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Abstract 1 Introduction

We introduce a new framework for designing fixed-parameter @ominating setis a classic NP-complete graph optimiza-
gorithms with subexponential running time2V* %M Our tion problem which fits into the broader class admina-
results apply to a broad family of graph problems, calkédi- tion and covering problems on which hundreds of papers
mensional problemswhich includes many domination and covhave been written; see e.g. the survey [23]. A sample ap-
ering problems such as vertex cover, feedback vertex set, Mifjzation is the problem of finding sites for emergency ser-
imum maximal matching, dominating set, edge dominating Sgfee acilities such as fire stations. Here we suppose that
cligue-transversal set, and many others restricted to bounded-g%gscan afford to buildk fire stations to cover a city, and

graphs. Furthermore, it is fairly straightforward to prove that a ire that building i d by at least
problem is bidimensional. In particular, our framework in(:lude\ge require that every building IS covere y at least one

as special cases all previously known problems to have such sufj&g. Station.  This problem ig-dominating set (finding a
ponential algorithms. Previously, these algorithms applied to plag@minating set of sizé) in the graph where edges repre-
graphs, single-crossing-minor-free graphs, and map graphs; weSsat suitable pairings of fire stations with buildings. In this
tend these results to apply to bounded-genus graphs as well. &pglication, we can afford high running time (e.g., several
parallel development of combinatorial results, we establish an wpeeks of real time) if the resulting solution builds fewer fire
per bound on the treewidth (or branchwidth) of a bounded-genstations (which are extremely expensive). Thus, we prefer
graph that excludes some planar grdfes a minor. This bound exactfixed-parametemlgorithms (which run fast provided
depends linearly on the siz¥ (H)| of the excluded grapt’ and {he parametef; is small) over approximation algorithms,
the genug;(G) of the graph(s, and applies and extends the graphs e, jf the approximation were within an additive constant.

minors quk of Robertson & Seymour. . . The theory of fixed-parameter algorithms and parameterized
Building on these results, we develop subexponential fixed- .
parameter algorithms for dominating set, vertex cover, and set COQ/anpIeXIty has been thoroughly developed over the past few
in any class of graphs excluding a fixed graffhas a minor. In years; see e.g. [11, 15, 17, 18, 20, 2]. )
particular, this general category of graphs includes planar graphs, In the last two years, several researchers have obtained
bounded-genus graphs, single-crossing-minor-free graphs, and@¥gonential speedups in fixed-parameter algorithms for var-
class of graphs that is closed under taking minors. Specifically, théls problems on several classes of graphs. While most
running time is2°(V®)n" whereh is a constant depending onlyprevious fixed-parameter algorithms have a running time
on H, which is polynomial fork = O(log®>n). We introduce of O(2°*)n°()) or worse, the exponential speedups re-
a general approach for developing algorithms Baminor-free sults in subexponential algorithms with running times of
graphs, based on structural results ab@eminor-free graphs at the 0(20(\@)”0(1))_ For example, the first fixed-parameter al-

hgart of Robertson & Seymour’s graph-minors work. We belie rithm for k-dominating set in planar graphs [15] has run-
this approach opens the way to further development for proble |?lg time 0(11k|GD; subsequently, a sequence of subex-

on H-minor-free graphs. ponential algorithms and improvements have been obtained,
starting with running time) (46V34%y) [1], thenO(227VFn)
124], and finally O(2'5-13VFE 4 n3 4 k%) [18]. Other
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graphs andi’s-minor-free graphs [14], which include plaproblem isbidimensionalf the parameter is large (linear) in
nar graphs; and single-crossing-minor-free graphs [13, 1d[grid and closed under contractions. Examples of bidimen-
which include K3 3 or K5-minor-free graphs. These algosional problems include vertex cover, feedback vertex set,
rithms [11, 13, 14] apply to dominating set and several oth@minimum maximal matching, dominating set, edge domi-
problems related to domination, covering, and logic. nating set, clique-transversal set, and set cover. We obtain
Algorithms for H-minor-free graphs for a fixed graphsubexponential fixed-parameter algorithms for all of these
H have been studied extensively; see e.g. [8, 21, 9, 25, 28bblems in bounded-genus graphs. As an special case, this
In particular, it is generally believed that several algorithngeneralization settles an open problem about dominating set
for planar graphs can be generalizeddeminor-free graphs posed by Ellis, Fan, and Fellows [16]. We also improve sub-
for any fixedH [21, 25, 28]. H-minor-free graphs are verystantially on the results of [10]. Along the way, we estab-
general. The deep Graph-Minor Theorem of Robertsonli&h an upper bound on the treewidth (or branchwidth) of a
Seymour shows that any graph class that is closed undeunded-genus graph that excludes some planar diagé
minors is characterized by excluding a finite set of minors.minor. This bound depends linearly on the SiZgH)|
In particular, any graph class that is closed under minarkthe excluded grapi and the genug(G) of the graphG,
excludes at least one minéf. and applies and extends the graph-minors work of Robertson
Our results. We introduce a framework for extending& Seymour.
algorithms for planar graphs to apply#-minor-free graphs This paper is organized as follows. First, we introduce
for any fixed H. In particular, we design subexponentighe terminology used throughout the paper, and formally
fixed-parameter algorithms for dominating set, vertex covegfine tree decompositions, treewidth, and fixed-parameter
and set cover (viewed as one-sided dominating in a bipartit&ctability in Section 2. We construct a general framework
graph) forH-minor-free graphs. Our framework consists dbr obtaining subexponential parameterized algorithms on
three components, as described below. We believe that mgraphs of bounded genus in Section 3. First we introduce the
of these components can be applied to other problems aondcept of bidimensional problem, and then prove that every
conjectures as well. bidimensional problem has a subexponential parameterized
First we extend the algorithm for planar graphs talgorithm on graphs of bounded genus. The proof techniques
bounded-genus graphs. Roughly speaking, we study tised in this section are very indirect and are based on
structure of the solution to the problem#nx k grids, which deep Theorems from Robertson & Seymour’s Graph Minors
form a representative substructure in both planar graphs addand Xll. As a byproduct of our results we obtain a
bounded-genus graphs, and capture the main difficulty of tieneralization of Quickly Excluding Planar Graph Theorem
problem for these graphs. Then using Robertson & Sdgr graphs of bounded genus. In Section 4 we make a step
mour’s graph-minor theory, we repeatedly remove handfesther by developing subexponential algorithms for graphs
to reduce the bounded-genus graph down to a planar graggmtaining no fixed graplif as a minor. The proof of this
which is essentially a grid. result is based on combinatorial bounds from the previous
Second we extend the algorithm atmost-embeddablesection, a deep structural theorem from Graph Minors XIV
graphs which can be drawn in a bounded-genus surface (@xe of the cornerstones of the Graph Minors Theory), and
cept for a bounded number of “local areas of non-planarity¢omplicated dynamic programming. Finally, in Section 5,
called vortices, and for a bounded number of “apex” vare present several extensions of our results and some open
tices, which can have any number of incident edges that preblems.
not properly embedded. Because the vortices have bounded
pathwidth, their number is bounded, and the number ®f Definitions

