs to
bounded-genus graphs. Roughly speaking, we study the
structure of the solution to the problem ink×k grids, which
form a representative substructure in both planar graphs and
bounded-genus graphs, and capture the main difficulty of the
problem for these graphs. Then using Robertson & Sey-
mour’s graph-minor theory, we repeatedly remove handles
to reduce the bounded-genus graph down to a planar graph,
which is essentially a grid.

Second we extend the algorithm toalmost-embeddable
graphs which can be drawn in a bounded-genus surface ex-
cept for a bounded number of “local areas of non-planarity”,
called vortices, and for a bounded number of “apex” ver-
tices, which can have any number of incident edges that are
not properly embedded. Because the vortices have bounded
pathwidth, their number is bounded, and the number of
apexes is bounded, we are able to provide a solution to
almost-embeddable graphs using our solution to bounded-
genus graphs.

Third we apply a deep theorem of Robertson & Seymour
which characterizesH-minor-free graphs as a tree structure
of pieces, where each piece is an almost-embeddable graph.
Using dynamic programming on such tree structures, analo-
gous to algorithms for graphs of bounded treewidth, we are
able to combine the pieces and solve the problem forH-
minor-free graphs.

The first step of this procedure, for bounded-genus
graphs, applies to a broad class of problems called “bidi-
mensional problems”. Roughly speaking, a parameterized

problem isbidimensionalif the parameter is large (linear) in
a grid and closed under contractions. Examples of bidimen-
sional problems include vertex cover, feedback vertex set,
minimum maximal matching, dominating set, edge domi-
nating set, clique-transversal set, and set cover. We obtain
subexponential fixed-parameter algorithms for all of these
problems in bounded-genus graphs. As an special case, this
generalization settles an open problem about dominating set
posed by Ellis, Fan, and Fellows [16]. We also improve sub-
stantially on the results of [10]. Along the way, we estab-
lish an upper bound on the treewidth (or branchwidth) of a
bounded-genus graph that excludes some planar graphH as
a minor. This bound depends linearly on the size|V (H)|
of the excluded graphH and the genusg(G) of the graphG,
and applies and extends the graph-minors work of Robertson
& Seymour.

This paper is organized as follows. First, we introduce
the terminology used throughout the paper, and formally
define tree decompositions, treewidth, and fixed-parameter
tractability in Section 2. We construct a general framework
for obtaining subexponential parameterized algorithms on
graphs of bounded genus in Section 3. First we introduce the
concept of bidimensional problem, and then prove that every
bidimensional problem has a subexponential parameterized
algorithm on graphs of bounded genus. The proof techniques
used in this section are very indirect and are based on
deep Theorems from Robertson & Seymour’s Graph Minors
XI and XII. As a byproduct of our results we obtain a
generalization of Quickly Excluding Planar Graph Theorem
for graphs of bounded genus. In Section 4 we make a step
further by developing subexponential algorithms for graphs
containing no fixed graphH as a minor. The proof of this
result is based on combinatorial bounds from the previous
section, a deep structural theorem from Graph Minors XIV
(one of the cornerstones of the Graph Minors Theory), and
complicated dynamic programming. Finally, in Section 5,
we present several extensions of our results and some open
problems.

2 Definitions

All the graphs in this paper are undirected without loops or
multiple edges. The reader is referred to standard references
for appropriate background [5].

The (disjoint) unionof two disjoint graphsG1 andG2,
G1 ∪ G2, is the graphG with merged vertex and edge sets:
V (G) = V (G1) ∪ V (G2) andE(G) = E(G1) ∪ E(G2).

Given an edgee = {x, y} of a graphG, the graphG/e
is obtained fromG by contracting the edgee; that is, to get
G/e we identify the verticesx andy and remove all loops
and duplicate edges. A graphH obtained by a sequence of
edge-contractions is said to be acontractionof G. H is a
minor of G if H is the subgraph of a some contraction of
G. We use the notationH � G (resp.H �c G) for H is a



minor (a contraction) ofG. A graph classC is aminor-closed
class if any minor of any graph inC is also a member ofC.
A minor-closed graph classC isH-minor-freeif H 6∈ C. For
example, a planar graph is a graph excluding bothK3,3 and
K5 as minors.

The notion of treewidth was introduced by Robertson
& Seymour [29] and plays an important role in their funda-
mental work on graph minors. To define this notion, first we
consider the representation of a graph as a tree, which is the
basis of our algorithms in this paper. Atree decomposition
of a graphG, denoted byTD(G), is a pair(χ, T ) in which
T is a tree andχ = {χi|i ∈ V (T )} is a family of subsets
of V (G) such that: (1)

⋃
i∈V (T ) χi = V (G); (2) for each

edgee = {u, v} ∈ E(G) there exists ani ∈ V (G) such that
bothu andv belong toχi; and (3) for allv ∈ V (G), the set
of nodes{i ∈ V (T )|v ∈ χi} forms a connected subtree of
T . To distinguish between vertices of the original graphG
and vertices ofT in TD(G), we call vertices ofT nodesand
their correspondingχi’s bags. The maximum size of a bag in
TD(G) minus one is called thewidth of the tree decompo-
sition. Thetreewidthof a graphG (tw(G)) is the minimum
width over all tree decompositions ofG. A tree decomposi-
tion is called apath decompositionif T = (I, F ) is a path.
Thepathwidthof a graphG (tw(G)) is the minimum width
over all possible path decompositions ofG.

