
CCCG 2021, Halifax, Canada, August 10–12, 2021

Folding Points to a Point and Lines to a Line

Hugo A. Akitaya∗ Brad Ballinger† Erik D. Demaine‡ Thomas C. Hull§ Christiane Schmidt¶

Abstract

We introduce basic, but heretofore generally unex-
plored, problems in computational origami that are sim-
ilar in style to classic problems from discrete and com-
putational geometry.

We consider the problems of folding each corner of a
polygon P to a point p and folding each edge of a poly-
gon P onto a line segment ` that connects two boundary
points of P and compute the number of edges of the
polygon containing p or ` limited by crease lines and
boundary edges.

1 Introduction

Many classic problems from discrete and computational
geometry that concern simple statements about points
and lines in the plane, such as, “Given n points in the
plane, how do we determine their convex hull?” or “Into
how many regions do n lines in general position divide
the plane?” Similarly basic questions can be asked about
origami, but none seem to have been fully explored in
the literature. In this paper we investigate two such
questions in computational origami. Both involve start-
ing with a convex-polygon piece of paper P .

1. Fold and unfold each corner of P , in turn, to a
chosen point p ∈ P so that p will be contained in
a polygon Qp whose interior is uncreased and sides
are either the crease lines or the boundary edges of
P ; see Figure 1(a). How many sides can Qp have?

2. Let a, b ∈ ∂P (the boundary of P), and let `′ be
the line that contains the line segment ` = ab. Fold
each side of P onto `′, and let Q` be the polygon
limited by the crease lines that contains `; see Fig-
ure 1(b). How many sides can Q` have?

In these problems the point p and line `may be chosen
to lie on the boundary of P . Our aim is to find straight-
forward methods for calculating |Qp| and |Q`| so as to

∗Department of Computer Science, University of Mas-
sachusetts Lowell, hugo akitaya@uml.edu

†Humbolt State University, bradley.ballinger@humboldt.edu
‡Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, edemaine@mit.edu
§Department of Mathematics, Western New England Univer-

sity, thull@wne.edu
¶Communications and Transport Systems, ITN, Linköping

University, christiane.schmidt@liu.se

a

b

a

b

Qℓ

P

p
p1

p2

p3

p4

p5

P

p1

p2

p3

p4

p5

P

p1

p2

p3

p4

p5

P

p
p1

p2

p3

p4

p5

Qp

ℓ ℓ

Problem 1

Problem 2

Figure 1: Illustrations of Problems 1 and 2.

create visualizations for which choices of p and ` will
give us different answers.

Problem 1 was first investigated by Kazuo Haga
[6, 7, 8], but only in the case where P is a square. We
will see that the full version of Problem 1, including the
case where P is the whole plane, is a natural applica-
tion of Voronoi diagrams and Delaunay triangulations.
Problem 2 is solved using event circles of the straight
skeleton of P .

2 Folding Points to a Point

To first simplify Problem 1, let S = {p1, . . . , pn} be the
vertices of the polygon P and let us, for now, ignore
the sides of P , focusing on only folding an arbitrarily-
chosen point p to the points in S; call this Problem 1a.
We introduce notation for Voronoi diagrams (see [2, 4]).
Given a, b ∈ R2, define the halfplane determined by a
and b that contains a to be

h(a, b) = {x ∈ R2 | ||x− a|| ≤ ||x− b||},

where ||.|| denotes Euclidean norm. The Voronoi region
Vor(p,A) containing point p relative to a finite point set
A is defined as

Vor(p,A) = {x ∈ R2 | ||x−p|| ≤ ||x−a|| for all a ∈ A}.

A standard result (see [4, Theorem 4.1]) is that
Vor(p,A) is equal to the intersection of halfplanes de-
termined by p and the points in A:

33rd Canadian Conference on Computational Geometry, 2021

Theorem 1

Vor(p,A) =
⋂
a∈A

h(p, a).

The Voronoi diagram for a finite point set S =
{p1, . . . , pn} is then the collection of Voronoi regions
Vor(pi, S \ {pi}) for i = 1, . . . , n.

