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Abstract. The shortest path passing on the surface of a polyhedron is
called a geodesic path. A geodesic path of a polyhedron has a property
that it becomes a single line segment on a development. A geodesic path
is the shortest path and it mostly passes a small number of faces. We,
however, consider a problem “is there a case that a geodesic path passes
all faces of a polyhedron?” For this problem the answer is “yes”: we found
that a regular tetrahedron has such a geodesic path. The next question
is “what polyhedra have such geodesic paths?” We define a face-guard
geodesic path (FGG path, for short) as a geodesic path connecting two
points on a polyhedron and passing through all its faces, call a polyhe-
dron that has an FGG path an FGG polyhedron, and try to characterize
FGG polyhedra. For this new problem, we prove that there exists an
FGG n-hedron for any integer n ≥ 4, all tetrahedra and all triangular
prisms with one exception are FGG polyhedra, and all cuboids and all
regular polyhedra except regular tetrahedra are not FGG polyhedra.

Keywords: Geodesic paths· convex polyhedra· visability problems.

1 Introduction

The problem of the shortest distance between two points has long been dis-
cussed in various fields. The shortest path between two points on the faces of a
polyhedron that passes on the faces is called a geodesic path.

Henry Dudeney presented an elemental but beautiful problem about geodesic
paths, the spider and the fly [4]. There is a cuboidal room shown as Fig. 1(a),
and a spider and a fly are at points p and q on the wall, respectively. What is the
shortest distance the spider must crawl in order to reach the fly? This problem
is to find the geodesic path between p and q. The answer is the line segment pq
on a development shown in Fig. 1(b), which is a geodesic path passing through
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(a) A cuboid room. (b) A development of the cuboid.

Fig. 1: The spider and the fly.

the five faces. The question arises as to whether there is a geodesic path passing
through all six faces instead of five. For this question, we proved that there is
no geodesic path passing through the six faces for any cuboid. Conversely, The
question naturally arises whether there is a polyhedron on which there exists a
geodesic path passing through all its faces. As an answer to this question, we
found that such geodesic paths exist in regular tetrahedra. We call a geodesic
path that connects two points on a polyhedron and passes through all of its
faces a face-guard geodesic path, or an FGG path for short, and a polyhedron
that admits an FGG path is called an FGG polyhedron. Characterizing FGG
paths and FGG polyhedra is a new and attractive problem. For this problem
we obtain the following results: There exists an FGG n-hedron for any integer
n ≥ 4, all tetrahedra and all triangular prisms with one exception are FGG
polyhedra, and all cuboids and all regular polyhedra except regular tetrahedra
are not FGG polyhedra.

The FGG path is a new idea that was proposed by Hiro Ito and discussed
at the 32nd Bellairs Winter Workshop on Computational Geometry, organized
by Erik D. Demaine and Godfried Toussaint and held in Barbados in 2017. This
problem, however, can be interpreted as a variation of the art gallery problem.
The origin of this problem is the art gallery theorem [3] presented by Vas̃sek
Chvátal in 1973. For an art gallery represented by a simple n-gon P , this theorem
says that

⌊
n
3

⌋
security guards with a 360◦ view are sufficient to guard the entire of

the inside of the gallery. Based on this theorem, various visability problems have
been constructed by modifying the settings of the rooms and security guards [6,
7]. The problem of guarding the faces of a polyhedron with guards replaced by
lines instead of points has also been studied [2, 6]. The problem of whether FGG
paths exist or not can be interpreted as a kind of visability problems for garding
all faces by a geodesic paths.

The organization of this paper is as follows. In Section 2, we give preliminaries
and show our results. From Sections 3 to 7, we present the proofs of these results.
Concretely, Section 3 is for the proof for regular polyhedra and cuboids, Section
4 is for tetrahedra, Section 5 is for polygons and prisms, and Section 6 is for
n-hedra. Finally in Section 7, we give conclusions and some conjectures.
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2 Preliminaries and Results

All polyhedra treated in this paper are convex polyhedra.

2.1 Definitions

For a polyhedron and two points s and t on its faces, the shortest path passing
on the face of the polyhedron between s and t is called a geodesic path. They
are sometimes called an s-t geodesic path for explicitly indicating the endpoints.
For a polyhedron and two points s and t on its faces, the path passing on the
face of the polyhedron between the two points and which is locally the shortest
is called an s-t local geodesic path. From the definition, the shortest path among
s-t local geodesic paths is the s-t geodesic path.

A geodesic path that passes through all the faces of the polyhedron is called
a face-guard geodesic path or an FGG path for short. Note that “a path passes
through a face” means the path contains a part of the interior points of the face
in this paper. A polyhedron that has an FGG path is called an FGG polyhedron.

Although this paper mainly investigates polyhedra, the idea of FGG paths
is extended to 2D shapes, polygons: For a polygon, an FGG path is the shortest
path connecting two points on the perimeter of the polygon, passing through
the perimeter of the polygon, and including its interior points for every edge
of the polygon. The idea of FGG paths of polygons is used for treating prisms
(Theorem 4).

For a polyhedron, the maximum number of faces guarded (passed) by a
geodesic path is called an FGG number. For a polyhedron and a pair of its two
faces, the maximum number of faces guarded by a geodesic path with endpoints
on the two faces is called a face-pair FGG number.

2.2 Basic properties

Since this research deals with convex polyhedra, the following lemma is impor-
tant.

Lemma 1 ([5]). All faces of a convex polyhedron are convex polygons.

For geodesic paths, the following lemma holds.

Lemma 2 ([1]). Geodesic paths do not intersect the vertices of the convex poly-
hedron except at endpoints.

Since an FGG path is a kind of geodesic path, the following lemma is also
obtained obviously.

Lemma 3. An FGG path is a single line segment in a development of the convex
polyhedron.

Moreover, the following lemma holds for FGG paths.
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Lemma 4. For any convex polyhedron, an FGG path passes through any face
at most once.

Proof. It is obvious from Lemmas 1 and 2. ⊓⊔
Lemma 5. For any convex polyhedron, an FGG path is not tangent to a vertex,
regardless of its endpoints or internal points.