A branch decompositionof a graph (or a hyper-graph)
G is a pair(T, τ), whereT is a tree with vertices of degree
1 or 3 andτ is a bijection from the set of leaves ofT
to E(G). The order of an edgee in T is the number of
verticesv ∈ V (G) such that there are leavest1, t2 in T
in different components ofT (V (T ), E(T ) − e) with τ(t1)
and τ(t2) both containingv as an endpoint. Thewidth of
(T, τ) is the maximum order over all edges ofT , and the
branchwidthof G, bw(G), is the minimum width over all
branch decompositions ofG.

Robertson & Seymour [(5.1) in [31]] proved that for
any connected graphG where |E(G)| ≥ 3, bw(G) ≤
tw(G) + 1 ≤ 3

2bw(G). Also, we will need the following
result of Robertson, Seymour & Thomas. (Theorems (4.3)
in [31] and (6.3) in [34].)

THEOREM 2.1. ([34]) Let r ≥ 1 be an integer. Every
planar graph with no(r, r)-grid as a minor has branch-
width≤ 4r − 3.

A parameterP is any function mapping graphs to
nonnegative integers. Theparameterized problemassociated
with P asks, for some fixedk, whetherP (G) ≤ k for a given
graphG.

Let G be a graph and letv ∈ V (G). Also suppose we
have a partitionPv = (N1, N2) of the set of the neighbors
of v. Define thesplitting of G with respect tov andPv
to be the graph obtained fromG by (i) removing v and
its incident edges, (ii) introducing two new verticesv1, v2

and (iii) connectingvi with the vertices inNi, i = 1, 2. If
H is the result of the consecutive application of the above
operation on some graphG then we say thatH is asplitting
of G. If additionally in such a splitting process we do not
split vertices that are results of previous splittings then we
say thatH is afair splitting of G.

We say a parameterP is α-splittable, if for every graph
G and for each vertexv ∈ V (G) the result of splittingG′

with respect tov hasP (G′) ≤ P (G) + α. Many natural
graph problems areα-splittable for smallα. Examples of
1-splittable problems are dominating set, vertex cover, edge
dominating set, independent set, clique-transversal set and
feedback vertex set among many others.

3 Bidimensional Parameters

In this section, we define a general framework of parame-
terized problems for which subexponential algorithms with
small constants can be obtained. Our framework is suf-
ficiently broad that an algorithmic designer only needs to
check two simple properties of any desired parameter to de-
termine the applicability and practicality of our approach.

A partially triangulated(r × r)-grid is any graph ob-
tained by adding edges between pairs of nonconsecutive ver-
tices on a common face of a planar embedding of a(r × r)-
grid.
• A parameterP is calledminor bidimensional with density
δ if (i) contracting or deleting an edge in a graphG cannot
increaseP (G), and (ii) there exists a functionf, f(x) =
o(x) such that for the(r × r)-grid R, P (R) = (δr)2 +
f((δr)2).
• A parameterP is calledcontraction bidimensional with
densityδ if (i) contracting an edge in a graphG cannot
increaseP (G), (ii) there exists a functionf, f(x) = o(x)
such that for any partially triangulated(r × r)-grid R,
P (R) ≥ (δr)2 + f((δr)2), andδ is the smallest real number
for which this inequality holds.
In either case,P is calledbidimensional. Thedensityδ of
P is the minimum of the two possible densities (when both
definitions are applicable). We call the sublinear functionf
residual functionof P .

Many parameters are bidimensional, mention just a few.
Examples of minor bidimensional parameters along with
some estimations for their densities are: vertex cover (δ =
1/
√

2), feedback vertex set (FVS) (δ ≥ 1/2) and minimum
maximal matching (δ ≥ 1/

√
8). Examples of contraction

bidimensional parameters are dominating set (δ = 1/3),
edge dominating set (δ = 1/

√
14) and clique-transversal set

(δ ≥ 1/2
√

2).
Notice that density assigns a real number in(0, 1] to any

bidimensional parameter. This assignment defines atotal
order on all such parameters.

The class of bidimensional parameterized problems
contains all known from the literature planar graph parame-



ters with subexponetial parameterized algorithms. Recently,
Cai et al. [6] defined a classPlanar TMIN1 and proved
that for every graphG and parameterP ∈ Planar TMIN1,
tw(G) = O(

√
P (G)). Every problem inPlanar TMIN1

can be expressed as a special type of dominating set problem
on bipartite graphs (we refer to [6] for definitions and further
properties ofPlanar TMIN1) and Proposition 3.1 yields
immediately the result of Cai et al.

If P is a bidimensional parameter with densityδ and
residual functionf then we define thenormalization factor
of P asmin{β | ( δβ r)

2 ≤ (δr)2 + f(δr), for anyr ≥ 1 }.

3.1 The bounded treewidth approachAlmost all known
techniques for obtaining subexponential parameterized algo-
rithms on planar graphs are based on the following “bounded
treewidth approach” [1, 18, 24]:

(I1) Prove that the treewidth/branchwidth ofG is at most
c
√
P (G) for some constantc;

(I2) Compute the treewidth (or branchwidth) ofG;

(I3) If treewidth is> c
√
P (G) there is no solution to the

problem. If treewidth/branchwidth is≤ c
√
P (G) run

standard dynamic programming on graph of bounded

treewidth/branchwidth which takes2O(
√
P (G))n steps.

All previously known ways of obtaining the most im-
portant step (I1) are based on rather complicated techniques
based on separators. Let us first give some hints why bidi-
mensional parameters are important for the design of subex-
ponential algorithms on planar graphs. The proof of the next
lemma is easy and omitted.

LEMMA 3.1. LetP be a contraction (minor) bidimensional
parameter with densityδ and normalization factorβ. Then
P (G) < ( δβ r)

2 implies thatG excludes the(r × r)-grid as
a minor (and all partial triangulations of the(r× r)-grid as
contractions).

