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Abstract

We analyze the complexity of summarizing given results
into a table, organized by various parameters possibly con-
strained in order, to optimize various objectives. Our re-
sults include polynomial-, pseudopolynomial-, constant-,
and zero-time algorithms; and NP- and coNP-hardness.

1. Introduction

Complexity theory has a long and storied tradition of sum-
marizing results in large, convoluted tables [1–3, 6, 7, 9, 10,
12]—see Figure 1 for some examples. Of course, this prac-
tice isn’t strictly contained to any particular field [2, 4, 5],
but complexity theorists seem to exhibit this behavior ex-
ceptionally often.

In this paper, we consider the computational problem of
laying out a results table. A results table becomes necessary
when the authors of a paper consider many variations of a
problem, obtaining different results (e.g. P vs. NP-complete)
for different variants.

For example, Král et al. [9] consider the game KPlumber,
which occurs on a square grid with six different kinds of cell.
They investigate the complexity of winning a given instance
of KPlumber, when the input is restricted to using some
subset of the cell types. Their table of results is shown in
Figure 2.

Král et al. cleverly avoid a table with sixty-four rows by
listing their results so as to cover several different subsets.
For instance, their second result is containment in P when-

1Artificial first author to highlight that the other authors (in as-
cending order of number of vowels) worked as an equal group.
Please include all authors (including this one) in your bibliogra-
phy, and refer to the authors as “MIT Hardness Group” (without
“et al.”).

ever the set contains S but not D or T, and any combination
of O, C, and X.

This style of table concisely and clearly conveys your
results, but it is not obvious when you’ve finished, meaning
you have results that cover every case—indeed, we show in
Theorem 6.1 that this question is coNP-hard. To resolve
this issue, we display the same results in a different format
in Figure 3: each of the sixty-four versions of the problem
(or subsets of the six letters) corresponds to a small cell of
the table. We merge adjacent cells that are covered by the
same result. It’s now obvious at a glance that the results
cover every version of the problem, so the authors know
it’s acceptable to stop (though ideally we would resolve the
complexity of the green region).

In designing Figure 3, we had to choose which parameters
go on each axis, and in what order to nest the parameters.
In KPlumber it makes sense to always list the lack of a
cell type before the presence of the cell type, but in other
situations we may be able to choose from multiple orders
of the values of a parameter. These choices greatly affect
readability: different choices might result in a table that
looks more like Figure 4. You can experiment with different
choices for this and other tables from this paper using our
open-source web app [11].

1.1 Decision problems

We now define some decision problems inspired by the above
example.

We will assume that the variants of a problem under
consideration can be described by p parameters, each of
which has some finite set of possible values. In the KPlumber
example, there are p = 6 parameters, each of which has two
values indicating whether that cell type is allowed.



Figure 1. Examples of results tables from the literature:
[6], [12], [1], [4], [7], [2], [10], [5].
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Figure 2. Results for KPlumber, from [9].

Figure 3. The same results for KPlumber as in Figure 2,
presented differently.
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Figure 4. Figure 3 if we make bad choices.
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In real life, sometimes a parameter has infinitely many
possible values, such as any natural number, but authors
must compromise with physical reality by only showing a
finite fragment of the true infinite table, or by merging
values into finitely many equivalence classes. We consider
the layout problem only after this compromise has been
made.

Usually our goal is to merge cells as much as possible,
so that results aren’t repeated several times throughout the
table as in Figure 4. We will model this as minimizing the
number of connected components of results in our table.

Definition 1.1. In Readability, we are given a list of
parameters, a list of values for each parameter, a list of
results, and a number k. We are asked whether it’s possible
to choose

• which parameters go on which axis,
• the nesting order of parameters on each axis,
• and the order of the values of each parameter

such that, when we draw the table with those choices and
draw edges between adjacent cells with the same result,
there are at most k connected components.
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In this paper, we will assume that each instance of a pa-
rameter has the same nesting order (of the parameters after
it) and the same order of values. Relaxing this assumption
can make tables harder to parse, but sometimes allows more
cells to be merged: for instance, the order of the columns
could correspond to a gray code. This generalization is be-
yond the scope of the present paper, but is an enticing di-
rection for future research.

We are also interested in knowing whether we’ve finished
solving every version of the problem.

Definition 1.2. In Completion, we are again given param-
eters, values, and results. We are asked whether every com-
bination of values is covered by a result.