Theorem 2 Let Qp be the polygon containing p limited
by the crease lines made from folding p to each point in
S. Then Qp = Vor(p, S).

Proof. This follows almost immediately from the fact
that when we fold a point pi ∈ S to the point p, the
crease line L that is made is the perpendicular bisec-
tor of the segment joining pi and p. But L is also the
boundary of the halfplane h(p, pi), and Qp will be con-
tained in all such halfplanes. Furthermore, any point
that is contained in all the halfplanes h(p, pi) will, by
definition, also be in Qp. This proves the result. �

This connection between origami and Vonoroi dia-
grams is known to origami artists. In fact, one of the
easiest ways to construct a Voronoi diagram is to draw
the point set S on a piece of paper and carefully fold
pairs of points in S together, creasing the various half-
plane boundaries. See [11] for more details.

We let conv(S) denote the convex hull of the set S.
The definition of Voronoi region implies that Vor(p, S)
will be unbounded if p is not in the interior of conv(S).
Thus Theorem 2 implies the following:

Corollary 3 If p 6∈ int(conv(S)), then Qp is un-
bounded.

Now let Del(S) denote the Delaunay triangulation of
a finite point set S. For details on Del(S), see [2, 4]; we
remind the reader of three key properties of Del(S):

1. The interior of the circumcircle of any triangle in
Del(S) contains no points of S.

2. If there exists a circle containing two points p1, p2 ∈
S whose interior contains no points of S, then p1p2
is an edge of Del(S).

3. Del(S) is the planar dual graph of the Voronoi dia-
gram graph of S (i.e., the dual of the planar graph
obtained by the boundaries of the Voronoi regions
and ignoring the outside region of this graph).

Property 3 gives us a solution to Problem 1a. Let
|Qp| denote the number of sides of the polygon Qp.

Theorem 4 Given a finite point set S ⊂ R2 and a
point p, a solution to Problem 1a is |Qp| = deg(p), the
degree (i.e., valency) of p in Del(S ∪ {p}).

p1

p

p

p2

p3

p4

Qp

Qp

Vor(p, S)

p1

p2

p3

p4

Vor(p, S)

Del(S ∪ {p}) Del(S ∪ {p})

(a) (b)

Figure 2: The region Qp for a point set S = {p1, . . . , p4}
where (a) p ∈ conv(S) and (b) p 6∈ conv(S). Black lines
are the creases made when folding p to points in S.
Circles are the circumcircles of the triangles in Del(S).
Green lines are supporting hyperplanes of conv(S).

See Figure 2 for illustrations of this Theorem.

A more complete solution to Problem 1a would be to
partition the plane into regions of constant |Qp|. Since
computing Del(S ∪ {p}) for many choices of p is cum-
bersome, we seek a more computationally direct way of
solving Problem 1a. For example, an algorithm that re-
lies only on Del(S) instead of Del(S ∪ {p}) would be
preferable. We achieve this via a sequence of Lem-
mas which, while tailored to our specific problem, fol-
low from basic facts about Delaunay triangulations and
Voronoi diagrams (see [2, 4]).

For x ∈ R2, let us define TS(x) as the set of triangles
in Del(S) whose circumcircles contain x in their interior.

Lemma 5 If pi ∈ S is in the interior of conv(S), the
edge ppi is in Del(S ∪{p}) if and only if TS(p) contains
a triangle that has pi as a corner.

Proof. First assume that ppi is in Del(S ∪ {p}). The
edge must be part of at least one triangle pipjp. Then,
by property 1, there is an interior-empty circle contain-
ing p, pi and pj . Ignoring p for the moment, grow this
circle maintaining pipj as a chord and so that p remains
inside this circle until the circle contains another point
in S; this must happen because pipj is not in the bound-
ary of conv(S). The obtained circle then contains three
points in S and its interior contains only p, by construc-
tion. The triangle defined by the points on this circle is
in TS(p).