Theorem 2.1 and Lemma 3.1 imply the following.

PROPOSITION3.1. Let P be a bidimensional parameter
with densityδ and normalization factorβ. Then for any
planar graphG, tw(G) ≤ 4βδ

√
P (G).

Proposition 3.1 is a first hint on the importance of
bidimensionality for easy achieving low bounds like the ones
required for step(I1) of the bounded treewidth approach.
The main result of this section is the following generalization
of preposition 3.1. The proof is quite lengthy and technical
and can be found in the Appendix.

THEOREM 3.1. Suppose thatP is anα-splittable bidimen-
sional parameter (forα ≥ 0) with densityδ and normaliza-
tion factorβ (δ ≤ 1 andβ ≥ 1). Then for any graphG 2-cell

embedded in a surfaceΣ of Euler genuseg(Σ), bw(G) ≤
4βδ (eg(Σ) + 1)

√
P (G) + 1 + 8α(βδ (eg(Σ) + 1))2.

Theorem 3.1 is a general theorem which applies for any
α-splittable bidimensional parameter. For minor bidimen-
sional parameters the bound for branchwidth can be further
improved (we omit the proof because it is similar to that of
Theorem 3.1).

THEOREM 3.2. Suppose thatP is a minor bidimensional
parameter with densityδ and normalization factorβ (δ ≤ 1
and β ≥ 1). Then for any graphG 2-cell embedded in a
surfaceΣ of Euler genuseg(Σ), bw(G) ≤ 4βδ (eg(Σ) +
1)
√
P (G) + 1.

3.2 Combinatorial Results and Further Improvements
As part of their seminal Graph Minors series, Robertson &
Seymour proved the following:

THEOREM 3.3. ([30]) If G excludes a planar graphH as
a minor, then the branchwidth ofG is at mostbH and the
treewidth ofG is at mosttH , wherebH andtH are constants
depending only onH.

The current best estimate of these constants is the expo-
nential upper boundtH ≤ 202(2|V (H)|+4|E(H)|)5

[34]. How-
ever, combining Theorem 2.1 with a lemma of [34] we have
that the constants depend only linearly on the size ofH.

THEOREM 3.4. If G is a planar graph excluding a planar
graphH as a minor, then its branchwidth is at mostbH ≤
4(2|V (H)|+ 4|E(H)|).

Note that the parameterP (G) = |V (G)| is minor
bidimensional withδ andβ equal to1. Thus Theorems 3.1
and 3.2 implies the following generalization of Theorem 2.1
for graphs of bounded genus.

THEOREM 3.5. If G is a graph of genusg(G) with branch-
width more than4r(g(G) + 1), thenG has a(r× r)-grid as
a minor.

In the same way, we are able to quickly exclude any
planar graph from bounded-genus graphs. In other words,
we generalize Theorem 3.4 as follows:

THEOREM 3.6. If G is a graph of genusg(G) that excludes
a planar graphH as a minor, then its branchwidth is at most
bgenus
H,g(G) ≤ 4(2|V (H)|+ 4|E(H)|)(g(G) + 1).

3.3 Algorithmic ConsequencesAs we already discussed,
the combinatorial upper bounds for branchwidth/treewidth
are used for constructing subexponential parameterized al-
gorithms as follows. LetG be a graph andP be a parameter-
ized problem we need to solve onG. First one constructs a



branch/tree decomposition ofG that is optimal or ’almost’
optimal. A (θ, γ, λ)-approximation schemefor branch-
width/treewidth consists of, for everyw, anO(2γwnλ)-time
algorithm that, given a graphG, either reports thatG has
branchwidth/treewidth at leastw or produces a branch/tree
decomposition ofG with width at mostθw. For exam-
ple, the current best schemes are a(3 + 2/3, 3.698, 3 + ε)-
approximation scheme for treewidth [3] and a(3, lg 27, 2)-
approximation scheme for branchwidth [32].

If the branchwidth/treewidth of a graph is “large”, then
combinatorial upper bounds come into play and we conclude
that P has no solution onG. Otherwise we run dynamic
programming on graphs of bounded branchwidth/treewidth
and computeP (G). Thus we conclude with the main
algorithmic result of this section:

THEOREM 3.7. Let P be a bidimensional parameter with
density> δ. Suppose there is an algorithm for the associated
parameterized problem that runs inO(2awnb) time given
a tree/branch decomposition of the graphG with widthw.
Suppose also that we have a(θ, γ, λ)-approximation scheme
for treewidth/branchwidth. Setτ = 1 in the case of branch-
width andτ = 1.5 in the case of treewidth. Then the param-
eterized problem asking whetherP (G) ≤ k can be solved

in O(2max{aθ,γ}τ4 βδ (g(G)+1)(
√
k+1+µα βδ (g(G)+1))nmax{b,λ})

time for minor bidimensional parameterP (G) with density
δ and normalization factorβ, whereµ is 0 if P is minor
bidimensional and is2 if P is α-splittable contraction bidi-
mensional.

The first condition of the theorem holds with small val-
ues ofa andb for many examples of bidimensional param-
eters; see [1, 2, 7, 14, 18, 26]. Observe that the correct-
ness of our algorithms is simply based on Theorems 3.1
and 3.2, despite their nonalgorithmic natures, and(θ, γ, λ)-
approximation scheme for branch/tree decomposition. We
note that the time bounds we provide do not contain any
hidden constants, and the constants are reasonably low for
a broad collection of problems covering all the problems for
which there already exist2O(

√
k)nO(1)-time algorithms.