Proof. From Lemma 2, a geodesic path does not intersect the vertices of the
polyhedron except at endpoints. Assume that there exists an FGG path P with
vertex v as an endpoint. Let f1, . . . , fk be the faces adjacent to vertex v (k ≥ 3).
From the assumption, there exists a point xi contained in FGG path P at an
interior point of fi. The partial path between any two points on the FGG path
must be an FGG path. Therefore, since the v-xi partial path pi of FGG path
P is also an FGG path. Since fi is convex from Lemma 1, pi is contained in
the interior points of the face fi except v. The number of faces gathering at
one vertex of a polyhedron is at least three, this FGG path must have at least
three line segments emanating from v as its parts, and hence it is not a path,
contradiction. ⊓⊔
Lemma 6. For any convex polyhedron, The dual graph of an FGG polyhedron
has a hamiltonian path.

Proof. Obvious from Lemmas 4 and 5. ⊓⊔
The ultimate goal of this research is to characterize FGG polyhedra. Since this is
the initial research on this topic, we mainly deal with several specific polyhedra
and clarify whether or not they are FGG polyhedra. Especially for polygons, we
present a necessary and sufficient conditions to have an FGG path.

2.3 Results

In this paper we present the following results.
Theorem 1. Regular tetrahedra are FGG polyhedra. Conversely, cuboids, regu-
lar octahedra, regular dodecahedra, and regular icosahedra are not FGG polyhe-
dra.

Theorem 2. For any pair of faces of any tetrahedron, the face-pair FGG num-
ber is 4. Hence every tetrahedron is an FGG polyhedron.

Theorem 3. A polygon has an FGG path if and only if there is a pair of adjacent
edges AB and BC such that the sum of the lengths of AB and BC is larger than
the sum of the lengths of the other edges.

Theorem 4. A prism whose base has an FGG path is an FGG polyhedron if its
height is large enough.

Theorem 5. Triangular prisms whose base is an equilateral triangle with a side
length of 1 and whose height is

√
3, and triangular prisms that are geometrically

similar to them, are not FGG polyhedra. On the other hand, all other triangular
prisms are FGG polyhedra.

Theorem 6. For any positive integer n ≥ 4, there exists an FGG n-hedron.
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Fig. 2: A development of a regular tetrahedron and an FGG path IJ .

3 Proof of Theorem 1

In this section, we give the proof of Theorem 1. Some proofs that it is not an
FGG polyhedron are obtained by the same method. The procedure is shown
below.

Lemma 7. The following procedure proves that the polyhedron P is not an FGG
polyhedron.

1. Find U(P ), which is an upper bound of the length of the geodesic paths
between any two points of P .

2. Find L(P ), which is a lower bound of the length of any path through all faces
of P .

3. show U(P ) < L(P ).

3.1 Regular tetrahedra

First, we provide a proof that regular tetrahedra are FGG polyhedra. Later, in
Theorem 2, we will show that general tetrahedra are FGG polyhedra, and thus
this proof is included in the proof of Theorem 2. However, the proof of Theorem
2 is more complicated, whereas the proof for regular tetrahedra is very simple,
so we provide it here separately.

Lemma 8. Regular tetrahedra are FGG polyhedra.

Proof. Let A, B, C, and D be the vertices of a regular tetraherdon. Consider
points I and J on AC and BD, respectively, so that the line segment IJ is
perpendicular to the edge AC (and DB). As shown in the development of Fig. 2,
let the both ends of the line segment IJ to be slightly extended so that the
both endpoints are in the interior of faces ACD′ and DBC ′, respectively. This
extended line segment is clearly an FGG path. ⊓⊔
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Fig. 3: An FGG path and a develop-
ment of the 2-colored regular oc-
tahedron P8 on the x-y plane.

Fig. 4: The number of faces passed by a
path starting from the interior of the
face numbered by 1.

3.2 Regular octahedra

Lemma 9. Regular octahedra are not FGG polyhedra.

Proof. Consider a regular octahedron P8 with a side length of 1. Let U(P8) be
an upper bound of the length of the geodesic paths between any two points of
P8, and let L(P8) be a lower bound of the length of any path through all faces
of P8.

P8 is 2-colorable on all its faces by coloring the adjacent faces with different
colors, say red and blue. Assume that there exists an FGG path IJ on the 2-
colored octahedron. Without loss of generality, I is in a red face. From Lemma 5,
the path alternately passes red and blue faces and finally it ends in a blue face
(see Fig. 3). Let F1 be the red face in which I is, let F8 be the face opposite to
F1, let F2, F3, and F4 be the faces adjacent to F1 and let F5, F6, and F7 be the
faces adjacent to F8 as the development shown in Fig. 3. Let A, B, and C be
the three vertices of F1. B is placed at the origin and Side BC lies on the x-axis.
Note that F8, F

′
8, and F ′′

8 are identical. We will show |IJ | <
√
3 as follows.

As we discussed above, J must be in one of the blue faces. If J is in F2, F3,
or F4, then clearly |IJ | <

√
3. Thus we consider the case that J is in the interior

of F8. Let J ′ be a point on F ′
8 corresponding to J and J ′′ be a point on F ′′

8

corresponding to J (see Fig. 3). The length of the geodesic path between I and
J is less than or equal to min{|IJ |, |IJ ′|, |IJ ′′|} in Fig. 3. We denote vectors

−→
BI
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and
−→
DJ by (xi, yi) and (xj , yj), respectively. Then

−→
IJ,

−→
IJ ′, and

−−→
IJ ′′ are

−→
IJ =

(
−xi +

3

2
+ xj ,−yi +

√
3

2
+ yj

)
−→
IJ ′ =

(
−xi −

1

2
xj +

√
3

2
yj ,−yi +

√
3−

√
3

2
xj −

1

2
yj

)
−−→
IJ ′′ =

(
−xi −

1

2
xj −

√
3

2
yj ,−yi −

√
3 +

√
3

2
xj −

1

2
yj

)
Thus, we obtain

|
−→
IJ |2 + |

−→
IJ ′|2 + |

−−→
IJ ′′|2

=3x2
i − 3xi + 3y2i −

√
3yi + 3x2

j − 3xj + 3y2j +
√
3yj + 9

=3

{(
xi −

1

2

)2

+

(
yi −

1

2
√
3

)2
}

+ 3

{(
xj −

1

2

)2

+

(
yj +

1

2
√
3

)2
}

+ 7 (1)

Here
(
xi − 1

2

)2
+
(
yi − 1

2
√
3

)2
is the expression of a circle centered at the center

of gravity of F1 and thus
(
xi − 1

2

)2
+
(
yi − 1

2
√
3

)2
is maximized only when (xi, yi)

coincides with a vertex of F1. Considering Lemma 5, this value is less than 1
3 .