apexes is bounded, we are able to provide a solutiong@the graphs in this paper are undirected without loops or
almost-embeddable graphs using our solution to boundggjitiple edges. The reader is referred to standard references
genus graphs. for appropriate background [5].

Third we apply a deep theorem of Robertson & Seymour  The (disjoint) unionof two disjoint graphsz; andGs,
which characterize#/ -minor-free graphs as a tree SUrUCturgy, | G, is the graphG with merged vertex and edge sets:
of pieces, where each piece is an almost-embeddable gr@p@g) = V(G1) UV (G2) andE(G) = E(G1) U E(Gs).

Using dynamic programming on such tree structures, analo- Gijyen an edge = {z,y} of a graphG, the graphi/e
gous to algorithms for graphs of bounded treewidth, we g&eyptained froms by contracting the edge that is, to get
able to combine the pieces and solve the problemiHer /. we identify the vertices: andy and remove all loops
minor-free graphs. _ and duplicate edges. A gragh obtained by a sequence of

The first step of this procedure, for bounded-genggge-contractions is said to becantractionof G. H is a
graphs, applies to a broad class of problems called “bifkinor of G if H is the subgraph of a some contraction of
mensional problems”. Roughly speaking, a parameterized \we use the notatiofl =< G (resp.H <, G) for His a



minor (a contraction) ofs. A graph clasg is aminor-closed and (iii) connecting® with the vertices inV;,i = 1,2. If
class if any minor of any graph ifi is also a member af. H is the result of the consecutive application of the above
A minor-closed graph clagsis H-minor-freeif H ¢ C. For operation on some gragh then we say tha#/ is asplitting
example, a planar graph is a graph excluding kg and of G. If additionally in such a splitting process we do not
K5 as minors. split vertices that are results of previous splittings then we
The notion of treewidth was introduced by Robertsmay thatH is afair splitting of G.
& Seymour [29] and plays an important role in their funda- We say a parameté? is a-splittable if for every graph
mental work on graph minors. To define this notion, first w@ and for each vertex € V(G) the result of splittingG’
consider the representation of a graph as a tree, which iswlih respect tov hasP(G’) < P(G) + a. Many natural
basis of our algorithms in this paper. thfee decomposition graph problems are-splittable for smalle. Examples of
of a graphG, denoted byI'D(G), is a pair(x,T) in which 1-splittable problems are dominating set, vertex cover, edge
T is atree andy = {x;|i € V(T)} is a family of subsets dominating set, independent set, clique-transversal set and
of V(G) such that: (1UieV(T) xi = V(G); (2) for each feedback vertex set among many others.
edgee = {u,v} € E(G) there exists at € V(G) such that
bothw andv belong toy;; and (3) for allv € V(G), the set 3 Bidimensional Parameters
of nodes{i € V(T')|v € x;} forms a connected subtree ofn this section, we define a general framework of parame-
T'. To distinguish between vertices of the original graph terized problems for which subexponential algorithms with
and vertices of " in T'D(G), we call vertices of’ nodesand small constants can be obtained. Our framework is suf-
their corresponding;'s bags The maximum size of a bag inficiently broad that an algorithmic designer only needs to
TD(G) minus one is called thevidth of the tree decompo- check two simple properties of any desired parameter to de-
sition. Thetreewidthof a graphG (tw((G)) is the minimum  termine the applicability and practicality of our approach.
width over all tree decompositions 6f. A tree decomposi- A partially triangulated (r x r)-grid is any graph ob-
tion is called gpath decompositioif 7" = (I, F') is a path. tained by adding edges between pairs of nonconsecutive ver-
The pathwidthof a graphG' (tw(G)) is the minimum width tices on a common face of a planar embedding of & r)-
over all possible path decompositions(of grid.
A branch decompositioof a graph (or a hyper-graph)e A parameterP is calledminor bidimensional with density
G is a pair(T, 7), whereT is a tree with vertices of degree; if (i) contracting or deleting an edge in a graphcannot
1 or 3 andr is a bijection from the set of leaves af increaseP(G), and (ii) there exists a functiof, f(z) =
to E(G). Theorder of an edgee in T is the number of o(z) such that for the(r x r)-grid R, P(R) = (0r)? +
verticesv € V/(G) such that there are leaves, t> in T f((5r)?).
in different components of (V(T'), E(T) — e) with 7(t1) e A parameterP is calledcontraction bidimensional with
andr(t2) both containingy as an endpoint. Thwidth of densitys if (i) contracting an edge in a grapfi cannot
(T, 7) is the maximum order over all edges Bf and the increaseP(G), (ii) there exists a functiorf, f(z) = o(z)
branchwidthof G, bw(G), is the minimum width over all such that for any partially triangulate@r x r)-grid R,
branch decompositions 6f. P(R) > (0r)% + f((67)?), andé is the smallest real number
Robertson & Seymour [(5.1) in [31]] proved that fofor which this inequality holds.
any connected grapty where |E(G)| > 3, bw(G) < |n either casepP is calledbidimensional The densitys of
tw(G) +1 < 3bw(G). Also, we will need the following P is the minimum of the two possible densities (when both
result of Robertson, Seymour & Thomas. (Theorems (4&&finitions are applicable). We call the sublinear functjon
in [31] and (6.3) in [34].) residual functiorof P.
Many parameters are bidimensional, mention just a few.
mples of minor bidimensional parameters along with
some estimations for their densities are: vertex co¥er(
1/v/2), feedback vertex set (FVS)y ¢ 1/2) and minimum
A parameter P is any function mapping graphs tdﬁa?(imal _matching(i > 1/V3). Examplgs of contraction
nonnegative integers. Tiparameterized problemssociated Pidimensional parameters are dominating set=( 1/3),
with P asks, for some fixedi, whetherP(G) < k fora given €dge dominating sef (= 1/+/14) and clique-transversal set
graphG. (6= 1/2v2).
Let G be a graph and let € V(G). Also suppose we _Notice that density assigns a real numbet(ini] to any
have a partitior®, = (N, N2) of the set of the neighborsPidimensional parameter. This assignment defin¢stal
of v. Define thesplitting of G with respect tov and P, Order on all such parameters. .
to be the graph obtained froi@ by (i) removingv and The class of bidimensional parameterized problems
its incident edges, (ii) introducing two new verticel »2 contains all known from the literature planar graph parame-