4 H-minor free graphs

In this section we will generalize the results on graphs of
bounded genus to graphs with excluded minors.

4.1 Characterizations ofH-minor-free graphs In this
section, we describe the deep theorem of Robertson &
Seymour on graphs excluding a fixed graphH as a minor.
Intuitively, Robertson-Seymour’s theorem says for every
graphH, everyH-minor-free graph can be expressed as
a tree-structure of “pieces”, where each piece is a graph
which can be drawn in a surface in whichH cannot be
drawn, except for a bounded number of “apex” vertices and
a bounded number of “local areas of non-planarity” called

vortices. Here the bounds only depend onH.
A graphG is h-almost embeddablein S if there exists a

vertex setX of size at mosth calledapicessuch thatG−X
can be written asG0 ∪G1 ∪ · · · ∪Gh, where
• G0 has an embedding inS;
• the graphsGi, calledvortices, are pairwise disjoint;
• there are (not necessarily distinct) facesF1, . . . , Fh of

G0 in S, and there are pairwise disjoint disksD1, . . . , Dh

in S, such that fori = 1, . . . , h, Di ⊂ Fi and Ui :=
V (G0) ∩ V (Gi) = V (G0) ∩Di; and
• the graphGi has a path decomposition(Bu)u∈Ui of

width less thanh, such thatu ∈ Bu for all u ∈ Ui. We note
that the setsBu are ordered by the ordering of their indicesu
as points inCi, whereCi is the boundary cycle ofFi in G0.
An h-almost embeddable graph is calledapex-freeif the set
X of apices is empty.

SupposeG1 andG2 are graphs with disjoint vertex-sets
andk ≥ 0 is an integer. Fori = 1, 2, letWi ⊆ V (Gi) form
a clique of sizek and letG′i (i = 1, 2) be obtained fromGi
by deleting some (possibly no) edges fromGi[Wi] with both
endpoints inWi. Consider a bijectionh : W1 → W2. We
define ak-sum1 G ofG1 andG2, denoted byG = G1⊕kG2

or simply byG = G1 ⊕ G2, to be the graph obtained from
the union ofG′1 andG′2 by identifying w with h(w) for
all w ∈ W1. The images of the vertices ofW1 andW2

in G1 ⊕k G2 form the join set. In the rest of this section,
when we refer to a vertexv of G in G1 orG2, we mean the
corresponding vertex ofv in G1 orG2 (or both).

Now, the result2 of Robertson & Seymour is as follows.

THEOREM 4.1. ([33]) For every graphH there exists an
integerh ≥ 0 only depending on|V (H)| such that every
H-minor-free graph can be obtained by at mosth-sums of
graphs of size at mosth andh-almost-embeddable graphs in
some surfaces in whichH cannot be embedded.

In particular, ifH is fixed, any surface in whichH can-
not be embedded has bounded genus. Thus, the summands
in the theorem areh-almost-embeddable graphs in bounded-
genus surfaces.

This structural theorem plays an important role in ob-
taining the rest of the results of this paper. From the algo-
rithmic point of view, because Robertson & Seymour [33]
have shown that every minor-closed class of graphs has a
polynomial-time membership test, one can observe the fol-
lowing theorem used by Grohe [19, Lemma 15]. Also, Sey-
mour [35] claims that we can construct the clique-sum de-
composition algorithmically using the proof of the Theo-
rem 4.1.

1It is worth mentioning that⊕ is not a well-defined operator and it can
have a set of possible results.

2Theorem 4.1 is very general and has not appeared in print so far.
However already several nice applications (see e.g. [4, 19]) are known.



THEOREM 4.2. For any graphH, there is an algorithm
with running timenO(1) that either computes a clique-sum
decomposition as in Theorem 4.1 for any givenH-minor-
free graphG, or outputs thatG is notH-minor-free. The
exponent in the running time depends onH.

LetG be anh-almost embeddable on a surface of genus
g in a clique-sum decomposition of a graphG∗. Suppose
the set of apices inG is X. AssumeG has clique-sums
with graphsG1, · · · , Gp via joinsetsW1, · · · ,Wp, where
|Wi| ≤ h, 1 ≤ i ≤ p. A cliqueWi is calledfully dominated
by a setS ⊆ V (G) if V (Gi) − X ⊆ NG∗(S), otherwise
cliqueWi is calledpartially dominatedbyS. A vertexv ofG
is fully dominatedby a setS if NG∗[V (G)−X](v) ⊆ NG∗(S).

We note that in the above definition, the only edges that
appear inG, but may not appear inG∗ are the edges among
vertices of|Wi|, 1 ≤ i ≤ p.

THEOREM 4.3. Let G be an h-almost embeddable on a
surface of genusg in a clique-sum decomposition of a graph
G∗. AssumeG has clique-sums with graphsG1, . . . , Gp via
join setsW1, . . . ,Wp, where|Wi| ≤ h, 1 ≤ i ≤ p. Suppose
G∗ has a dominating set of size at mostk. Then there is a
subsetS ⊆ V (G) of size at mosth such that if we remove
all fully dominated vertices which are not included in any
partially dominated cliqueWi fromG and obtain graphĜ,
tw(Ĝ) = O(h2g

√
k + h+ g2) = O(

√
k).

In order to prove Theorem 4.3 we need first some
preliminary results. A vertexw is calledr-dominatedby
a setS, if the distance fromw to a vertexv ∈ S is at
most r. An r-dominating setis a setS of vertices such
that every vertex of the graph isr-dominated byS. The
problem of finding anr-dominating set of sizek is also
called the(k, r)-center problem (see Section 5). From the
main combinatorial result of [11],r-dominating set is a 1-
splittable bidimensional parameter. This and Theorem 3.1
imply the following.