Similarly, since
(
xj − 1

2

)2
+
(
yj +

1
2
√
3

)2
is the expression of a circle centered

at the center of gravity of F8 with the origin at point D and hence
(
xj − 1

2

)2
+(

yj +
1

2
√
3

)2
< 1

3 . Therefore, the value of Equation (1) is smaller than 9. From

this, min {|IJ |, |IJ ′|, |IJ ′′|} <
√
3 follows. Hence, the length of the geodesic path

between I and J is less than
√
3, i.e., U(P8) =

√
3.

Next, we estimate the lower bound on the length of the geodesic path. Ob-
serving Fig. 4, it is clear that the length of a path passing eight faces (unit
regular triangles) is longer than

√
3, i.e., L(P8) >

√
3.

From the above discussion, U(P8) < L(P8) holds. Hence, From Lemma 7, it
follows that FGG paths never exist on regular octahedra ⊓⊔

3.3 Regular dodecahedra

Lemma 10. Regular dodecahedra are not FGG polyhedra.

Proof. Consider a regular dodecahedron P12 with a side length of 1. Let U(P12)
be an upper bound of the length of the geodesic paths between any two points
of P12, and let L(P12) be a lower bound of the length of any path through all
faces of P12.

The radius of the circumscribed sphere of P12 is
√
15+

√
3

4 [1]. Thus the maxi-
mum length of a geodesic path on the sphere is

√
15+

√
3

4 π. For two points I and
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Fig. 5: A path IJ passing through two adjacent regular pentagons.

J on P12, let I ′ and J ′ be points on the sphere such that I ′ and J ′ are the corre-
sponding points of I and J , respectively, by the projection from the center of the
sphere. The length of the geodesic path between I and J on P12 is shorter than
the geodesic path between I ′ and J ′ on the sphere. Thus, U(P12) <

√
15+

√
3

4 π.
Next, we consider a path IJ passing through two regular pentagons sharing

one side in the plane (see Fig. 5). Let I and J be external points of P12. Clearly
|IJ | > 1 from Fig. 5. Assume that there exists an FGG path IJ in P12. We
number the faces as F1, F2, . . ., F12 so that path IJ passing these faces in this
order. From the above discussion, for passing each adjacent pair of (F2, F3),
(F4, F5), . . ., (F10, F11) the path is required to pass distance more than one.
Therefore, L(P12) > 5 is obtained,

From the above discussion, U(P12) < L(P12) holds. Hence, From Lemma 7,
FGG paths never exist on regular dodecahedra. ⊓⊔

3.4 Regular icosahedra

Lemma 11. Regular icosahedra are not FGG polyhedra.

Proof. Consider a regular icosahedron P20 with a side length of 1. Let U(P20)
be an upper bound of the length of the geodesic paths between any two points
of P20, and let L(P20) be a lower bound of the length of any path through all
faces of P20.

The radius of the circumscribed sphere of the P20 is
√

10+2
√
5

4 [1]. By using

a discussion similar to one used for regular dodecahedra, U(P20) <

√
10+2

√
5

4 π.
On the other hand, the length of a path that passes twenty faces on the P20

is greater than 4
√
3 (We use an extension of Fig. 4), i.e., L(P20) > 4

√
3.

From the above discussion, U(P20) < L(P20) holds. Hence, From Lemma 7,
FGG paths never exist on regular icosahedra. ⊓⊔
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Fig. 6: The four developments in which an FGG path may exists.

Fig. 7: The four developments of the cuboid in which an FGG path may exists.

Fig. 8: Line segment IJ ′ shorter than IJ in each development.

3.5 Cuboids

Lemma 12. Cuboids are not FGG polyhedra.

Proof. First we consider a cube. Assume that there exists an FGG path on the
cube. We consider a development on which the FGG path is expressed by a
line segment. From Lamma 6, the dual graph of the development except for
the external face must be a path. There are four such development as shown in
Fig. 6.

This argument is also held for cuboids. Let a, b, and c be lengths of the
sides of the cuboid. There are four possible developments of the cuboid that can
construct a local geodesic path I-J passing through the six faces, as shown in
Fig. 7. Note that the relative length of the edges may be changed. Without loss
of generality, we can assume that the point I is located on the face of a× b. For
each line segment IJ in the four developments, there exists a line segment IJ ′

shorter than IJ (see Fig. 8), i.e., |IJ ′| < |IJ | holds regardless of the values of
a, b, and c. From the above discussion, FGG paths never exist on cuboids. ⊓⊔

Now we establish the proof of Theorem 1.

Proof of Theorem 1. Obvious from Lemmas 8-12. ⊓⊔
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(a) A tetrahedron ABCD.
(b) A development of the

tetrahedron ABCD.

Fig. 9: The given tetrahedron. Fig. 10: A path I-J .

4 Tetrahedron

In this section, we give the proof of Theorem 2. However, this proof is compli-
cated, and thus we will provide an outline first. First, we choose a pair of faces
ABC and ABD and put points I and J on edges AC and BD, respectively, sat-
isfying |AI| : |IC| = |BJ | : |JD| = p : 1−p for a positive real number 0 < p < 1.
A path L, slightly extending both endpoints of IJ , is a path passing through the
four faces. If L is a geodesic path, then L is an FGG path. Therefore, we show
that there always exists a real number p, such that L becomes an FGG path, by
comparing it with other paths connecting between I and J .

From here, we sometimes handle angles larger than π. To uniquely represent
such angles, ̸ ABC denotes the angle obtained by a positive rotation from vector−−→
BA to vector

−−→
BC with B at the origin and A in the positive position on the x-

axis. For example, in the development in Fig. 9(b), ̸ BAC represents the interior
angle of triangle ABC, and ̸ CAB represents the opposite angle.