THEOREM2.1. ([34]) Let » > 1 be an integer. EveryE

\ ; . xa
planar graph with no(r,r)-grid as a minor has branch-
width < 4r — 3.



ters with subexponetial parameterized algorithms. Recenégbedded in a surface of Euler genusg(X), bw(G) <
Cai et al. [6] defined a clasBlanar TMIN; and proved 42 (eg(X) + 1)/P(G) + 1 + 8a(% (eg() +1))2.
that for every grapliz and parameteP € Planar T M I Ny,
tw(G) = O(/P(G)). Every problem inPlanar TMIN, Theorem 3.1 is a general theorem which applies for any
can be expressed as a special type of dominating set probdeﬁ’p”ttame bidimensional parameter. For minor bidimen-
on bipartite graphs (we refer to [6] for definitions and furth&@onal parameters the bound for branchwidth can be further
properties ofPlanar TMIN;) and Proposition 3.1 yieldsimproved (we omit the proof because it is similar to that of
immediately the result of Cai et al. Theorem 3.1).

If P is a bidimensional parameter with dens&yand
residual functionf then we define theaormalization factor
of Pasmin{g | (§r) < ()% + f(or), foranyr > 1}.

THEOREM 3.2. Suppose thaf’ is a minor bidimensional
parameter with density and normalization factop (6 < 1
and 3 > 1). Then for any graphG 2-cell embedded in a

8
3.1 The bounded treewidth approach Almost all known surfaceX. of Euler genuseg(X), bw(G) < 45(eg(X) +
techniques for obtaining subexponential parameterized aléjbv P(G) +1.

rithms on planar graphs are based on the following “bounded ) )
treewidth approach” [1, 18, 24]: 3.2 Combinatorial Results and Further Improvements

As part of their seminal Graph Minors series, Robertson &
(11) Prove that the treewidth/branchwidth 6fis at most Seymour proved the following:

¢/ P(G) for some constant;
_ ) THEOREM3.3. ([30]) If G excludes a planar grapli/ as
(12) Compute the treewidth (or branchwidth) Gf a minor, then the branchwidth @ is at mostb;; and the

(I3) If treewidth is> ¢,/P(G) there is no solution to thetre‘EWidt.h ofG is at most ;;, whereby andiy are constants
problem. If treewidth/branchwidth is ¢/ P(G) run depending only o/ .

standgrd dynamlc'progra.mmmg on graph of bounded The current best estimate of these constants is the expo-
treewidth/branchwidth which take$’ (v (@) steps.  antial upper bounty < 2021V DI+IEG)D® [34]. How-

All previously known ways of obtaining the most im&Ver, combining Theorem 2.1 with a lemma of [34] we have

portant step (I1) are based on rather complicated technigti the constants depend only linearly on the siz# of
based on separators. Let us first give some hints why bidi- . .

mensional parameters are important for the design of sub Q—EOREM?’A' I_f Gisa pl_anar graph_excl_udmg a planar
ponential algorithms on planar graphs. The proof of the n taph H as a minar, then its branchwidth is at mdsj <
lemma is easy and omitted. 42V (H)| + 4EH)]).

LEMMA 3.1. Let P be a contraction (minor) bidimensional ~_ Note that the parameteP(G) = [V(G)[ is minor
parameter with density and normalization factog. Then bidimensional withy and 3 equal tol. Thus Theorems 3.1
P(G) < (%T)z implies thatG excludes thér x r)-grid as and 3.2 implies the following generalization of Theorem 2.1

a minor (and all partial triangulations of thér x r)-grid as for graphs of bounded genus.

contractions). THEOREM3.5. If G is a graph of genug(G) with branch-
width more thanir(g(G) + 1), thenG has a(r x r)-grid as
a minor.