LEMMA 4.1. For any constantr, if a graphG of genusg
has anr-dominating set of size at mostk, then the treewidth
ofG is at mostO(g

√
k + g2).

Now, we extend this result for apex-freeh-almost em-
beddable graphs (the proof is not hard and is omitted).

LEMMA 4.2. Consider an apex-freeh-almost-embeddable
graphG = G0 ∪ G1 ∪ · · · ∪ Gh. Suppose further that, for
each1 ≤ i ≤ h, Ui = {u1

i , u
2
i , . . . , u

mi
i } forms a path in

G0. Thentw(G) ≤ (h2 + 1)(tw(G0) + 1)− 1.

LEMMA 4.3. For any constantr, an apex-freeh-almost-
embeddable graphG embedded on a surface of genusg with
a setS ⊂ V (G) of size at mostk whichr-dominates every
vertex ofG which is not in a vortex has treewidth at most
O(h2g

√
k + h+ g2) = O(g

√
k) (g andh are constants).

Proof. Consider an apex-freeh-almost embeddable graph
G = G0 ∪G1 ∪ · · · ∪Gh in a surfaceΣ of genusg. Suppose
Ui = {u1

i , u
2
i , . . . , u

mi
i }. Let G′0 be the graph obtained

from G0 by adding new verticesc1, c2, · · · , ch and edges
(ci, u

j
i ) and(uji , u

j+1
i ) (wherej + 1 is treated modulomi)

for all 1 ≤ i ≤ h and 1 ≤ j ≤ mi. Notice that by
adding these edges, verticesUi, 1 ≤ i ≤ h, form a path
in G0. If G has the aforementionedr-dominating set of size
k, thenG′0 has anr-dominating set of size at mostk + h:
just delete all vertices in ther-dominating set that are in
Gi − G0, 1 ≤ i ≤ h, and add instead all new vertices
c1, c2, · · · , ch to the r-dominating set. Notice thatG′0 is
embeddable onΣ, sinceG0 is embeddable. Thus, according
to Lemma 4.1 it has treewidth at mostO(g

√
k + h+g2). By

Lemma 4.2, the treewidth ofG′ = G′0 ∪ G1 ∪ · · · ∪ Gh is
O((h2 + 1)(g

√
k + h+ 1) + g2 − 1). Ui forming a path in

G0. BecauseG is a subgraph ofG′, the lemma follows.

Proof of Theorem 4.3SupposeX is the set of apices
in G, so thatG − X is an apex-freeh-almost embeddable
graph. LetD be a dominating set of sizek of G∗ and let
S = X ∩D. We claim thatS is our desired set. The rest of
the proof is as follows: we construct a setD̂ of size at most
k for Ĝ − X which 2-dominates every vertexv of Ĝ − X
which is not included in any vortex. Then sincêG − X is
an apex-freeh-almost-embeddable on a surface of genusg
with a 2-dominating-type set of size at mostk desired by
Lemma 4.3, it has treewidth at mostO(h2g

√
k + h + g2).

Then we can add vertices ofX to all bags and still have a tree
decomposition of widthO(h2g

√
k + h+g2), as desired. We

constructD̂ fromD as follows. First, we set̂D = D∩V (G).
For each1 ≤ i ≤ p, if D∩ (V (Gi)−Wi) 6= ∅ andWi 6⊆ X,
we add an arbitrary vertexw ∈ Wi −X to D̂. Here we say
a vertexv of D is mappedto a vertexw of D̂ if v = w or if
v ∈ D∩(V (Gi)−Wi) and vertexw ∈Wi−X is the one that
we have added tôD. One can easily observe that since each
new vertex inD̂ is in fact accounted by a unique vertex inD,
|D̂| ≤ k. It only remains to show thatD is a 2-dominating
set for Ĝ − X. If a vertexv ∈ V (Ĝ) − X is not fully-
dominated, then there exists a vertexw ∈ NG(v) which is
not dominated byS and thus not dominated byX (since
S = D ∩ X). It meansv is 2-dominated by a vertexu of
Ĝ−X which dominatesw (we note thatu can be originally
a vertexu′ in (V (Gi) −Wi) ∩ D which is mapped tou in
D̂). Also, we note that for each cliqueWi in which there
is a mapped vertex ofD, this vertex dominates all vertices
of Wi − X in Ĝ − X and thus we keep the whole clique
Wi − X in G. It only remains to show that every vertex of
a partially dominated cliqueWi is 2-dominated by a vertex
of Ĝ − X. We consider two cases: ifWi ∩ S = ∅, since
V (Gi) − Wi 6= ∅, there must exists a (mapped) vertex of
D̂ in Wi − X and we are done. Now assumeWi ∩ S 6= ∅.
If Wi ⊂ X thenWi ∩ (V (Ĝ) − X) = ∅ and we are done
(since there is no clique in̂G − X at all.) Otherwise, there



exists a vertexWi −X. If (V (Gi) −Wi) ⊆ NG∗(S) 6= ∅,
thenV (Gi) ∩ D 6= ∅. Thus there exists a mapped vertex
w ∈Wi −X and we have 1-dominated vertices ofWi −X.
As mentioned before ifD∩ (Wi−X) 6= ∅, verticesWi−X
are 1-dominated and we are done. The only remaining case
is the case in which there exists a vertexw ∈Wi−X which
is dominated by a vertexx ∈ V (G) and by assumptionw 6∈
NG∗(S) (we note that in this case, there is no dominating
vertex inV (Gi)−Wi for anyi for whichw ∈Wi.) It means
vertexx is not fully dominated and thus it remains in̂G. In
addition, vertexx 2-dominates all vertices ofWi −X, since
Wi is a clique inG and thus all vertices ofWi − X are 2-
dominated. This completes the proof of the theorem.