Proof of Theorem 2. For any two faces of a given tetrahedron, let A,B,C, and D
be vertices so that the two faces share edge AB (see Fig. 9). In the development
of Fig. 9(a) shown in Fig. 9(b), vertices D0, D1, and D2 come from the same
point D in Fig. 9(a).

For a real number 0 < p < 1, let I be a point on AC satisfying |AI| : |IC| =
p : 1 − p, and let J be a point on BD1 satisfying |BJ | : |JD1| = p : 1 − p. We
consider the line segment IJ (see Fig. 10). Although this path is hoped to be
an I-J local geodesic path, depending on the shapes of the faces and the value
of p, quadrilateral ACBD1 may be non-convex and the line segment IJ may
stick out from the development, which means that IJ may not be an I-J local
geodesic path. To solve this problem, we prove the following lemma.

Lemma 13. For any face pair of any tetrahedron, there exists a positive real
number p0 > 0 such that for every 0 < p < p0, IJ is an I-J local geodesic path.

Proof. If ̸ D1AC < π and ̸ CBD1 < π, then it is clear that the line segment IJ
is an I-J local geodesic path regardless of the value of p, and thus the statement
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(a) 0 < p < p0. (b) p ≥ p0.

Fig. 11: A tetrahedron ACBD1 such that ̸ D1AC ≥ π.

Fig. 12: Characterization of candidates of I-J local geodesic paths.

is satisfied. Therefore, in the following, we consider the case of ̸ D1AC ≥ π or
̸ CBD1 ≥ π. From the symmetry, we assume the former case without loss of
generality (see Fig. 11). Let L be the intersection point of lines AC and BD1.
By letting p0 = |BL|

|BD1| , the statement of this lemma holds. ⊓⊔

From Lemma 13, IJ is an I-J local geodesic path if p is small enough.
Henceforth, we assume that p is small enough to satisfy the condition of Lemma
13 (thus IJ is an I-J local geodesic path). If the I-J local geodesic path in
Fig. 10 is the shortest uniquely among all I-J local geodesic paths, then this
I-J local geodesic path is the geodesic path and the path slightly extending
both endpoints of this I-J local geodesic path is an FGG path. Therefore, we
enumerate all I-J local geodesic paths and show that there always exists p such
that the I-J local geodesic path in Fig. 10 is a geodesic path.

A path on a tetrahedron can be characterized by enumerating the edges and
faces they passes through. For example, by traversing the I-J local geodesic
path from I to J in Fig. 10, it passes edge AC, face ABC, edge AB, face ABD,
and edge BD in this order. We denote it by ⟨AC,ABC,AB,ABD,BD⟩. This
corresponds to a simple path from vertex AC to BD in the bipartite graph (see
Fig. 12) such that the edge set and the face set of a tetrahedron correspond to the
parts of the vertices, respectively, and an edge is assigned between vertices when
the corresponding face has the corresponding edge as one of its boundaries. Thus,
by enumerating the possible I-J local geodesic paths, we obtain the following
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Fig. 13: Eight paths I-Ji.

8 permutations starting at the vertex AC and ending at the vertex BD in the
graph of Fig. 12.

1. ⟨AC,ABC,AB,ABD,BD⟩
2. ⟨AC,ABC,BC,BCD,BD⟩
3. ⟨AC,ACD,CD,BCD,BD⟩
4. ⟨AC,ACD,AD,ABD,BD⟩
5. ⟨AC,ABC,AB,ABD,AD,ACD,CD,BCD,BD⟩
6. ⟨AC,ABC,BC,BCD,CD,ACD,AD,ABD,BD⟩
7. ⟨AC,ACD,CD,BCD,BC,ABC,AB,ABD,BD⟩
8. ⟨AC,ACD,AD,ABD,AB,ABC,BC,BCD,BD⟩

Let path I-Ji be the i-th corresponding permutation in the above enumeration.
The path I-J in Fig. 10 corresponds to path I-J1. Fig. 13 shows these eight
paths I-Ji in one development. Points A,A1, A2 and A3 on the development are
identical in the tetrahedron. The same property holds for B,C, and D. However,
depending on the shape of the tetrahedron, some of these eight line segments
IJ1, . . . , IJ8 may not be local geodesic paths. For example, if the development
is as shown in Fig. 14, the path corresponding to the 2nd permutation is a
polygonal line on the development (note that the path I-J2 must cross an edge
BC) and does not coincide with line segment IJ2. In this case, there is no lo-
cal geodesic path corresponding to the 2nd permutation. However, if any one
of IJ1, IJ2, IJ3, and IJ4 is the shortest uniquely and is a local geodesic path,
then the line segment extended at both ends very little becomes an FGG path.
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Fig. 14: A line segment IJ2 passing outside.

Here, the existence of the local geodesic path corresponding to 1st permutation
is guaranteed by Lemma 13 and it coincides with IJ1. Therefore, regardless of
the existence of local geodesic paths corresponding to the 2nd, . . ., 8th permu-
tations, we compare the lengths of line segment IJ1 and the other line segments
IJ2, . . . , IJ8 on the development. For comparing these lengths, we consider vec-
tor as follows.

−→
IJ1 =

−→
IB +

−−→
BA+

−−→
AJ1

= −
(
(1− p)

−−→
BA+ p

−−→
BC

)
+
−−→
BA+ (1− p)

−−→
AB + p

−−→
AD1

= (1− 2p)
−−→
AB + p

−−→
CB + p

−−→
AD1

= (1− 2p)
−−→
AB + p

−→
CA+ p

−−→
AB + p

−−→
AD1

= (1− p)
−−→
AB + p

−−→
CD1

By using similar calculations, the following equations are obtained.