Now assume that a triangle T ∈ TS(p) has pi as a
corner. By property 1, there is a circle C containing pi
whose interior contain only p and no other point. We
shrink C along its diameter that contains pi, anchored
at pi until we obtain a circle C ′ containing p. By con-
struction, the interior of C ′ is empty. By property 2,
ppi is an edge in Del(S ∪ {p}). �

Lemma 6 Let TS(p) = {T1, . . . , Tk} and G be the graph
whose vertex set is TS(p), and with an edge TiTj if Ti
and Tj share a side. So long as p 6∈ S, then G is a tree.

CCCG 2021, Halifax, Canada, August 10–12, 2021

Proof. We first claim that a triangle T in Del(S ∪{p})
that does not have p as a corner is also in Del(S). By
property 1, the interior of the circumcircle of T is empty
and deleting p does not change that. Hence, T is also
in Del(S) as claimed.

If we delete p from Del(S∪{p}) (and all edges adjacent
to p) we either get a single polygonal star-shaped hole or
a pocket polygon (a cavity on the boundary of conv(S)).
Since p 6∈ S, in order to obtain Del(S) we can simply
triangulate the hole or pocket by the above claim. By
Lemma 5, the new triangles are exactly TS(p). The
dual graph of a triangulation of a simple polygon is a
tree. �

Lemma 7 If p ∈ conv(S) and p 6∈ S, then |Qp| =
|TS(p)|+ 2.

Proof. Let TS(p) = {T1, . . . , Tk}. One of these tri-
angles, say Ta, contains p because p ∈ conv(S). By
Theorem 4, |Qp| = deg(p) in Del(S ∪ {p}), which
equals the number of distinct vertices among the tri-
angles T1, . . . , Tk, by Lemma 5. By Lemma 6, the edge-
adjacency graph of TS(p) is a tree, which we can root
at Ta. If we first count the three vertices in Ta, then we
traverse the tree and for each additional triangle that we
discover in the traversal we add only one vertex to our
count. This gives us k + 2 distinct vertices among the
triangles in TS(p), and so deg(p) = k+2, as claimed. �

Note that Lemma 7 allows p to be on the boundary
of conv(S) (but not in S), in which case Qp will be
unbounded. In fact, for some areas nearby but outside
conv(S), Lemma 7 will still apply. But to handle any
choice of p ∈ R2, we need to consider certain supporting
halfplanes of conv(S).

The boundary of conv(S) is a polygon; denote its
vertices by q1, . . . , qm. Let H(qi, qi+1) denote the sup-
porting halfplane of conv(S) that contains the segment
qiqi+1 on its boundary, and assume that the indices are
cyclic so that this notation includes H(qm, q1).

Let H(p) denote the number of halfplanes H(qi, qi+1)
that do not contain the point p.

Lemma 8 If p 6∈ conv(S) or p ∈ S then |Qp| = H(p) +
|TS(p)|+ 1.

Proof. Suppose p is far enough away from conv(S) so
that none of the circumcircles of the triangles in Del(S)
contain it. If H(qi, qi+1) does not contain p, then p will
be able to “see” both qi and qi+1. That is, a straight
line segment from p to either qi or qi+1 will not intersect
conv(S). Thus, in Del(S ∪ {p}), p will be adjacent to
qi and qi+1. For all supporting halfplanes that do not
contain p, their corresponding vertices qi will form a
path on the boundary of conv(S), and we have that
deg(p) = H(p) + 1.

p1

p2

p3

p4 43 3

3′

3′

3′

3′

3′

3′
3′

3′
2′

2′

2′

2′

4′

4′

4′

4′

Figure 3: The plane partitioned into regions of constant
|Qp| for a point set S = {p1, . . . , p4} in Problem 1a.
Numbers marked with a prime symbol indicate regions
where p gives an unbounded set Qp.