4.2 Main result

THEOREM 4.4. One can test whether anH-minor-free
graph G∗ has a dominating set of size at mostk in time
2O(
√
k)nO(1), where the constants in the exponents depend

onH.

Proof. First, using thenO(1)-time algorithm of Theorem 4.2,
we obtain the clique-sum decomposition of graphG∗. In
fact, this clique-sum decomposition can be considered as a
generalized tree decomposition ofG∗.

More precisely, we consider the clique-sum decomposi-
tion as a rooted tree. We try to find ak-dominating set in this
graph using a two-level dynamic programming. Suppose a
graphG is anh-almost embeddable on a surface of genus
g in a clique-sum decomposition of a graphG∗. Assume
G has clique-sums with graphsG0, . . . , Gp via join sets
W0,W1, . . . ,Wp, where|Wi| ≤ h, 0 ≤ i ≤ p. Also assume
thatG0 is considered as the parent ofG andG1, . . . , Gp are
considered as children ofG.
Colorings. The subproblems in our first-level dynamic
program are defined by a coloring of the vertices inWi. Each
vertex will be assigned one of3 colors, labelled0, ↑1, and
↓1. The meaning of the coloring of a vertexv is as follows.
Color 0 represents that vertexv belongs to the chosen
dominating set. Colors↓1 and↑1 represent that the vertex
v is not in the chosen dominating set. Such a vertexv must
have a neighborw in the dominating set (i.e., colored0);
we say that vertexw resolvesvertexv. Color ↓1 for vertex
v represents that the dominating vertexw is in the subtree
of the clique-sum decomposition rooted at the current graph
G, whereas↑ 1 represents that the dominating vertexw is
elsewhere in the clique-sum decomposition. Intuitively, the
vertices colored↓1 have already been resolved, whereas the
vertices colored↑1 still need to be assigned to a dominating
vertex.
Locally valid colorings. A coloring of the vertices ofWi is
calledlocally validwith respect to setsS1, S2 ⊆ V (G) if the
following properties hold:
• for any two adjacent verticesv andw in Wi, if v is colored

0, w is colored↓1; and
• if v ∈ S1 ∩Wi, thenv is colored0; and
• if v ∈ S2 ∩Wi, thenv is not colored0.

Our colorings are similar to that of previous work (e.g.,
[1]), but we use them in a new dynamic-programming frame-
work that acts over clique-sum decompositions instead of
tree decompositions.
Dynamic program subproblems. Our first-level dynamic
program has one subproblem for each graphG in the clique-
sum decomposition and for each coloringc of the vertices in
W0. Because each join set has at mosth vertices, the number
of subproblems isO(n · 3h). We defineD(G, c) to be the
size of the minimum “semi”-dominating set of the vertices
in subtree rooted atG subject to the following restrictions:
1. Vertices colored↓1 are adjacent to at least one vertex in
the dominating set. (Vertices colored↑1 are dominated “for
free”.)
2. Vertices colored0 are precisely the vertices in the domi-
nating set.
3. Vertices inW0 are colored according toc.

If we solve every such subproblem, then in particular,
we solve the subproblems involving the root node of the
clique-sum decomposition in which every vertex is colored
0 or ↓1 . The final dominating set of sizek is given by the
best solution to these subproblems.
Induction step. Suppose for each coloringc of Wi, 1 ≤
i ≤ p, we knowD(Gi, c). If the graphG is of size at most
h, then we can try all colorings inO(3h · h2) = O(1) time
(where the factor ofh2 is for checking validity). Thus, we
focus on almost-embeddable graphsG. First, we guess a
subsetX of size at mosth. Then for each subsetS of X,
we put the vertices ofS in the dominating set and forbid
vertices ofX−S from being in the dominating set. Now we
remove fromG all fully dominated vertices ofG − X that
are not included in any partially dominated cliqueWi. Call
the resulting grapĥG. By Theorem 4.3,tw(Ĝ) = O(

√
k).

We can obtain such a tree decomposition of width3 + 2/3
times optimum, in2O(

√
k)n3+ε time by a result of Amir [3].

All vertices absent from this tree decomposition are fully
dominated and thus, in any minimum dominating set that
includesS, they will not appear except the following case.
It is possible that up to|X − S| = O(h) vertices, which are
either fully dominated or belong toV (Gi) −Wi whereWi

is fully dominated, appear in the dominating set to dominate
vertices ofX − S. Call the set of such verticesS′. We can
guess this setS′ by choosing at mosth vertices among the
discarded vertices that have at least one neighbor inX − S,
and then addS′ to the dominating set. On the other hand, for
any partially dominated cliqueWi, we know that all of its
vertices are present in the tree decomposition; because they
form a clique, there is a bagαi in any tree decomposition
that contains all vertices ofWi. We find αi in our tree
decomposition and mapWi andGi to this bag. We also



assumeW0 is contained in all bags, because its size is at
mosth. Now, for each coloringc ofW0, we run the dynamic
program of Alber et al. [1] on the tree decomposition, with
the restriction that the colorings of the bags are locally valid
with respect toS1 := S ∪ S′ andS2 := X − S, and are
consistent with the coloringc of W0. For each bagαi to
which we mappedGi, we add to the cost of the bag the
valueD(Gi, c′) for the current coloringc′ of Wi. Using this
dynamic program, we can obtainD(G, c) for each coloring
c of W0.
Running time. The running time for each coloringc of W0

and each choice ofS is 2O(
√
k)n according to [1]. We have

3h choices forc, O(nh+1) choices forX, O(2h) choices
for S, andO(nh+1) choices forS′. Thus the running time
for this inductive step is6hn2h+22O(

√
k). There areO(n)

graphs in the clique-sum decomposition ofG. Therefore, the
total running time of the algorithm isO(6hn2h+32O(

√
k)) +

nO(1) (the latter term for creating the clique-sum decompo-
sition), which is2O(

√
k)nO(1) as desired.