−→
IJ1 = (1− p)

−−→
AB + p

−−→
CD1

−→
IJ2 = (1− p)

−−→
AB + p

−−→
CD2

−→
IJ3 = (1− p)

−−→
AB3 + p

−−→
CD0

−→
IJ4 = (1− p)

−−→
AB4 + p

−−→
CD0

−→
IJ5 = (1− p)

−−→
AB1 + p

−−→
CD1

−→
IJ6 = (1− p)

−−→
AB2 + p

−−→
CD2

−→
IJ7 = (1− p)

−−→
AB3 + p

−−→
CD3

−→
IJ8 = (1− p)

−−→
AB4 + p

−−→
CD4

Next, we calculate |
−→
IJi|2 by using the fact

−−→
OX ·

−−→
OY = |

−−→
OX|2+|

−−→
OY |2−|

−−→
XY |2

2 ,
which is derived from the cosine formula. Note that the side length |AB| is
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sometimes simply expressed as AB if we have no fear of misunderstanding.

|
−→
IJ1|2 = (1− p)2AB2 + p2CD2

1 + 2p(1− p)
−−→
AB ·

−−→
CD1

= (1− p)2AB2 + p2CD2
1 + 2p(1− p)

−−→
AB · (

−→
CA+

−−→
AD1)

= (1− p)2AB2 + p2CD2
1 − 2p(1− p)

−−→
AB ·

−→
AC + 2p(1− p)

−−→
AB ·

−−→
AD1

= (1− p)2AB2 + p2CD2
1 − p(1− p)AB2 − p(1− p)AC2 + p(1− p)BC2

+ p(1− p)AB2 + p(1− p)AD2
1 − p(1− p)BD2

1

= (1− p)2AB2 + p(1− p)(−AC2 +AD2
1 +BC2 −BD2

1) + p2CD2
1

Similarly, we have the following equations.

|
−→
IJ1|2 = (1− p)2AB2 + p(1− p)(−AC2 +AD2

1 +BC2 −BD2
1) + p2CD2

1

|
−→
IJ2|2 = (1− p)2AB2 + p(1− p)(−AC2 +AD2

2 +BC2 −BD2
2) + p2CD2

2

|
−→
IJ3|2 = (1− p)2AB2

3 + p(1− p)(−AC2 +AD2
0 +B3C

2 −B3D
2
0) + p2CD2

0

|
−→
IJ4|2 = (1− p)2AB2

4 + p(1− p)(−AC2 +AD2
0 +B4C

2 −B4D
2
0) + p2CD2

0

|
−→
IJ5|2 = (1− p)2AB2

1 + p(1− p)(−AC2 +AD2
1 +B1C

2 −B1D
2
1) + p2CD2

1

|
−→
IJ6|2 = (1− p)2AB2

2 + p(1− p)(−AC2 +AD2
2 +B2C

2 −B2D
2
2) + p2CD2

2

|
−→
IJ7|2 = (1− p)2AB2

3 + p(1− p)(−AC2 +AD2
3 +B3C

2 −B3D
2
3) + p2CD2

3

|
−→
IJ8|2 = (1− p)2AB2

4 + p(1− p)(−AC2 +AD2
4 +B4C

2 −B4D
2
4) + p2CD2

4

Next, for 2 ≤ i ≤ 8, we calculate fi(p) = |
−→
IJi|2 − |

−→
IJ1|2 as follows.

f2(p) =|
−→
IJ2|2 − |

−→
IJ1|2

=(1− p)2AB2 + p(1− p)(−AC2 +AD2
2 +BC2 −BD2

2) + p2CD2
2

−
{
(1− p)2AB2 + p(1− p)(−AC2 +AD2

1 +BC2 −BD2
1) + p2CD2

1

}
=p(1− p)(AD2

2 −AD2
1) + p2(CD2

2 − CD2
1)

=p2(AD2
1 −AD2

2 + CD2
2 − CD2

1) + p(AD2
2 −AD2

1)

Similarly, we have the following equations.

f2(p) =p2(AD2
1 −AD2

2 + CD2
2 − CD2

1) + p(AD2
2 −AD2

1)

f3(p) =p2(AB2
3 −AB2 + CD2

0 − CD2
1) + p(2AB2 − 2AB2

3) +AB2
3 −AB2

f4(p) =p2(BC2 −B4C
2 + CD2

0 − CD2
1) + p(B4C

2 −BC2)

f5(p) =p2(AB2
1 −AB2 +BC2 −B1C

2)

+ p(2AB2 − 2AB2
1 +B1C

2 −BC2) +AB2
1 −AB2
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(a) ̸ TQP ≤ π. (b) ̸ TQP > π.

Fig. 15: A pentagon SPRTQ consisting of three faces of a tetrahedron.

f6(p) =p2(AB2
2 −AB2 +AD2

1 −AD2
2 +BC2 −B2C

2 + CD2
2 − CD2

1)

+ p(AD2
2 −AD2

1 +B2C
2 −BC2 + 2AB2 − 2AB2

2) +AB2
2 −AB2

f7(p) =p2(AB2
3 −AB2 +AD2

1 −AD2
3)

+ p(AD2
3 −AD2

1 − 2AB2 − 2AB2
3) +AB2

3 −AB2

f8(p) =p2(AD2
1 −AD2

4 +BC2 −B4C
2 + CD2

4 − CD2
1)

+ p(AD2
4 −AD2

1 +B4C
2 −BC2)

We show that there exists p > 0 in a neighborhood of p = 0 where all
these seven equations fi(p) are positive. To investigate the properties of these
equations in the neighborhood of p = 0, we calculate the limit of p → 0.

lim
p→0

f2(p) = 0, lim
p→0

f3(p) = AB2
3 −AB2, lim

p→0
f4(p) = 0,

lim
p→0

f5(p) = AB2
1 −AB2, lim

p→0
f6(p) = AB2

2 −AB2, lim
p→0

f7(p) = AB2
3 −AB2,

lim
p→0

f8(p) = 0.

We consider these seven equations in three parts: {f3, f5, f7}, {f2, f4, f8}, and
{f6} and consider them one by one. In preparation for these discussions, we
present the following lemma.

Lemma 14. For any three distinct faces of any tetrahedron, we consider a devel-
opment shown as Fig. 15 (the symbols are assigned arbitrarily). Then, PS < PT .