If p is also in a circumcircle of a triangle T in Del(S)
(an example of this is shown in Figure 2(b)), then by
Lemma 5, p will be connected with new edges to every
corner of T . Similar to the proof of Lemma 7, we can
use Lemma 6 to show that there are |TS(p)| + 2 such
edges. However, two of these edges are double counted
because two endpoints are on the boundary of conv(S).
Thus the “+2” in Lemma 7 is not needed, and we arrive
at |Qp| = H(p) + |TS(p)|+ 1.

If p ∈ S then p is contained in all of the support-
ing halfplanes of conv(S). In fact, the situation is like
that of Lemma 7 and its proof, except that Qp will
be unbounded and have one less side than the cases
of Lemma 7 since we cannot fold p to itself. Thus
|Qp| = |TS(p)|+ 1 and we are done. �

When p ∈ conv(S), we have that H(p) = 0, so we
can combine Lemmas 7 and 8 if we add an indicator
function I(p) which equals 1 if p ∈ (conv(S) \ S) and 0
otherwise.

Theorem 9 Using the notation of Problem 1a, we have

|Qp| = H(p) + |TS(p)|+ I(p) + 1.

Figure 3 illustrates how Theorem 9 can be used to
partition the plane into regions of constant |Qp|.

Remark on general position: Notice that no require-
ment has been made for the points in S to be in general
position (no three points on a line). This is because no
such requirement is necessary, but some care must be
taken. If three points p1, p2, p3 ∈ S lie on a line, then
those points cannot make a triangle in Del(S), and nei-
ther can they make a circumcircle. However, if these
three collinear points lie on the boundary of conv(S),

33rd Canadian Conference on Computational Geometry, 2021

p

(a) (b)
2 sides p

3 sides

pentagon

hexagon

region

region

quadrilateral

Figure 4: (a) Folding two corners to p with p outside,
then inside, the side’s midpoint circle. (b) The full so-
lution to Problem 1 on a square.

say in order p1, p2, then p3, then they will form two sup-
porting halfplanes, one for the segment p1p2 and one for
p2p3. This will affect the count of H(p); if p is not in the
halfplane H(p1, p2) then it will also not be in H(p2, p3),
and so the side of conv(S) made by p1, p2, and p3 will
“count twice” in H(p) if p is on the other side of it.

Remark on computation time: The Voronoi diagram
can be computed in O(n log n) time [5] and, thus, we can
compute Qp in the same asymptotic time. Note that
Qp may have Ω(n) sides and that the boundary of Qp

encodes the sorted cyclic order of the points adjacent to
p in Del(S ∪{p}). Then, this is the best possible bound
in the decision tree computation model. By Theorem 9,
the partition of the plane into regions of constant |Qp|
is given by an arrangement of circles and lines. Note
that such arrangement can be of size Θ(n2). Since each
pair of these curves can only intersect at most twice, a
sweep line algorithm can compute the arrangement in
O(n2 log n) time. Then, with O(n2 log n) preprocessing
time, given a query point p, Problem 1a can be solved
in O(log n) time using a point-location data structure
such as Kirkpatrick’s [10].

3 Folding Corners of a Polygon to a Point

We return to Problem 1, folding the corners of a polygon
P to a point p, so that the sides of Qp may now be crease
lines or edges of P .

As Haga discusses in his solution of the case where
P is a square [6], the key is to see how close p needs
to be to a boundary side of the paper in order to make
that boundary add a side to Qp. Imagine a semicircle
C drawn on the paper whose center is the midpoint of
a boundary side of P and with diameter equal to the
length of that side. Then the endpoints of C equal two
corners of P . If p is inside C, then when these two
corners are folded to p their creases will not intersect
at a point inside P , making the boundary edge between
them add a side to Qp. But if p lies on C or outside of C,
then the two crease lines will intersect on P ’s boundary
or inside it, respectively, implying that the boundary
side in question will not contribute a side to Qp. See
Figure 4(a) for an illustration of this in the case where
P is a square.

p

p1 p2

p3

p4p5

p6

Vor(S ∪ {p})

Del(S)

Qp

Figure 5: A generalized Problem 1 example on an irreg-
ular hexagon-shaped piece of paper S = {p1, . . . , p6}. p
is located in four circumcircles of Del(S) and one mid-
point circle, giving us |Qp| = 7.