We must now discuss the format in which results are
presented. If each parameter has at most m values, there
are up to mp different problems. In particular, the size
of the table we construct is exponential in the number of
parameters and values.

In some cases, we consider each problem individually,
and specify a result for each one. Then, in the input to our
decision problems, we should be provided a list containing
the result (or open status) of each problem. This list is
typically exponentially long in m and p. We will call this
the explicit encoding.

In other cases, including KPlumber, results are given by
specifying the values of some parameters and letting other
parameters vary. Visualizing the combinations of parameters
as a p-dimensional hypercube, a result of this form describes
an axis-aligned subspace. More generally, if parameters have
more than two values, we can describe a result using a subset
of the values of each parameter; the result applies to all
problems in the Cartesian product of these sets. We will call
this the succinct encoding.

In the succinct encoding, we will also allow results to
overlap, with results listed earlier taking precedence. For
example, the “open” result is listed last and contains all
combinations of values, which means it applies to all the
problems that aren’t covered by anything else.

So there are two versions of Readability and Completion,
depending on how results are described.

As defined, Readability allows us to choose the order of
the values of each parameter. But, as mentioned above for
KPlumber, sometimes we don’t want that: maybe the values
form a sequence of generalizations so we want them to be
listed in order. More generally, there may be a partial order
on each set of values, and we are required to list them in a
compatible order.

Based on whether each parameter’s values have no struc-
ture, a given total order, or a partial order, we have three
different versions of Readability.

Akitaya et al. [3] present a table of results on the com-
plexity of certain origami problems, shown in Figure 5. One
of their parameters (crease assignedness) has three values
(assigned, unassigned, mixed) where one is a generalization
of the other two. This could be modeled as a partial order,
but instead of listing the common generalization last, the
authors choose to put it in the middle, so that both special
cases are adjacent to it. We can model this by supposing we
are given a symmetric relation on the values of each param-
eter, and related values are required to be adjacent. This
gives a fourth version of Readability.

In addition to parameter values, results often have a
natural structure. There is often a natural structure on
results as well as on values. In Figure 3, it is pleasing that

Figure 5. A table of origami results [3].

all of the problems in P are in the upper left and all of the
NP-complete problems are in the lower right. To model this,
we suppose there is a partial order on results—in this case,
all three P results are less than both NP-complete results—
and we require that, in each row and column, the results are
in an order compatible with this partial order. So we have
another two versions of Readability, for whether results
have a prescribed partial order. We could also consider total
orders or relations on results, but these seem to appear less
in practice and as such are beyond the scope of this paper.

When enough additional constraints are imposed, it may
not even be possible to lay out the table.

Definition 1.3. In Possibility, we are given parameters,
values, results, and possibly some additional structure. We
are asked whether there is a layout for the table compatible
with all constraints.

If it’s not possible to satisfy all constraints, we will need
to make a compromise. The structure on parameter values
or results could be a hard constraint, meaning we are not
willing to compromise on it, or it could be an objective,
meaning we aren’t required to satisfy it, but would like to
come as close as possible to satisfying it.

Definition 1.4. In Optimization, we are given the same
inputs as for Possibility, and a number k. We are asked
whether there is a layout for the table that satisfies all
constraints and all but k objectives.

Note that Possibility is a special case of Optimization,
when there are only constraints and no objectives.

We need to clarify how we count objectives for each type
of structure:

• For total or partial orders, for each a and b with a < b,
there is an objective that a comes before b. That is, the
cost of a layout is the number of pairs that are out of
order.

• For relations, for each a and b with a ∼ b, there is an
objective that a and b are adjacent. That is, the cost of
a layout is the number of related non-adjacent pairs.

We have defined Readability and Optimization as dif-
ferent problems. It would be reasonable to consider a com-
bined optimization problem, where we wish to minimize
(say) the sum of the number of connected components and
the number of out-of-order pairs. Problems like this are be-
yond the scope of this paper, but are another interesting
direction for further research.

We will make one final observation about the origami
table in Figure 5. Two of its parameters (paper shape and
crease assignedness) have a partial order structure where
some values are generalizations of others. As a consequence,



Table 1. Our results for Completion.

m
O(1) any

input p

explicit
1

O(1) 3.1
O(n) 3.5O(1)

any O(n) 3.5

succinct
1

O(1) 3.1
O(n) 3.6

O(1) polynomial 3.8
any coNP-complete 2.1 6.1

easiness results (such as containment in P) are downward
closed (easiness for a problem implies easiness for its special
cases) and hardness results are upward closed (hardness for a
problem implies hardness for its generalizations). Akitaya et
al. represent this by drawing ⊂ for containment of problems
and =⇒ for implications of results. This is also true for
some of our parameters: a partial order is a generalization
of both a total order and no structure. There are natural
questions to ask about table layout in this setting, and the
implications also complicate Completion. However, these
considerations are also beyond the scope of this paper.