Proof. Since it is a development of a tetrahedron, |QS| = |QT |. From the facts
that ̸ PQS < ̸ TQP if ̸ TQP ≤ π and ̸ PQS < ̸ PQT if ̸ TQP > π, the
statement of this lemma follows. ⊓⊔

First, we consider f3, f5, and f7. By applying Lemma 14 to faces ABD1,
AC1D1, and B1C1D1, AB1 > AB holds. Similarly, AB3 > AB also holds. There-
fore, limp→0 f3(p) > 0, limp→0 f5(p) > 0, and limp→0 f7(p) > 0 hold. Hence,
f3, f5, and f7 are positive if p > 0 is small enough.

Next, we consider f2, f4, and f8. Since limp→0 f2(p) = 0, limp→0 f4(p) = 0,
and limp→0 f8(p) = 0, if limp→0 f

′
2(p), limp→0 f

′
4(p), and limp→0 f

′
8(p) are posi-

tive, then f2, f4, and f8 are positive in a neighborhood of p = 0. By differentiating
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Fig. 16: A case of f6 < 0 if p > 0 is infinitedecimally close to 0.

f2, f4, and f8, and taking the limit of p = 0 for the differential coefficients, we
obtain

lim
p→0

f ′
2(0) = AD2

2 −AD2
1, lim

p→0
f ′
4(0) = B4C

2 −BC2,

lim
p→0

f ′
8(0) = AD2

4 −AD2
1 +B4C

2 −BC2.

By using Lemma 14 for faces ABD1, AC1D1 and B1C1D1, AD2 > AD1

holds. Similarly, B4C > BC also holds. From AD2 = AD4, AD4 > AD1 also
holds. Therefore, since AB1 > AB was shown in the proof for f3, f5, and f7,
limp→0 f

′
2(p) > 0, limp→0 f

′
4(p) > 0, and limp→0 f

′
8(p) > 0 hold. Hence, f2, f4,

and f8 are positive if p > 0 is small enough.
Finally, we consider f6. For f6, there exists a case where f6 < 0, i.e. IJ6 < IJ1

even if p > 0 is infinitedecimally close to 0 (see Fig. 16). Therefore, we cannot
use the strategy of showing f6 > 0 regardless of the existence of local geodesic
paths. Thus, for f6, we show that limp→0 f6(p) > 0 if the path I-J6 is a local
geodesic path in the neighborhood of p = 0. Since limp→0 f6(p) = AB2

2 − AB2,
we show AB2 > AB under the assumption that the path I-J6 is a local geodesic
path in the neighborhood of p = 0. If line segment AB2 is not a local geodesic
path, then the path I-J6 is also not a local geodesic path by taking p close
enough to 0. Thus, in the following, we consider the case where the line segment
AB2 is a local geodesic path (see Fig. 17). Under this assumption, the following
observations are obtained.

Observation 7 A line segment AB2 passes through faces ABC,BCD2,A2CD2,
and A2B2D2 in this order and intersects with line segments BC,CD2, and A2D2.

From this observation, the following lemma holds.

Lemma 15. ̸ AB2D2 ≤ ̸ A2B2D2 and ̸ BAB2 ≤ ̸ BAC.

Proof. Obvious from observation 7. ⊓⊔
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Fig. 17: AB and AB2. Fig. 18: ̸ A2B2D2 and ̸ ABD2.

Lemma 16. ̸ A2B2D2 < ̸ D2BA.

Proof. In the development shown in Fig. 18, ̸ ABD1, and ̸ A2B2D2 are iden-
tical. By considering similarly to the proof of Lemma 14, ̸ ABD1 < ̸ D2BA.
Hence, ̸ A2B2D2 = ̸ ABD1 < ̸ D2BA. ⊓⊔

We will consider each possible cases of ̸ BAB2 in turn.

Case 1 (0 < ̸ BAB2 < π)
From Lemmas 15 and 16, we obtain ̸ AB2D2 < ̸ D2BA. Since D2BB2 is
an isosceles triangle, ̸ BB2D2 = ̸ D2BB2. Here, if ̸ ABB2 ≤ ̸ ABD2 (see
Fig. 19(a)), then ̸ AB2D2 = ̸ AB2B + ̸ D2B2B and ̸ D2BA = ̸ B2BA+
̸ B2BD2. Also, if ̸ ABB2 > ̸ ABD2 (see Fig. 19(b)), then ̸ AB2D2 =
̸ AB2B − ̸ D2B2B and ̸ D2BA = ̸ B2BA − ̸ B2BD2. Hence, we obtain
̸ AB2B < ̸ B2AB and hence from the size relationship between sides and
angles AB < AB2 follows.

Case 2 (A, B, and B2 are colinear)
There are three cases: ⟨A,B,B2⟩, ⟨A,B2, B⟩, and ⟨B,A,B2⟩. In the case of
⟨A,B,B2⟩, AB < AB2 obviously holds (see Fig.20). In the case of ⟨A,B2, B⟩,
B2 never be on edge AB and hence this order does not exist. In the case of
⟨B,A,B2⟩, ̸ BAB2 = π. From that ̸ BAC is an inner angle of a triangle,
̸ BAC < π follows, and thus ̸ BAC < ̸ BAB2. On the other hand, from
Lemma 15, ̸ BAB2 ≤ ̸ BAC follows, contradiction.

Case 3 (π < ̸ BAB2 < 2π)
In this case, AB2 is not a local geodesic path because AB2 passes outside of
the development (see Fig.21).

The results of these three case divisions indicate that if the path I-J6 are
local geodesics, then AB < AB2. Hence, if path I-J6 is a local geodesic path,
then f6 is positive if p > 0 is small enough.

From the above discussion, we have shown that IJ1 is the uniquely shortest
local geodesic path among IJ1, . . . , IJ8 if p > 0 is small enough. Therefore, a line
segment obtained by slightly extending the both ends of IJ1 is the desired FGG
path. Here, because of the arbitrariness of the choice of faces at the endpoints
of the IJ at the beginning of this proof, any tetrahedron is an FGG polyhedron
and the face-pair FGG number is 4.

⊓⊔
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(a) ̸ ABB2 ≤ ̸ ABD2. (b) ̸ ABB2 > ̸ ABD2.

Fig. 19: Case 1 (0 < ̸ BAB2 < π).

Fig. 20: Case 2 (A, B, and B2 are
colinear). Fig. 21: Case 3 (π < ̸ BAB2 < 2π).