Thus, Haga’s original solution is to draw four semicir-
cles on our square, each centered at a different midpoint
of the sides and with diameter equal to that side. We
may then determine |Qp| by counting how many of the
semicircle interiors contain p. If p is in the interior of
only one semicircle, then only one boundary edge will
contribute a side to Qp, giving us |Qp| = 5. If p is in two
semicircle interiors, then two boundary sides will con-
tribute, giving |Qp| = 6. As can be seen in Figure 4(b),
p can be in at most two of these semicircle interiors, so
this solves the problem and gives us a partition of the
square into regions of constant |Qp|.

What Haga’s original problem solution hides is the
influence of Voronoi diagrams and Delaunay triangula-
tions, because in the case where our paper is a square,
the circumcircles of Del(S) are equal and merely circum-
scribe the square. Thus, in our full Problem 1 statement
we can combine our result from Problem 1a to obtain a
full solution.

Let M(p) denote the number of midpoint circles (cir-
cles centered at a midpoint of the polygon-shaped pa-
per’s edge and with diameter equal to that edge length)
that contain p in their interior.

Theorem 10 Given a convex polygon of paper P and
a point p ∈ P , we have |Qp| = M(p) + |TS(p)|+ 2.

An illustration of this solution to Problem 1 is shown
in Figure 5.

4 Folding Lines to a Line

To recap Problem 2, we take two points a, b on the
boundary of a convex polygon P , let `′ be the line con-
taining the segment ` = ab, and then fold and unfold

CCCG 2021, Halifax, Canada, August 10–12, 2021

P

S(P) ℓ

a

b

a

b

a

b

C1

C2

C3

(a) (b)

(c)

Qℓ

S1

S2

P1
P2

Figure 6: Analyzing Problem 2. (a) The polygon P ,
line `, and the straight skeleton/medial axis S(P). (b)
The skeletons S1, S2 and the polygon Q` containing `.
(c) The event circles C1, C2, and C3 of S(P); here two
of them intersect `.

each side of P onto `′ in turn. We wish to describe the
number of sides of the polygon Q` that contains ` and
is limited by the crease lines we made. Let V (P) and
E(P) denote the vertex and edge sets of P .

While Problem 1 was determined by the Voronoi di-
agram of V (P), Problem 2 is governed by the straight
skeleton (or medial axis, as these are equivalent on con-
vex polygons) of E(P). Towards that end, we will es-
tablish some notation, based on that of [1]. Let S(P)
denote the straight skeleton/medial axis of P , which
we may think of the set of points x inside (or on the
boundary) of P such that x is equidistant between at
least two points of ∂P . Since P is convex, S(P) will
be a straight-line graph drawn on P that will include
segments bisecting the angles of P (see Figure 6(a)).

The non-leaf vertices of S(P) are called event points
and the circles centered at these points that are tangent
to their nearest sides of P are called the event circles
of S(P). Label these event circles C1, . . . , Ck and let
C` be the subset of these circles that intersect ` (see
Figure 6(c)).

Since ` splits P into two polygons, P1 and P2, we may
find their straight skeletons as well; call them S1 and S2

respectively (see Figure 6(b)). One of each pair will be
degenerate if a and b are on the same edge of P .

We define b(e, `) to be the angle bisector between the
line containing the edge e ∈ E(P) and `′ (or, if these
lines are parallel, let b(e, `) be the line that is equidis-
tant between these lines). Let h(`, e) and h(e, `) be the
halfplane induced by b(e, `) that contains ` and e, re-
spectively.

Lemma 11 V (Q`) \ {a, b} ⊂ S(P).