PrRoOPOSITION3.1. Let P be a bidimensional parameter

with densityd and normalization factoy3. Then for any planar graph from bounded-genus graphs. In other words
8./ ) ' '
planar graph(;, tw(G) < 45/ P(G). we generalize Theorem 3.4 as follows:

Proposition 3.1 is a first hint on the importance of

bidimensionality for easy achieving low bounds like the ond$!EOREM3.6. If G is a graph of genug(() that excludes
required for step(I1) of the bounded treewidth approack@gglllﬂ?argrath as aminor, then its branchwidth is at most
The main result of this section is the following generalizaticﬁﬂ,g(G) < AQIVH)[+AEH)])(9(G) + 1),

of preposition 3.1. The proof is quite lengthy and technical o ]
and can be found in the Appendix. 3.3 Algorithmic ConsequencesAs we already discussed,

the combinatorial upper bounds for branchwidth/treewidth
THEOREM 3.1. Suppose thaP is ana-splittable bidimen- are used for constructing subexponential parameterized al-
sional parameter (forv > 0) with densityd and normaliza- gorithms as follows. Le€ be a graph ané be a parameter-
tion factors (6 < 1andg > 1). Then for any grapld: 2-cell ized problem we need to solve éi First one constructs a

Theorem 2.1 and Lemma 3.1 imply the following.

In the same way, we are able to quickly exclude any



branch/tree decomposition 6f that is optimal or 'almost’ vortices Here the bounds only depend éh

optimal. A (6,~v, A\)-approximation scheméor branch- A graphG is h-almost embeddabie S if there exists a
width/treewidth consists of, for every, anO(27*“n*)-time vertex setX of size at most calledapicessuch thatG — X
algorithm that, given a grapty, either reports thatz has can be written a&/, UG U --- U G}, where
branchwidth/treewidth at least or produces a branch/tree e Gy has an embedding ifi;

decomposition ofG with width at mostfw. For exam- o the graphs7;, calledvortices are pairwise disjoint;
ple, the current best schemes ar@8a- 2/3,3.698,3 + ¢)- o there are (not necessarily distinct) fadgs. . . , F}, of
approximation scheme for treewidth [3] and&alg27,2)- G, in S, and there are pairwise disjoint disk, ..., Dy,
approximation scheme for branchwidth [32]. in S, such that fori = 1,...,h, D; C F; andU; :=

If the branchwidth/treewidth of a graph is “large”, theiv' (Go) NV (G;) = V(Go) N D;; and
combinatorial upper bounds come into play and we conclude e the graphG; has a path decompositidi,, ),cu, Of
that P has no solution orz. Otherwise we run dynamicwidth less tharh, such that: € B, for all w € U;. We note
programming on graphs of bounded branchwidth/treewidtiat the set#,, are ordered by the ordering of their indiaes
and computeP(G). Thus we conclude with the mainas points inC;, whereC; is the boundary cycle aF; in Gy.
algorithmic result of this section: An h-almost embeddable graph is call@pex-fredf the set
X of apices is empty.

THEOREM3.7. Let P be a bidimensional parameter with Supposa- andC. are araphs with disioint vertex-sets
density> 4. Suppose there is an algorithm for the associated bp ! 2 grap !

parameterized problem that runs i@(2¢“n®) time given andk > 0 is an integer. Fof = 1,2, letIV; € V() form

" . ; a clique of sizek and letG’ (i = 1,2) be obtained fronG;
a tree/branch decomposition of the graghwith width w. . g ’ e
Suppose also that we havef , \)-approximation schemeby deleting some (possibly no) edges fr6#{IW;] with both

for treewidth/branchwidth. Set = 1 in the case of branch- Sggsglgfslgnmfé gfgsgi:jgb”jgggtmé d bV}[g :)GWQZ \éVe
width andr = 1.5 in the case of treewidth. Then the param ! 2 — TLWR 2

eterized problem asking wheth&(G) < k can be solved or S|mply byG,: G @,GQ’ t_o be _th_e graph_obtamed from
) e (a0} 742 (5(C) 1) (VAT T4 par2 (5(G) 1)), max{bA} the union of G} and G, by identifying w with h(w) for
in O (2mexa?n s loteoT e " ™) allw € Wy. The images of the vertices 6, and IV;
time for minor bidimensional parametét(G:) with density & ¢, ., form thejoin set In the rest of this section,
6 and normalization factors, wherep is 0 if P is minor when we refer to a vertex of G in G, or G, we mean the
bidimensional and i if P is a-splittable contraction bidi- corresponding vertex afin G; or G (or both).

mensional. Now, the resul? of Robertson & Seymour is as follows.

The first condition of the theorem holds with small val- )
ues ofa andb for many examples of bidimensional param! HEOREM4.1. ([33]) For every graph there exists an

eters; see [1, 2, 7, 14, 18, 26]. Observe that the corréE‘f—eg_erh > 0 only depending OW‘V(H” such that every
ness of our algorithms is simply based on Theorems 3ifMinor-free graph can be obtained by at massums of
and 3.2, despite their nonalgorithmic natures, éhe, \)- graphs of size a_t mo@:andh—almost-embeddable graphsin
approximation scheme for branch/tree decomposition. VM€ surfaces in whic cannot be embedded.

note that the time bounds we provide do not contain any In particular, if H is fixed, any surface in whick can-

hidden constants, and the constants are reasonably IOan&rbe embedded has bounded genus. Thus, the summands

a broad collection of problems covering all the problems far., - +1«0rem arg-almost-embeddable graphs in bounded-

which there already exi€® (V%)W) time algorithms. genus surfaces.