5 Polygons and Prisms

5.1 Polygons

The properties of an FGG path on a prism should closely depend on the shape
of its base (and ceiling). Therefore, we first show the properties of FGG paths on
polygons and discuss the properties of prisms afterward. We obtain a necessary
and sufficient condition of a polygon to have an FGG path as follows.

Theorem 3. A polygon has an FGG path if and only if there is a pair of adjacent
edges AB and BC such that the sum of the lengths of AB and BC is larger than
the sum of the lengths of the other edges (see Fig.22).

Proof. Take a point p on edge AB and a point q on edge BC to satisfy |Ap| =
|Cq| = ϵ > 0. If ϵ is small enough, the p-q geodesic path is clearly an FGG path.

Next, for an n-gon (n ≥ 3), we assume that there is no such a pair of adjacent
edges. Let ℓ be the sum of the length of all edges. For any point p on the
perimeter of the polygon, let o(p) be the opposite point on the perimeter, i.e.,
the length of the two (turning clockwise or counterclockwise) p-o(p) geodesic
paths (i.e., passing through edges) are both ℓ/2. From the assumption, for any
p-o(p) geodesic path, there is an edge that is not included in the path. Thus,
these paths are not FGG paths. ⊓⊔
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(a) A triangle ABC. (b) A hexagon ABCDEF .

Fig. 22: Polygons that have FGG paths.

Fig. 23: Constructing a prism from a polygon that has an FGG path.

5.2 Prisms whose bases are FGG polygons

Next, we discuss prisms.

Theorem 4. A prism whose base has an FGG path is an FGG polyhedron if
it’s hight is large enough.

Proof. Let p and q be the endpoints of the FGG path of the base polygon. We
use the symbols used in Theorem 3, and hence p and q are interior points of
AB and BC, respectively. Let q′ be the point of the ceiling corresponding to
q (see Fig. 23). A local geodesic path p-q′ shown in the right figure of Fig. 23,
which is denoted by P , passes all side faces. Hence, a path obtained by slightly
extending both endpoints of P so that the endpoints are in the ceiling and the
base, respectively, passes all faces. Thus, we prove that P is the uniquely shortest
local geodesic path.

For this purpose, we compare P with other p-q′ local geodesic paths. Any
p-q′ local geodesic paths can be characterized as follows: after starting from p,
it passes on the base, on the side faces, and finally on the ceiling (see Fig. 24).
We denote the length of the part of the base, the side faces, and the ceiling of
the path by l1, l2, and l3, respectively. The lengths of these paths are expressed
as l1 + l2 + l3. Note that for P , l1 + l3 = 0. Furthermore, let s be the length of
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(a) Path P ′. (b) Path P ′′.

Fig. 24: Examples of other p-q′ local geodesic paths. Fig. 25: Illustration of s, L.

the projection of l2 onto the base, and hence l1 + l2 + l3 = l1 +
√
h2 + s2 + l3

where h is the hight of the prism (see Fig. 25). Let L be the length of the FGG
path between pq on the base, and hence the length of P can be expressed as√
h2 + L2. Furthermore, we denote l1 + l3 as l1+3 for simplicity.

We show that there exists real number h0 > 0 such that the following in-
equality holds. √

h2 + L2 < l1+3 +
√
h2 + s2 (2)

Note that we only need to consider the case where l1+3 > 0, i.e., 0 ≤ s < L. Also,
obviously h > 0 and L > 0. Furthermore, since the base is a convex polygon,
0 ≤ l1 < L, 0 ≤ l3 < L, and l1+3 + s < L hold. By using these inequalities, the
following inequality can be derived from Inequality (2).

√
h2 + L2 < l1+3 +

√
h2 + s2

h2 + L2 < l21+3 + 2l1+3

√
h2 + s2 + h2 + s2√

h2 + s2 >
L2 − s2 − l21+3

2l1+3

Since L > s+ l1+3, we can square both sides.

h2 + s2 >
(L2 − s2 − l21+3)

2

4l21+3

h2 >
(L2 − s2 − l21+3)

2 − 4s2l21+3

4l21+3

h2 >
(L2 − s2 − l21+3 + 2sl1+3)(L

2 − s2 − l21+3 − 2sl1+3)

4l21+3

h2 >
(L2 − (s+ l1+3)

2)(L2 − (s− l1+3)
2)

4l21+3
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Fig. 26: A development of a triangular prism on the coordinate plane.

Since h > 0, L > s+ l1+3, L2 > (s− l1+3)
2, and l1+3 > 0, we can take the square

root of both sides.

h >

√
(L2 − (s+ l1+3)2)(L2 − (s− l1+3)2)

4l21+3

h >

√
(L+ s+ l1+3)(L− s− l1+3)(L+ s− l1+3)(L− s+ l1+3)

2l1+3

Since the value of the right side is finite, it is the desired value of h0. ⊓⊔

5.3 Triangular prisms

Triangles have FGG paths. Therefore, a triangular prism with enough height is
an FGG polyhedron from Theorem 4. However, we present a complete charac-
terization of FGG triangular prisms as follows.

Theorem 5. A triangular prism whose base is an equilateral triangle with a side
length of 1 and whose height is

√
3, and triangular prisms that are geometrically

similar to them, are not FGG polyhedra. On the other hand, all other triangular
prisms are FGG polyhedra.