5 Conclusions and Future Work

Theorem 4.4 can be used to obtain subexponential algo-
rithms not only for dominating set problems.

For example, for vertex cover one can use the following
reduction. For a graphG letG′ be the graph obtained fromG
by adding a path of length two between any pair of adjacent
vertices. The following lemma is obvious.

LEMMA 5.1. For anyKh-minor free graphG, h ≥ 4, and
integerk ≥ 1
• G′ isKh-minor free,
• G has vertex cover of size≤ k if and only ifG′ has a
dominating set of size≤ k.

Combining Lemma 5.1 with Theorem 4.4 we conclude
that parameterized vertex cover can be solved in subexpo-
nential time on graphs with an excluded minor.

Another example is the set cover problem. Given a
collectionC = (C1, C2, . . . , Cm) of subsets of a finite set
S = (s1, s2, . . . , sn), a set cover is a subcollectionC ′ ⊆ C
such that∪Ci∈C′ = S. Minimum set cover (SC) problem
is to find a cover of minimum size. For a SC problem
(C,S) its graphGS is a bipartite graph with bipartition
(C,S). Verticessi andCj are adjacent inGS if and only
if si ∈ Cj . Theorem 4.4 can be used to prove that SC
with GS H-minor free for some fixed graphH, can be
solved in subexponential time. In fact, for a given graphGS
we construct an auxiliary graphAS by adding new vertices
v, u, w and making adjacentv to {u,w,C1, C2, . . . , Cm}.
Then
• (C,S) has a set cover of size≤ k if and only ifAS has a
dominating set of size≤ k + 1.
• If GS isKh-minor free thenAS isKh+1-minor free.

We believe that we can generalize Theorem 4.4 in or-
der to obtain a fixed-parameter algorithm with exponen-
tial speed-up for the(k, r)-center problemonH-minor-free
graphs. The(k, r)-center problem is a generalization of the
dominating set problem in which one asks whether an in-
put graphG has≤ k vertices (called centers) such that
every vertex ofG is within distance≤ r from some cen-
ter. Demaine et al. [11] consider this problem for planar
graph and map graphs and present a generalization of dy-
namic programming mentioned in the proof of Theorem 4.4
to solve the(k, r)-center problem for graphs of bounded
treewidth/branchwidth. Using this dynamic programming
and a generalization of Lemma 4.3, one can obtain the de-
sired result forH-minor-free graphs. Using the solution for
the(k, r)-center problem in [11], we can solve the dominat-
ing set problem in constant powers ofH-minor-free graphs,
the most general class of graphs so far for which one can
obtain the exponential speed-up.

However it is an open and tempting question if our
technique can be generalized to solve in subexponential time
on graphs with excluded minors every problem solved in
subexponential time on bounded-genus graphs.

We also suspect that there is a strong connection be-
tween bidimensional parameters and the existence of linear-
size kernels for the corresponding parameterized problems
in bounded-genus graphs.

The final question is if the upper bounds Theorems 3.1
and 3.2 can be extended to larger graph classes. The first
step in this direction was obtained by the authors for minor-
closed graph families: A graph familyF has domination-
treewidth property if there is some functionf(d) such for
that every graphG ∈ F with dominating set of size≤ k,
tw(G) ≤ f(k). It was shown that a minor-closed graph
family has domination-treewidth property if and only if this
is bounded local treewidth family. We conjecture that for any
bidimensional parameterP and minor-closed graph family
F , tw(G) = O(

√
P (G)) for everyG ∈ F if and only ifF

is of bounded local treewidth. This conjecture was recently
proved for the dominating-set parameter [12].
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A Proof of Theorem 3.1
We need first some basic definitions and results.

A surfaceΣ is a compact 2-manifold, without boundary. A
line in Σ is subset homeomorphic to[0, 1]. AnO-arc is a subset of
Σ homeomorphic to a circle. LetG be a graph 2-cell embedded in
Σ, i.e., every region in the embedding is homeomorphic to a disc.
To simplify notations we do not distinguish between a vertex ofG
and the point ofΣ used in the drawing to represent the vertex or
between an edge and the line representing it. We also considerG
as the union of the points corresponding to its vertices and edges.
That way, a subgraphH of G can be seen as a graphH where
H ⊆ G. We call by region of G any connected component of
Σ − E(G) − V (G). (Every region is an open set.) We use the
notationV (G), E(G), andR(G) for the set of the vertices, edges
and regions ofG.

If ∆ ⊆ Σ, then∆ denotes theclosureof ∆, and the boundary
of ∆ is bd(∆) = ∆ ∩ Σ−∆. An edgee (a vertexv) is incident
with a regionr if e ⊆ bd(r) (v ⊆ bd(r)).

A subset ofΣ meeting the drawing only in vertices ofG is
calledG-normal. If an O-arc isG-normal then we call itnoose.
The length of a noose is the number of its vertices.∆ ⊆ Σ is an
open disc if it is homeomorphic to{(x, y) : x2 + y2 < 1}. We say
that a discD is boundedby a nooseN if N = bd(D). A graph
G 2-cell embedded in a connected surfaceΣ is θ-representativeif
every noose of length< θ is contractable (null-homotopic inΣ).