Proof. We create the sides of Q` by folding a side e ∈
E(P) to `, making a crease that is a segment along the

b(e1, e2)

b(ℓ, e2)

b(ℓ, e1)

a

e1

e2bv

Qℓ

Ci ci

ℓ

(a)

a

e1

e2bv

Qℓ

Ci ci

ℓ

(b)

ℓa

e1

e2bv

Qℓ

Ci ci(c)

Figure 7: For Theorem 14’s proof. (a) For ` close enough
to a vertex v ∈ V (P), Q` will be a quadrilateral. (b) If `
is tangent to the event circle Ci closest to v, Q` remains
a quadrilateral, but critically. (c) When ` intersects the
interior of Ci, a side is added to Q`.

bisector b(e, `). Thus the sides of Q` will lie along the
edges of the skeletons S1 and S2, and the vertices of Q`

(aside from a and b) will be event points of S1 and S2,
which must lie on S(P). �

Lemma 12 Let C`(q) be the circle centered at q that is
tangent to `. Then q ∈ int(Q`) if and only if e∩C`(q) =
∅ for all e ∈ E(P).

Proof. Let q ∈ int(Q`) and consider any edge e ∈
E(P). Then q ∈ h(`, e) and, hence, e ∩ C`(q) = ∅.

Consider q 6∈ int(Q`). Then there exists an edge e ∈
E(P) with q ∈ h(e, `), whereby e ∩ C`(q) 6= ∅. �

Lemma 13 Let C be an event circle of S(P) that does
not intersect `. Then the center of C will not be a vertex
of Q`.

Proof. Clearly the center of such a circle C cannot be a
or b. Any other vertex of Q` lies on S(P) by Lemma 11
as well as on either S1 or S2. Thus if C were centered
at a point in V (Q`) \ {a, b} then C would be tangent to
`, which we forbid in this Lemma. �

As our solution to Problem 2, we claim that the num-
ber of sides of Q` will equal the number of event circles
that intersect ` plus four, unless one or more of {a, b}
are also vertices of P , in which case those points must
be subtracted.

Theorem 14 |V (Q`)| = |C`| + 4 − |{x ∈ {a, b} : x ∈
V (P)}|.

Proof. We let ` sweep over P , starting at a vertex
v ∈ V (P) that is adjacent to sides e1, e2 ∈ E(P). The
bisector b(e1, e2) at v will lie along the edge vci of the

33rd Canadian Conference on Computational Geometry, 2021

a

S2

Ciℓ

ve1

e2

α
r

d

ci

a

S2

Ci
ℓ

ve1

e2

α
r

d

ci

S2

ℓ

e1

e2

a = v

Qℓ Qℓ Qℓ

Figure 8: Showing, for the proof of Theorem 14, how if
an endpoint a of ` equals a vertex v of P , then Q` will
lose a side.

straight skeleton S(P) at v, where ci is the center of
an event circle Ci that is tangent to the sides e1 and e2.
Now, if ` is drawn close enough to v so that ` lies outside
or tangent to Ci, then Q` will be a quadrilateral. This
is because if ` is outside of Ci then the bisectors b(`, e1)
and b(`, e2) will intersect on S(P) between v and ci, and
if ` is tangent to Ci this intersection will occur at ci, as
we have ci 6∈ Q` by Lemma 12. See Figures 7(a) and
(b).

If, however, we sweep ` so that it intersects the in-
terior of Ci, then the bisectors b(`, e1) and b(`, e2) will
intersect along b(e1, e2) beyond the point ci, meaning
that they will cross other segments of S(P) before such
an intersection. By Lemma 11, in order for the vertices
of Q` to remain on S(P) we must have that a side was
added to Q`, as demonstrated in Figure 7(c).

We then sweep `, continuously moving a and b clock-
wise and counterclockwise, respectively, from v along
∂P . When ` intersects the interior of an event circle
Ci in S(P), thus adding a circle to C`, an additional
side will be added to Q`. All event circles that do not
intersect ` will not contribute sides to Q` by Lemma 13.