. This structural theorem plays an important role in ob-
4 H-minor free graphs taining the rest of the results of this paper. From the algo-
In this section we will generalize the results on graphs dfhmic point of view, because Robertson & Seymour [33]
bounded genus to graphs with excluded minors. have shown that every minor-closed class of graphs has a

polynomial-time membership test, one can observe the fol-

4.1 Characterizations of H-minor-free graphs In this lowing theorem used by Grohe [19, Lemma 15]. Also, Sey-
section, we describe the deep theorem of Robertsonnfur [35] claims that we can construct the clique-sum de-
Seymour on graphs excluding a fixed grafihas a minor. composition algorithmically using the proof of the Theo-
Intuitively, Robertson-Seymour's theorem says for evergm 4.1.
graph H, every H-minor-free graph can be expressed as
a tree-structure of “pieces”, where each piece is a grarpnli_ - _ _ _

. . . . t is worth mentioning that is not a well-defined operator and it can
which can be drawn in a surface in whidlh cannqt be have a set of possible results.
drawn, except for a bounded number of “apex” vertices andztheorem 4.1 is very general and has not appeared in print so far.
a bounded number of “local areas of non-planarity” calletwever already several nice applications (see e.qg. [4, 19]) are known.



THEOREM4.2. For any graph H, there is an algorithm Proof. Consider an apex-freg-almost embeddable graph
with running timen©(®) that either computes a clique-sunGG = Gy UG, U--- UG, in a surface® of genusg. Suppose

decomposition as in Theorem 4.1 for any givéaminor- U; = {u},u?,...,u]"}. Let G{ be the graph obtained
free graphG, or outputs thatG is not H-minor-free. The from G, by adding new vertices;, c;,--- ,c, and edges
exponent in the running time dependsidn (ci,ul) and (ul,u! ") (wherej + 1 is treated modulan;)

< g < < j < m. i
Let G be anh-almost embeddable on a surface ofgenfj%r all < i< handl < j < m; Notice that by

in a clique-sum decomposition of a gragif. Suppose adding these edges, verticEs, 1 < i < h, form a path
g Ique-sum decompositi 9 - Supp in Go. If G has the aforementioneddominating set of size
the set of apices 7 is X. AssumeG has cligue-sums

A - k, thenGj has anr-dominating set of size at mo&t+ h:
mﬁq gripqsfli’;'p’i”d\igi ejw-siitizlﬁgdfullglz/g}n\;\g?:j just delete all vertices in the-dominating set that are in

e < i < . .
by a set§ C V(G) if V(Gs) — X C Ne-(S), otherwise G; — Gy, 1 < 1 < h, and add instead all new vertices

4 : . . to the r-dominating set. Notice thaf is
cliqueW; is calledpartially dominatedy S. A vertexv of G C1,€2,° ", Ch _ ! 0=
is fully dominatecby a sets'if Ne- (1| (v) € Ne- (S). embeddable o, sinceG, is embeddable. Thus, according

) . AL e
We note that in the above definition, the only edges ﬂigtLemma 4.1ithas treewidth atmastg vk + i+ g%). B

appear inGG, but may not appear i&* are the edges amongOe 12 4.2, the treewidth @i’ = G, UG U--- UGy is
’ 2 2 i H H
vertices offWi|, 1 < i < p. ((h*+1)(gvVkE+h+ 1)+ g* —1). U; forming a path in

Gy. Because is a subgraph ofy’, the lemma follows.
THEOREM4.3. Let G be an h-almost embeddable on a Proof of Theorem 4.3SupposeX is the set of apices

surface of genugin a}clique—sum Qecomposition ofa g.rapkih @G, so thatG — X is an apex-freéi-almost embeddable
G*. Assumé has clique-sums with graptts,, . .., G, Via - graph. LetD be a dominating set of size of G* and let
join setsWy, ..., Wy, where|W;| < h,1 <i <p. SUPPOSe g _ x A D). We claim thatS is our desired set. The rest of
G* has a dominating set of size at mdstThen there is a he proof is as follows: we construct a setof size at most
subsetS C V(G) of size at mosh such that if we remove . sor ¢ _ X which 2-dominates every vertexof (' — X
all fully dominated vertices which are not included in anyhich is not included in any vortex. Then sinée— X is
partially dominated cliquéV; from & and obtain grapity, g gpex-freei-almost-embeddable on a surface of gepus
tw(G) = O(h*gVk + h + g°) = O(Vk). with a 2-dominating-type set of size at moktdesired by
In order to prove Theorem 4.3 we need first sonfggmma 4.3, it has trgeW|dth at most(h?gv/k + h+g%).
preliminary results. A vertexs is called7-dominatedby nenwe canadd ve_rhcesi!fto all bags gmd still have a tree
a sets, if the distance fromw to a vertexv ¢ S is at decomposition of widtlD(h”gv'k + h+g7), as desired. We
mostr. An r-dominating sefis a setS of vertices such construct) from D as follows. First, we s&b = DNV (G).
that every vertex of the graph isdominated bys. The Foreachl <i<p,if DN (V(G;)—W;) # 0andW; Z X,
problem of finding anr-dominating set of siz& is also we add an arbitrary vertex € W; — X to D. Here we say

called the(k, r)-center problem (see Section 5). From thi Vertexv of D is mappedo a vertexw of D if v = w or if
main combinatorial result of [11};-dominating set is a 1- ¢ € PN(V(Gi)—W;) and vertexw € W;— X is the one that
splittable bidimensional parameter. This and Theorem 3'¢ have added t®. One can easily observe that since each
; ; new vertex inD is in fact accounted by a unique vertexiin
imply the following. ~ ) : o
|D| < k. It only remains to show thab is a 2-dominating
LEMMA 4.1. For any constant, if a graph G of genusg set forG — X. If a vertexv € V(G) — X is not fully-
has anr-dominating set of size at mastthen the treewidth dominated, then there exists a vertexe Ng(v) which is
of G'is at mostO(gv'k + ¢2). not dominated byS and thus not dominated h¥ (since
) S = DN X). It meansv is 2-dominated by a vertex of
Now, we extend this result for apex-fréealmost em- ¢ _ x \yhich dominatess (we note that: can be originally
beddable graphs (the proof is not hard and is omitted). 5 vertexu/ in (V(G,) — W;) N D which is mapped ta in