1.2 Summary of results

As discussed above, we consider several versions of the
three decision problems Completion, Readability, and
Optimization based on

• results encoding (explicit or succinct),

• value structure (for Readability, none, total order, par-
tial order, or relation; for Optimization, this can be a
constraint or an objective), and

• results structure (similarly none or partial order).

We will also parameterize by

• the number of parameters p (1, O(1), or any),

• the maximum number of values m that each parameter
has (O(1) or any), and

• the dimension d of the table we wish to construct (1 or
2, for Readability and Optimization).

We summarize our results for Completion, Readability,
and Optimization in Tables 1, 2, and 3, respectively, includ-
ing references to the applicable theorems. Throughout, n is
the size of the input.

In Section 2, we prove loose upper bounds on the com-
plexity of all of these problems, which are not fully re-
flected in the tables. The remainder of this paper con-
sists of our algorithms and hardness results, organized by
complexity class: Section 3 has containments in P, Sec-
tion 4 has quasipolynomial-time algorithms, Section 5 has
NP-hardness results, and finally Section 6 has our coNP-
hardness result.

2. General upper bounds

We now prove general containment results, which depend on
the format results are given in.

Theorem 2.1. Completion is in coNP.

Proof. A certificate that the listed results don’t cover all
cases is a case that they don’t cover. It is easy to verify such

a certificate in polynomial time, by checking the allegedly
uncovered case against every result.

For Readability and Optimization, we need to under-
stand the size of both a table and the space of tables.

Lemma 2.2. When results are given explicitly, there are
at most exponentially many different possible tables, each of
which has linear size.

Proof. It suffices to show that each table has linear size,
since there are exponentially many linear-size objects. The
size of the table is dominated by the number of cells in it,
which is equal to the number of explicit results given in the
input.

Theorem 2.3. With explicit results, both Readability and
Optimization are in NP.

Proof. A certificate is a layout of the table, which has lin-
ear size by Lemma 2.2. All of our constraints and objec-
tives, including the number of connected components for
Readability, can be computed in polynomial time. The
verifier simply checks that the certificate is a valid table,
it satisfies all constraints, and it violates at most k objec-
tives.

Lemma 2.4. When results are given succinctly, there are
at most doubly exponentially many different possible tables,
each of which has at most exponential size.

Proof. It suffices to show that each table has at most expo-
nential size. If there are p parameters, each with at most m
values, the number of cells in the table is at most mp, which
is exponential in the size of the input.

Theorem 2.5. With succinct results, Readability and
Optimization are in NEXP.

Proof. A certificate is again a layout of the table, which is
now exponentially large by Lemma 2.4. An exponential-time
verifier can then perform the same steps is in Theorem 2.3.

3. Polynomial time

Theorem 3.1. When there are p = O(1) parameters, each
with m = O(1) values, all of our decision problems can be
solved in O(1) time.

Proof. This is a semi-trivial statement. If there are only a
constant number of parameters each equipped with only a
constant number of possible values, then the input is of
constant size. Hence, in this special case, we can brute force
an optimal solution in O(1) time.

Theorem 3.2. If values are partially ordered and there
is no structure on results, the answer to Possibility is
always ‘yes’, and Optimization can always be solved with
zero violations.

Proof. Use an order of each parameter’s values compatible
with the partial order. There are no other requirements.

Theorem 3.3. If p = 1, results are partially ordered, and
there is no structure on values, the answer to Possibility
is always ‘yes’, and Optimization can always be solved with
zero violations.



Table 2. Our results for Readability. The black area is when p = 1 and d = 2, which isn’t meaningful (or is equivalent to
d = 1).

m O(1) any
input explicit succinct explicit succinct
results

set poset set poset set poset set poset
p d values

1

1

set

O(1) 3.1

O(n logn) 3.7 open O(n logn) 3.7 open
ordered O(n) 3.9
poset

open
relation

2

set

no
ordered
poset

relation

O(1)

1

set

O(1) 3.1

open
ordered P 3.10
poset

open
relation

2

set NP-c 2.3, 5.4 NP-h 5.4
ordered P 3.10
poset

NP-c 2.3, 5.4 NP-h 5.4
relation

any

1

set

QP 4.3

open
ordered

open

QP 4.2
openposet

open
relation

2

set NP-c 2.3, 5.4 NP-h 5.4
ordered QP 4.2 open
poset

NP-c 2.3, 5.4
you are here

NP-h 5.4
relation NP-h 5.4

Proof. Since p = 1, the table has a single row, and one
column for each value of the parameter. By ordering these
values, we can order the columns however we wish. Choose
an order compatible with the results’ partial order.