If a ∈ V (P) one event circle of either S1 or S2 will
disappear at this vertex: Let a be close to a vertex v ∈
V (P), say with d(a, v) = d, see Figure 8. We consider
the circle Ci tangent to ` and the two edges incident to
v, e1 and e2. When we move a towards v, the angle α
between the two radii from the center of Ci to e1 and
e2 is constant (since ci will move closer to v along the
bisector b(e1, e2) segment of S(P) as a approaches v).
Hence, the ratio between d and the radius r of Ci is
constant. Consequently, d approaches zero when r goes
to zero, and Ci disappears at the limit. The same holds
true for b ∈ V (P). �

Remark on computation time: The medial axis of a
simple polygon P with n vertices can be computed in
O(n) time [3] and, thus, we can compute Q` in the same
asymptotic time by computing the medial axis of the
two convex polygons obtained by splitting P with `.
Note that the complexity of Q` is Ω(n) in the worst
case and thus this time bound is optimal.

5 Bounds and Visualization for Problem 2

When we follow the computation from Theorem 14 to
determine the number of sides/edges of our polygon Q`,
we need to compute the event circles of the straight
skeleton intersecting the line segment `. In this section,
we do not aim for an exact computation of |V (Q`)|,
instead giving simple bounds.

The line segment ` is determined by two points, a, b,
on P ’s boundary. The maximum number of vertices of
Q` depends on the location of a and b—we distinguish
whether both, one of, or none of a and b are vertices
of P :

Lemma 15 With n = |V (P)|, we have:

1. If a, b ∈ ∂P \ V (P), then |V (Q`)| ≤ n+ 2.

2. If a ∈ V (P), b ∈ ∂P \ V , then |V (Q`)| ≤ n+ 1.

3. If a, b ∈ V (P), then |V (Q`)| ≤ n.

Proof. For the number of event circles C1, . . . , Ck in P
(or vertices of S(P)), we have |{C1, . . . , Ck}| = n−2 (see
Aichholzer and Aurenhammer [1]). In C`, we consider
only the subset of these event circles that intersect `,
hence, |C`| ≤ |{C1, . . . , Ck}| = n−2. With |{x ∈ {a, b} :
x ∈ V (P)}| = 0 for a, b ∈ ∂P \ V (P), |{x ∈ {a, b} :
x ∈ V (P)}| = 1 for a ∈ V (P), b ∈ ∂P \ V (P), and
|{x ∈ {a, b} : x ∈ V (P)}| = 2 for a, b ∈ V (P), the claim
follows directly from Theorem 14. �

(a)

(b)

Figure 9: Example for the visualization of the exact value
of |V (Q`)| for a square: (a) parameterization and (b) con-
figuration space.

Visualization. To visualize upper bounds, lower
bounds, or the exact value of |V (Q`)|, we parameter-
ize ∂P starting from and ending at an arbitrary vertex

CCCG 2021, Halifax, Canada, August 10–12, 2021

v0

v2

v3

v4

v5

v1

`

(a)

(b) (c)

Figure 10: An example of Problem 2 visualization. (a) A 6-gon with a possible line segment ` (in red) with a, b ∈ ∂P \ V .
(b) Upper bounds from Lemma 15, (c) lower bounds. The red cross in (b) and (c) represents the line segment ` from (a).

v ∈ V (P) = {v0, . . . , vn−1} (w.l.o.g., we choose v = v0).
We consider a unit square, with the location of a on the
x-axis and the location of b on the y-axis. We color all
points of the triangle above the line segment (0, 0), (1, 1)
according to the valid upper bound, lower bound, or the
value of |V (Q`)|. For an example with exact values of
|V (Q`)| when P is a square see Figure 9, for an exam-
ple of upper and lower bounds when P is a 6-gon see
Figure 10.

6 Conclusion

The problems presented here are fairly abstract and
seem divorced from computational origami problems
that have been previously studied. Connections may
exist, however. For example, the straight skeleton is
useful in algorithms for origami design [12], and so the
line ` in Problem 2 could be interpreted as separating
our polygon P of paper into two regions, each of which
could then be folded into different origami bases via
their straight skeletons. Q` would then represent the
polygon of paper that, when folded along `, links the
two bases together. Knowing |Q`| in advance might
help the origami designer plan how to sink the flaps of
paper adjoining Q`, a step that is often useful when
turning an algorithmicly-designed origami base into a
representational model.