Proof. Consider a development of a triangular prism whose base and ceiling are
ABC and A′B′C ′, respectively, drawn on the coordinate plane (see Fig. 26).
The origin is A, and the side edges adjacent to the base are placed on the x-
axis. Let |AB| = 1 for a normalization and let h be the height of the triangular
prism. The subscripted points C,C0, and C1 are the identical points in the
triangular prism. The same holds for A,B,A′, B′, and C ′. For real numbers p
and q, let I be a point on edge AC such that |AI| = p, and J be a point on
edge BC such that |BJ | = q. I and J are indicated as I1, I2, I3, and J1, J2, J3
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Fig. 27: The equilateral triangular prisms with |AB| = 1 and |AA′| =
√
3.

on the development, respectively. Candidates of the I-J geodesic path are line
segments IiJj (i, j ∈ {1, 2, 3}). From |AB′| < |AB′

1| and |AB′| < |A1B
′|, I3Jj

and IiJ3 (i, j ∈ {1, 2, 3}) can not be the shortest if p and q are both tiny values.
Line segments I1J1, I1J2, I2J1, and I2J2 do not pass through the outside of
the development if p and q are small enough. Hence, if any one of these paths
is uniquely the shortest, then a path slightly extending both endpoints of the
shortest one is an FGG path. Let θ = ̸ C0AC1 and θ′ = ̸ C ′B′C ′

1. Then, points
I1, I2, J1, and J2 are denoted by I1 = (−p, 0), I2 = (−p cos θ,−p sin θ), J1 =
(1 + q, h), and J2 = (1 + q cos θ′, h+ q sin θ′). By using them, we obtain

|I1J1|2 = p2+q2+h2+1+2(p+ q + pq),

|I1J2|2 = p2+q2+h2+1+2(p+ q(cos θ′ + h sin θ′) + pq cos θ′),

|I2J1|2 = p2+q2+h2+1+2(p(cos θ + h sin θ) + q + pq cos θ),

|I2J2|2 = p2+q2+h2+1+2 (p(cos θ+h sin θ)+q(cos θ′+h sin θ′)+pq cos(θ−θ′)) .

Observing these equations, if θ = θ′ and cos θ + h sin θ = 1, then |I1J2| = |I2J1|
and |I1J1| = |I2J2|, regardless of the value of p and q. Conversely, if θ ̸= θ′ or
cos θ + h sin θ ̸= 1, then we can make one of |I1J1|, |I1J2|, |I2J1|, and |I2J2| be
uniquely the shortest by adjusting the value of p and q (even if p and q are very
small). Since there is a freedom to assign vertices to be A and B, the unique case
where θ = θ′ is always true is the case where the base is an equilateral triangle,
i.e. θ = θ′ = 2

3π. In this case, from cos θ + h sin θ = 1, we obtain h =
√
3. This

is the triangular prisms whose base is an equilateral triangle with a side length
of 1 and whose height is

√
3 (see Fig. 27). Therefore, we showed that except

triangular prism geometrically similar to this, all triangular prisms are FGG
polyhedra.
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Fig. 28: Four candidates for point J .

Finally, we show that equilateral triangular prisms with base length 1 and
height

√
3 and similar equilateral triangular prisms are not FGG polyhedra.

Assume that equilateral triangular prisms with base length 1 and height
√
3

have an FGG path. From the symmetry, we only need to consider the following
four orders of the faces through which the FGG path passes.

Case 1 ⟨base, side, side, side, ceiling⟩
Case 2 ⟨base, side, side, ceiling, side⟩
Case 3 ⟨base, side, ceiling, side, side⟩
Case 4 ⟨side, base, side, ceiling, side⟩

From the symmetry, assume that AC is the base edge traversed by the FGG
path. Case 1 corresponds to the line segment I1J1, Case 2 corresponds to the
line segments I1J2 and J1I2, Case 4 corresponds to the line segment I2J2 in
Fig. 27, respectively, and they are not FGG paths since |I1J2| = |I2J1| and
|I1J1| = |I2J2|. Finally, we discuss the case 3. A path passing through in this
order obtained from the line segments I1J4 or I1J5 shown in Fig. 28 by extending
both endpoints. In this case, there exist two other candidates, I1J6 and I1J7, for
the FGG path as shown Fig. 28 . We compare the lengths of them. Let |AI| = p
and |BJ | = q. From the symmetry, we can assume that p ≤ 1

2 without loss
of generality, and hence, only IJ4 and IJ6 are candidates. The coordinates of
each point are I1 = (−p, 0), J4 =

(√
3
2 q − 1

2 ,
1
2q +

3
√
3

2

)
, and J6 =

(
1,
√
3− q

)
.

Hence, we obtain |I1J4|2 = p2+
√
3pq−p+ q2+

√
3q+7 and |I1J6|2 = p2+2p+

qq2 − 2
√
3q + 4. From the assumption that this equilateral triangular prism has

an FGG path of case 3, the following must hold.
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Fig. 29: An example of inductively increasing the number of faces by chamfering.

|I1J4|2 − |I1J6|2 =
√
3pq − 3p+ 3

√
3q + 3 < 0. (3)

Since 0 < p ≤ 1
2 , 0 < q <

√
3, we obtain

q <

√
3(p− 1)

p+ 3
. (4)

The right side of Inequality (4) is always less than 0, contradiction. ⊓⊔

6 n-hedra

In this section, we give the proof of Theorem 6.

Proof of Theorem 6. For n = 4, tetrahedra have FGG paths (Theorem 2) and
the statement holds. Next, we assume that there exists an FGG n-hedron. Let
e be one of the edges of the n-hedron that is crossed by an FGG path. We
now cut e off very thinly by a plane parallel to the edge e (see Fig. 29). This
operation is called chamfering. A chamfering make an n-hedron to be an n+ 1-
hedron. Moreover, since the thickness of the chamfering can be made as small
as possible, the new polyhedron is also an FGG polyhedron. By induction, the
statement of this theorem is proven.

⊓⊔

7 Conclusions and Conjectures

In this paper, we proposed the concepts of FGG polyhedra, FGG numbers,
and face-pair FGG numbers, and clarified whether a polyhedron is an FGG
polyhedron or not for several polyhedra. Our primary goal of this study is to
characterize FGG polyhedra, i.e., to classify all polyhedra as FGG polyhedra or
not. Furthermore, there is also the goal of clarifying the FGG numbers and face-
pair FGG numbers of polyhedra. To achieve these goals, we will work on proving
whether a polyhedron is an FGG polyhedron or not for more other polyhedra.
As immediate goals, we have the following conjectures.
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Conjecture 1 Bipyramids are not FGG polyhedra.

Conjecture 2 Truncated regular polyhedra and chamfered regular polyhedra are
not FGG polyhedra.

For polygons, we conjecture that the condition of Theorem 4 is a necessary and
sufficient condition, i.e., we also have the following conjecture.

Conjecture 3 A necessary and sufficient condition for a polygon P to have an
FGG path is that a prism with enough height having P as its base is an FGG
polyhedron.
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