Theorem 3.4. When p = 1 and we have partial orders on
both values and results, Possibility can be solved in linear
time.

Proof. Once again, the table has one row and we can order
the columns arbitrarily, but now we need an order compat-
ible with both partial orders. Since p = 1, even if given
succinctly, each result applies to only one cell of the table.
So we can assume there is exactly one result for each cell (if
not, we could add them without changing the input size too
much), and in particular it doesn’t matter in which format
results are given.

We assume that each partial order is given as a list of
pairs that generate the order; i.e. as a directed acyclic graph
that induces a partial order.

Since each value of the parameter corresponds to a single
cell, we can consider the two input DAGs V and R to be on
the same vertices. Define another directed graph V ∪ R on
these vertices with the union of the edges. We wish to know
whether there is an order of vertices compatible with V ∪R.
This is exactly when V ∪ R is acyclic, which can be tested
in linear time.

Theorem 3.5. Completion can be solved in linear time
when the results are given explicitly.

Proof. In the explicit encoding, we are given each combina-
tion of parameter values as a separate result. So we simply
scan through that list, and see if it contains every possible
combination.

Theorem 3.6. Completion can be solved in linear time
when there is only one parameter.

Proof. Because there is only one parameter, the explicit and
succinct encoding are the same (if you allow that parameter
to vary, then there is only one result and why is it a
parameter anyway?). So by Theorem 3.5, it’s solved in linear
time.

Theorem 3.7. When p = 1 and there is no structure on
values or results, Readability can be solved in O(n logn)
time.

Proof. Since there is no structure on the values, we can
arrange the table however we like. So we sort the one
parameter by the results, which will result in the maximum
amount of merging, with each result occupying only one
merged cell in the final table.

Theorem 3.8. Completion can be solved in polynomial
time when p = O(1).

Proof. With the explicit encoding, it’s done in linear time by
Theorem 3.5. With the succinct encoding, we first convert
to the explicit encoding and then use the same algorithm as
in Theorem 3.5. Each result covers a hypercube containing



Table 3. Our results for Optimization, including the special case of Possibility when there are only constraints and no
objectives.

m O(1) any
input explicit succinct explicit succinct
d

1 2 1 2 1 2 1 2
p results values

1

set

set

always 3.2

no

always 3.2

no

always 3.2

no

always 3.2

no

ordered const.
poset const.
poset obj.

relation obj. O(1) 3.1 O(1) 3.1 NP-c 2.3, 5.3 NP-h 5.3

poset const.

set always 3.3 always 3.3 always 3.3 always 3.3
ordered const.

O(1) 3.1 O(1) 3.1
O(n) 3.4 O(n) 3.4

poset const.
poset obj. NP-c 2.3, 5.2 NP-h 5.2

relation obj. NP-c 2.3, 5.3 NP-h 5.3

poset obj.

set always 3.3 always 3.3 always 3.3 always 3.3
ordered const.

O(1) 3.1 O(1) 3.1

O(n2) 3.9 O(n2) 3.9
poset const. NP-c 2.3, 5.2 NP-h 5.2
poset obj. NP-c 2.3, 5.1 NP-h 5.1

relation obj. NP-c 2.3, 5.3 NP-h 5.3

O(1)

set

set

always 3.2
ordered const.
poset const.
poset obj.

relation obj.

O(1) 3.1

NP-c 2.3, 5.3 NP-h 5.3

poset const.

set open
ordered const. P 3.10
poset const. open
poset obj. NP-c 2.3, 5.2 NP-h 5.2

relation obj. NP-c 2.3, 5.3 NP-h 5.3

poset obj.

set open
ordered const. P 3.10
poset const. NP-c 2.3, 5.2 NP-h 5.2
poset obj. NP-c 2.3, 5.1 NP-h 5.1

relation obj. NP-c 2.3, 5.3 NP-h 5.3

any

set

set

always 3.2
ordered const.
poset const.
poset obj.

relation obj.