LEMMA 4.2. Consider an apex-freé-almost-embeddable?): AlSo, we note that for each cliqué’; in which there

graphG = Go UG, U --- U Gj,. Suppose further that, for'S & mappeq vertex ab, this vertex dominates all verti_ces
eachl < i < h, U; = {ul,u2,...,u™ )} forms a path in of W; — X in G — X and .thus we keep the whole clique
Go. Thentw(G) < (h% + 1)(tw(Go) + 1) - 1. W; — X in G. It only remains to show that every vertex of
a partially dominated cliqu&’; is 2-dominated by a vertex
LEMMA 4.3. For any constant, an apex-freeh-almost- of G — X. We consider two cases: ; N S = 0, since
embeddable grapy embedded on a surface of genusith V(G;) — W, # 0, there must exists a (mapped) vertex of
a setS C V(G) of size at mosk whichr-dominates every Din W; — X and we are done. Now assufié N S # 0.
vertex ofG which is not in a vortex has treewidth at mosf W; ¢ X thenW; N (V(G) — X) = § and we are done

O(h?gvk + h + g%) = O(gVk) (g andh are constants).  (since there is no clique i — X at all.) Otherwise, there



exists a vertet; — X. If (V(G;) — W;) C Ng-(S) # 0, 0, wis colored|1; and

thenV(G;) N D # 0. Thus there exists a mapped vertexif v € S; N W;, thenw is colored0; and

w € W; — X and we have 1-dominated verticesl®f — X. e if v € Sy N W;, thenv is not colored).

As mentioned before iD N (W; — X) # 0, verticesW; — X Our colorings are similar to that of previous work (e.g.,
are 1-dominated and we are done. The only remaining cflg, but we use them in a new dynamic-programming frame-
is the case in which there exists a vertexe W; — X which work that acts over clique-sum decompositions instead of
is dominated by a vertex € V(G) and by assumption ¢ tree decompositions.

N¢g-(S) (we note that in this case, there is no dominatiriynamic program subproblems. Our first-level dynamic
vertex inV (G;) — W; for anyi for whichw € W,.) It means program has one subproblem for each gréfoih the clique-
vertexz is not fully dominated and thus it remains@ In  sum decomposition and for each coloringf the vertices in
addition, vertex: 2-dominates all vertices d¥; — X, since WW,. Because each join set has at mosertices, the number
W; is a clique inG and thus all vertices of; — X are 2- of subproblems i€ (n - 3"). We defineD (G, c) to be the

dominated. This completes the proof of the theorem. size of the minimum “semi”-dominating set of the vertices
in subtree rooted &k subject to the following restrictions:
4.2 Main result 1. Vertices colored| 1 are adjacent to at least one vertex in

i the dominating set. (Vertices coloréd are dominated “for
THEOREM4.4. One can test whether ar-minor-free free”.)

graph G* has a dominating set of size at mdsin time 5 '\ rfices colored) are precisely the vertices in the domi-
20V pO() where the constants in the exponents depepgting set.
onH. 3. Vertices inlV are colored according i@

If we solve every such subproblem, then in particular,
we solve the subproblems involving the root node of the
cligue-sum decomposition in which every vertex is colored

fact, this cligue-sum decomposition can be considered as & | 1. The final dominating set of sizeis given by the

generalized tree decomposition@f . best solution to these subproblems
More precisely, we consider the clique-sum decompom— '

tion as a rooted tree. We try to findcadominating set in this . duction step. Suppose for each coann@of Wi, 1 <
. X . i < p, we knowD(G,, ¢). If the graphG is of size at most
graph using a two-level dynamic programming. Suppos%ar

: i then we can try all colorings i®(3" - h?) = O(1) time
gr_ath 1S an h-almost embeq_dable on a surface of genl('vsvhere the factor of? is for checking validity). Thus, we
g in a cligue-sum decomposition of a graph. Assume

. ) o focus on almost-embeddable grapfis First, we guess a
G has clique-sums with graphSo, ..., Gy via join Sets o\ v o6 cive at most. Then for each subset of X
Wo, W1, ..., W,, where|W;| < h,0 < i< p. Also assume ) .

; ! we put the vertices of in the dominating set and forbid
thatGy is considered as the parent@fandG, ..., Gy are | ieoc oev 6 from being in the dominating set. Now we

cons@ered as children f. . , .remove fromG all fully dominated vertices off — X that
Colorings. The subproblems in our first-level dynamic

i . . are not included in any partially dominated cliqig. Call
program are defined by a coloring of the vertice®lin Each . A L
vertex will be assigned one &fcolors, labelled), 11, and the resulting grapig/. By Theorem 4.3jw(G) = O(Vk).