Lemma A.1 bounds the representativity of graphs excluding
some graphs as a minor/contraction (we remove its proof because
of lack of space).

LEMMA A.1. LetG be a graph 2-cell embedded in a non-planar
surfaceΣ of representativity at leastθ. ThenG contains as a
contraction a partially triangulated(θ/4× θ/4)-grid.

The Euler genuseg(Σ) of a nonorientable surfaceΣ is equal
to the nonorientable genus̃g(Σ) (or the crosscap number). The
Euler genuseg(Σ) of an orientable surfaceΣ is 2g(Σ), whereg(Σ)
is the orientable genus ofΣ.

The following lemma is very useful in proofs by induction on
the genus. The first part of the lemma follows from Lemma 4.2.4
(corresponding to nonseparating cycle) and the second part follows
from Proposition 4.2.1 (corresponding to surface separating cycle)
in [27].

LEMMA A.2. Let G be a connected graph 2-cell embedded in
a non-planar surfaceΣ, and letN be a noncontractible noose
on G. Then there is a fair splittingG′ of G affecting the set
S = (v1, . . . , vρ) of the vertices ofG met byN such that one
of the following holds
• G′ can be2-cell embedded in a surface with Euler genus strictly
smaller thaneg(Σ).

• each connected componentGi of G′ can be2-cell embedded
in a surface with Euler genus strictly smaller thaneg(Σ) and is a
contraction of some graphG∗i obtained fromG after≤ ρ splittings.

Proof. [ of Theorem 3.1] We use induction on the Euler genus of
Σ.

In caseeg(Σ) = 0, Lemma 3.1 implies that ifP (G) <
( δ
β
r)2, thenG excludes the(r × r)-grid as a minor. Indeed, this

is obvious in caseP is minor bidimensional. IfP is contraction
bidimensional, then it is enough to observe that if the planar graph
G can be transformed toH via a sequence of edge contractions or
removals, then by applying only the contractions in this sequence
we get a partial triangulation ofH. Using now Theorem 2.1 we
get that ifP (G) < ( δ

β
r)2, thenbw(G) ≤ 4r − 6. If we set

r = bβ
δ

√
P (G)c+ 1, we have thatbw(G) ≤ 4bβ

δ

√
P (G)c − 2.

Asα, β, δ ≥ 0, the induction base is done.
Suppose now thateg(Σ) ≥ 1 and that induction hypothe-

sis holds for any graph 2-cell embedded in a sphere with Euler
genus less thaneg(Σ). Let G be a graph embedded inΣ. We
set k = P (G) and we claim that the representativity ofG is
≤ 4bβ

δ

√
k + 1c. Lemma 3.1 implies that ifk < ( δ

β
r)2, thenG

excludes any triangulation of the(r × r)-grid as a contraction. By
the contrapositive of Lemma A.1, this implies that the represen-
tativity of G is < 4r. If we setr = b δ

β

√
k + 1c + 1, we have

that the representativity ofG is≤ 4bβ
δ

√
k + 1c. LetN be a min-

imum size non-contractible nooseN on Σ meetingρ vertices of
G whereρ ≤ 4bβ

δ

√
k + 1c. By Lemma A.2, there is a fair split-

ting along the vertices met byN such that one of the conditions (1)
or (2) holds. LetG′ be the resulting graph and letΣ′ be a sphere
such thateg(Σ′) ≤ eg(Σ) − 1 and every component ofG′ is 2-
cell embedable inΣ′. We claim that in each of the cases (1), (2),
bw(G′) ≤ 4β

δ
eg(Σ)

√
k + αρ+ 1 + 8α(β

δ
)2(eg(Σ))2.

Case (1): We apply the induction hypothesis onG′ and get that
bw(G′) ≤ 4β

δ
(eg(Σ′) + 1)

√
P (G′) + 1 + 8α(β

δ
)2(eg(Σ′) +

1)2. As G′ is obtained fromG after ≤ ρ splittings andP is
an α-splittable parameter, we haveP (G′) ≤ k + αρ. Taking
in mind that eg(Σ′) ≤ eg(Σ) − 1, we obtain bw(G′) ≤
4β
δ
eg(Σ)

√
k + αρ+ 1 + 8α(β

δ
)2(eg(Σ))2.

Case (2): We apply the induction hypothesis on each of the
connected components ofG. LetGi be such a component. We get
thatbw(Gi) ≤ 4β

δ
(eg(Σ′)+1)

√
P (Gi) + 1+8α(β

δ
)2(eg(Σ′)+

1)2. As Gi is a contraction of some graphG∗i obtained fromG
after≤ ρ splittings andP is anα-splittable parameter, we get that
P (Gi) ≤ P (G∗i ) ≤ k + αρ. Again sinceeg(Σ′) ≤ eg(Σ) − 1,
we havebw(Gi) ≤ 4β

δ
eg(Σ)

√
k + αρ+ 1 + 8α(β

δ
)2(eg(Σ))2.

Notice thatbw(G′) = maxi(bw(Gi)) which in turn implies
thatbw(G′) ≤ 4β

δ
eg(Σ)

√
k + αρ+ 1 + 8α(β

δ
)2(eg(Σ))2. As

G′ is the result ofρ consecutive vertex splittings onG and the
splitting operation cannot increase the branchwidth more than one
we get thatbw(G) ≤ bw(G′) + ρ. Therefore,bw(G) ≤
4β
δ
eg(Σ)

√
k + αρ+ 1 + 8α(β

δ
)2(eg(Σ))2 + ρ ≤ 4β

δ
(eg(Σ) +

1)
√
k + 1 + 8α(β

δ
(eg(Σ) + 1))2.