At first glance, one might think that Problems 1 and 2
would be duals to each other in the projective geometry
sense, since the first concerns folding points to points
and the second lines to lines. However, this is incorrect,
mainly because the operation of folding a point p1 to
another point p2, which makes a crease line that is the
perpendicular bisector of p1p2, is not dual to the opera-
tion of folding a line l1 to l2, which forms the bisector of

l1 and l2. This is why our solutions to these two prob-
lems, while similar in flavor, are not reducible from one
another.

We hope that this work will inspire others to consider
similar folding problems in computational origami. In-
deed, the list of basic origami operations (see [9, Chap-
ter 1]) would be a good place to start to investigate
what other simple folding problems are possible. Also,
the work of Kazuo Haga, which is characterized by play-
ful investigations of simple folds (what he calls origam-
ics) led directly to our investigations in the present pa-
per. Haga’s work, in particular [7], certainly contains
avenues for further study.

Acknowledgments

This work was conducted at the 2018 and 2019 Bellairs
Workshops on Computational Geometry, co-organized
by Erik Demaine and Godfried Toussaint. We thank
the other participants of the workshop for helpful discus-
sions, especially Klara Mundilova and Tomohiro Tachi.
H. A. A. was partially supported by NSF grants CCF-
1422311, CCF-1423615. T. C. H. was partially sup-
ported by NSF grant DMS-1906202 and C. S. was par-
tially supported by Jubileumsanslaget fr̊an Knut och Al-
ice Wallenbergs Stiftelse and Vinnova grant 2018-04101.

References

[1] O. Aichholzer and F. Aurenhammer, Straight Skeletons
for General Polygonal Figures in the Plane, Proc. 2nd
Ann. Int’l. Computing and Combinatorics Conf. CO-
COON’96, Lecture Notes in Computer Science, volume
1090, pages 117-126, Hong Kong, 1996. Springer Verlag.

33rd Canadian Conference on Computational Geometry, 2021

[2] F. Aurenhammer, R. Klein, and D. Lee, Voronoi Di-
agrams and Delaunay Triangulations, World Scientific,
Singapore, 2013.

[3] F. Chin, J. Snoeyink, and C. A. Wang, Finding the
medial axis of a simple polygon in linear time, Discrete
& Computational Geometry, 1999, 21(3), 405–20.

[4] S. Devadoss and J. O’Rourke, Discrete and Computa-
tional Geometry, Princeton University Press, Prince-
ton, NJ, 2011.

[5] S. Fortune, A sweepline algorithm for Voronoi dia-
grams, Algorithmica, 1987, 2(1), 153–174.

[6] K. Haga, Proposal of a term origamics for plastic
origami–workless scientific origami, in Second Inter-
national Meeting of Origami Science and Scientific
Origami Abstracts, Seian University of Art and Design,
Otsu, Japan, 1994, 29–30.

[7] K. Haga, Origamics: Mathematical Explorations
Through Paper Folding, World Scientific Publishing
Co., River Edge, NJ, 2008.

[8] T. Hull, Project Origami: Activities for Exploring
Mathematics, 2nd ed., CRC Press/A K Peters, Boca
Raton, FL, 2012.

[9] T. Hull, Origametry: Mathematical Methods in Paper
Folding, Cambridge University Press, Cambridge, UK,
2020.

[10] D. Kirkpatrick, Optimal search in planar subdivisions,
SIAM Journal on Computing, 1983, 12(1), 28–35.

[11] R. Kraft, Orthoginal Voronoi molecules, in Lang et al.
ed., Origami7: The Proceedings from the 7th Interna-
tional Meeting on Origami in Science, Mathematics,
and Education, Tarquin, St. Albans, UK, 2018, 607–
621.

[12] R. J. Lang, A computational algorithm for origami de-
sign, in Proceedings of the Twelfth Annual Symposium
on Computational Geometry, ACM, 1996, 98–105.