; . . We can obtain such a tree decomposition of wiglth 2/3
1 1. The meaning of the coloring of a vertexs as follows. _ O Bte i _
Color 0 represents that vertex belongs to the chosentiMes optimum, ir n”" time by a result of Amir [3].
dominating set. Color$1 and{ 1 represent that the verte>(°‘II vgrt|ces absent frqm this trgg decompo;mqn are fully
v is not in the chosen dominating set. Such a vertenust QOmlnated and thlus, In-any minimum dommatm_g set that
have a neighbors in the dominating set (i.e., colored); mpludesS, they will not appear except th_e foIIowmg case.
we say that vertexs resolvesvertexv. Color |1 for vertex |tiS possible thatup toX — S| = O(h) vertices, which are
v represents that the dominating vertexis in the subtree ither fully dominated or belong t6/(G;) — W; wherelV;
of the clique-sum decomposition rooted at the current grai§t{u!ly dominated, appear in the dominating set to dominate
G, whereas| 1 represents that the dominating vertexis vertices QfX —/S. Call thg set of such ver.tlce%’. We can
elsewhere in the clique-sum decomposition. Intuitively, tf4€SS this ses” by choosing at most vertices among the
vertices colored 1 have already been resolved, whereas tfiscarded vertices that have at least one neighbdf in 5,

vertices colored 1 still need to be assigned to a dominatingnd then add’ to the dominating set. On the other hand, for
vertex. any partially dominated cliqué/;, we know that all of its

Locally valid colorings. A coloring of the vertices ofV; is vertices are present in the tree decomposition; because they

calledlocally valid with respect to sets;, S, C V(G) ifthe form a clique, there is a bag; in any tree decomposition
following properties hold: that contains all vertices ofl’;. We find «; in our tree

« for any two adjacent verticesandw in W;, if v is colored d€composition and map/; and &; to this bag. We also

Proof. First, using the:°(1)-time algorithm of Theorem 4.2,
we obtain the clique-sum decomposition of gragh. In



assuméel¥;, is contained in all bags, because its size is at We believe that we can generalize Theorem 4.4 in or-
mosth. Now, for each coloring of W, we run the dynamic der to obtain a fixed-parameter algorithm with exponen-
program of Alber et al. [1] on the tree decomposition, wittial speed-up for thék, r)-center problemon H-minor-free
the restriction that the colorings of the bags are locally valigtaphs. Thek, r)-center problem is a generalization of the
with respect taS; := SU S’ andS; := X — 9, and are dominating set problem in which one asks whether an in-
consistent with the coloring of W,. For each bagy; to put graphG has < k vertices (called centers) such that
which we mapped>;, we add to the cost of the bag thevery vertex ofG is within distance< r from some cen-
value D(G;, ¢’) for the current coloring’ of W;. Using this ter. Demaine et al. [11] consider this problem for planar
dynamic program, we can obtald(G, ¢) for each coloring graph and map graphs and present a generalization of dy-
c of W. namic programming mentioned in the proof of Theorem 4.4
Running time. The running time for each coloringof W, to solve the(k,r)-center problem for graphs of bounded
and each choice of is 20(VE) according to [1]. We have treewidth/branchwidth. Using this dynamic programming
3h choices fore, O(n+1) choices forX, O(2") choices and a generalization of Lemma 4.3, one can obtain the de-
for S, andO(n"*1) choices forS’. Thus the running time sired result forH-minor-free graphs. Using the solution for
for this inductive step i$"n2+220(Vk) . There areO(n) the(k,r)-center problem in [11], we can solve the dominat-
graphs in the clique-sum decompositiorcaf Therefore, the iNg Set problem in constant powers Bt minor-free graphs,
total running time of the algorithm @(Ghn2h+32o(\/§)) i the most general clgss of graphs so far for which one can
gbtain the exponential speed-up.

However it is an open and tempting question if our
technique can be generalized to solve in subexponential time
on graphs with excluded minors every problem solved in
. ) subexponential time on bounded-genus graphs.

Theorem 4.4 can be used to obtain subexponential algo- we also suspect that there is a strong connection be-
rithms not only for dominating set problems. tween bidimensional parameters and the existence of linear-

For example, for vertex cover one can use the following;e kernels for the corresponding parameterized problems
reducti_on. For a grapf¥ let G’ be the graph obtair)ed fro@ in bounded-genus graphs.
by adding a path of length two between any pair of adjacent The final question is if the upper bounds Theorems 3.1
vertices. The following lemma is obvious. and 3.2 can be extended to larger graph classes. The first
step in this direction was obtained by the authors for minor-

k closed graph families: A graph famil§ has domination-
mteggrk =1 treewidth property if there is some functigi{d) such for

e G'is Kj-minor free, _ _ . that every grapiG € F with dominating set of size< k,

. G_ ha_s vertex cover of siz€ k if and only if G’ has a tw(G) < f(k). It was shown that a minor-closed graph
dominating set of size k. family has domination-treewidth property if and only if this

Combining Lemma 5.1 with Theorem 4.4 we concludoa bounded local treewidth family. We conjecture that for any

that parameterized vertex cover can be solved in subex idimensional paramete and minor-closed graph family

nential time on graphs with an excluded minor. ‘&O tw(G) = O(/P(G)) for everyG € 7 if and only if 7

Another example is the set cover problem. Given'%Of bounded local treewidth. This conjecture was recently

collectionC = (Cy,Cs,...,Cy,) of subsets of a finite Setproved for the dominating-set parameter_[lZ].
S — (s1,59,...,5,), & set cover is a subcollectiail C C Acknowledgments. The authors are indebated to Paul

e D. Seymour for many discussions that led to combinatorial
such thatUc, ccr = S. Minimum set cover (SC) problem : - .
. : : . : results of this paper and for providing a portal into the Graph
is to find a cover of minimum size. For a SC proble

(C,S) its graphGy is a bipartite graph with bipartition inor Theory. We also thank Naomi lehlmu_ra and. Prab-
(C.5). Verticess; andC; are adjacent irGis if and only hakar Ragde for encouragement and helpful discussions.

if s; € C;. Theorem 4.4 can be used to prove that SC
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(§r)?, thenG excludes thgr x r)-grid as a minor. Indeed, this
A Proof of Theorem 3.1 is obvious in case” is minor bidimensional. IfP is contraction

bidimensional, then it is enough to observe that if the planar graph

We need first some basic definitions and results. (G can be transformed t& via a sequence of edge contractions or
A surfaceX is a compact 2-manifold, without boundary. A q 9

line in 3 is subset homeomorphic {0, 1]. An O-arc is a subset of removals, then by applying only the contractions in this sequence

3> homeomorphic to a circle. L&¥ be a graph 2-cell embedded in"e get a partial triangulation off. Using now Theorem 2.1 we

; 2
¥, i.e., every region in the embedding is homeomorphic to a diggt that if P(G) < (%T) , thenbw (G) < 4r — 6. If we set
To simplify notations we do not distinguish between a verteiof 7 = L5 /P(G)] + 1, we have thabw (G) < 4|5 /P(G)] — 2.
and the point of used in the drawing to represent the vertex d¥s @, 3,6 > 0, the induction base is done.
between an edge and the line representing it. We also corGider ~Suppose now thatg(X) > 1 and that induction hypothe-
as the union of the points corresponding to its vertices and edgés.holds for any graph 2-cell embedded in a sphere with Euler
That way, a subgraplif of G' can be seen as a gragh where 9enus less tharg(X). Let G be a graph embedded b. We
H C G. We call byregion of G any connected component o€tk = P(G) and we claim that the representativity 6f is
S — E(G) — V(G). (Every region is an open set.) We use thg 415 VE + 1]. Lemma 3.1 implies that it < (§r)*, thenG
notationV (G), E(G), and R(G) for the set of the vertices, edge$xcludes any triangulation of tHe x r)-grid as a contraction. By
and regions of5. the contrapositive of Lemma A.1, this implies that the represen-
If A C ¥, thenA denotes thelosureof A, and the boundary tativity of G is < 4r. If we setr = [5VE+1] + 1, we have
of Aisbd(A) = ANY — A. An edgee (a vertexv) is incident  that the representativity af is < 4L§\/k + 1]. Let N be a min-
with a regionr if e C bd(r) (v C bd(r)). imum size non-contractible noos€ on ¥ meetingp vertices of
A subset of: meeting the drawing only in vertices 6f is G wherep < 4L§\/k +1]. By Lemma A.2, there is a fair split-
called G-normal If an O-arc is G-normal then we call inoose ting along the vertices met by such that one of the conditions (1)
The length of a noose is the number of its verticés.C X is an or (2) holds. LetG’ be the resulting graph and I& be a sphere
open disc if it is homeomorphic t(z, y) : 2* + > < 1}. We say such thateg(X') < eg(Z) — 1 and every component &’ is 2-
that a discD is boundedby a nooseV if N = bd(D). A graph cell embedable irt’. We claim that in each of the cases (1), (2),
G 2-cell embedded in a connected surfatés 6-representativéf  bw(G') < 4§eg(2)\/k +op+1+ 8a(§)2(eg(2))2.
every noose of lengtk: 6 is contractable (nhull-homotopic ). Case (1): We apply the induction hypothesig@rand get that
Lemma A.1 bounds the representativity of graphs excludihgy (G') < 42 (eg(X') + 1)\/P(G") + 1 + 8a(£)?(eg(X') +
some graphs as a minor/contraction (we remove its proof becalise As G’ is obtained fromG after < p splittings andP is
of lack of space). an a-splittable parameter, we have(G’) < k + ap. Taking
in mind thateg(X') < eg(X) — 1, we obtainbw(G') <
LEMMA A.1. LetG be a graph 2-cell embedded in a non-planan%eg(z)‘/k Fap+1+ 8a(§)2(eg(2))2.
surfaceX. of representativity at leasf. ThenG contains as a Case (2): We apply the induction hypothesis on each of the
contraction a partially triangulated6 /4 x ¢/4)-grid. connected components 6f. Let G; be such a component. We get
_ _ thatbw(G:) < 42 (eg(S')+1)/P(Gy) + 1+8a(%)* (eg(Z')+
The Euler genusg(X) of a nonorientable surface is equal 1)2. As @; is a contraction of some grapli; obtained fromG
to the nonorientable genugX) (or the crosscap number). Thesfter < p splittings andP is ana-splittable parameter, we get that
Euler genugg(X) of an orientable surface is 2¢g(3), whereg (%) P(G:) < P(G?) < k + ap. Again sinceeg(3') < eg(S) — 1,

is the orientabl_e genus (Sf.' _ . . we havebw(G;) < 42eg(2)vE T ap + 1 + 8a(2)? (eg(X))>.
The following lemma is very useful in proofs by induction of\otice thatbw(G’) = max;(bw(G;)) which in turn implies

the genus. The first part of the lemma follows from Lemma 4.2fatbw(G') < 4§eg(2) E+ap+1+ 8a(§)2(eg(2))2. As

(corresponding to nonseparating cycle) and the second part follwsis the result ofp consecutive vertex splittings off and the

from Proposition 4.2.1 (corresponding to surface separating cydglitting operation cannot increase the branchwidth more than one

in [27]. we get thatbw(G) < bw(G’) + p. Therefore,bw(G) <
4Beg(S)VET ap 11+ 8a(£)%(eg(%))? + p < 42 (eg(%) +

LEMMA A.2. Let G be a connected graph 2-cell embedded ip)\/erga(g(eg(g) +1))2.

a non-planar surface®, and let N be a noncontractible noose

on G. Then there is a fair splitting=’ of G affecting the set

S = (v1,...,v,) of the vertices ofz met by N such that one

of the following holds

e (' can be2-cell embedded in a surface with Euler genus strictly

smaller thaneg(X).