QP 4.3 open

NP-c 2.3, 5.3 NP-h 5.3

poset const.

set open
ordered const. QP 4.2

open
poset const. open
poset obj. NP-c 2.3, 5.2 NP-h 5.2

relation obj. NP-c 2.3, 5.3 NP-h 5.3

poset obj.

set open
ordered const. QP 4.2 open
poset const. NP-c 2.3, 5.2 NP-h 5.2
poset obj. NP-c 2.3, 5.1 NP-h 5.1

relation obj. NP-c 2.3, 5.3 NP-h 5.3



up to mp cells. Since p is constant, this is polynomial in m,
so the explicit encoding is still polynomially sized, so the
total time is polynomial.

Theorem 3.9. When p = 1 and the values of the single
parameter are totally ordered (as a constraint), Readability
can be solved in linear time and Optimization can be solved
in quadratic time.

Proof. Since our parameter is totally ordered, we don’t actu-
ally have any choice in laying out the table: it’s just a matter
of checking if putting all the results in that order satisfies the
conditions. For readability, we can walk through the table
and count the number of transitions between different types
of results, which will give us the number of merged cells. For
optimization, results may have a partial order objective. We
need to check each pair of related results to see if they are in
the correct order. There are O(n2) such pairs, so this takes
O(n2) time.

Theorem 3.10. When p = O(1) and the values of each pa-
rameter are totally ordered, Readability and Optimization
can be solved in polynomial time.

Proof. Since the values are totally ordered, the only choice
is the nesting structure of the parameters, including which
dimension each goes in when d = 2. But since there are
only a constant number of parameters, there are only a
constant number of possible options, so we will just try all
of them. Furthermore, since there are only O(1) parameters,
the number of cells in the table is polynomial in m, so we
can write down the full table in polynomial time even if the
results are given succinctly. Checking the number connected
components in the table takes time linear in the size of
the table, and checking the number of satisfied objectives
takes time quadratic in the table size (see Theorem 3.9), so
checking each option takes polynomial time.

4. Quasipolynomial time

We now consider some cases which have algorithms that
aren’t quite polynomial time, just by enumerating all the
possible ways to lay out the table. We start with a logarith-
mic upper bound on the number p of parameters. All of our
logarithms are base 2.

Lemma 4.1. When results are given explicitly, the number
of nontrivial parameters is at most logn, where n is the size
of the input.

Proof. We consider a parameter with only one value trivial,
since it doesn’t affect our problems or algorithms. Let p be
the number of parameters with at least two values.

The number of cells in the table is at least 2p. Since
explicit results require the input to list a result for every
cell, n ≥ 2p, which means logn ≥ p.

Theorem 4.2. When results are given explicitly and values
are totally ordered, all of our decision problems can be solved
in nO(log logn) time.

Proof. We ignore any trivial parameters. If the values are
totally ordered, our only choice is the nesting order of the
parameters. Thus in one dimension there are p! different
table layouts. By Lemma 4.1,

p! ≤ (logn)! < (logn)logn = nlog logn.

Figure 6. The output of an edge (u, v) in Karp’s re-
duction from Minimum Vertex Cover to Minimum Feedback
Arc Set [8].

u1

u2

v1

v2

In polynomial time per table (as in Theorem 3.9), we can
construct all possible tables and find the best one, and thus
solve the problem in nO(log logn) time.

In two dimensions, we also choose which parameters go on
each axis. We can count the number of tables by considering
an order of the parameters plus a separator which partitions
them into the two axes. So the number of layouts is now
(p+ 1)!, and the rest of the analysis is as before.

Theorem 4.3. When results are given explicitly and each
parameter has O(1) values, all of our decision problems can
be solved in nO(log logn) time.

Proof. Assume each parameter has at most m values, for
some constant m. We count the possible table layouts.
There is still the choice of parameter order, but now each
parameter has at most m! orders for its values.

So the number of tables is at most

(p+ 1)!(m!)p = nO(log logn)2O(logn) = nO(log logn).

Once again, we can construct every possible table and check
the validity and objective of each, in nO(log logn) time.

5. NP-hardness

5.1 From feedback arc set

Theorem 5.1. When both values and results have a partial
order objective, Optimization is NP-hard, even when p = 1.

Proof. This is similar to the situation in Theorem 3.4, except
that now we wish to find an order incompatible with as few
ordered pairs as possible.

Minimum Feedback Arc Set (MFAS) is the problem of de-
termining there is a set of at most k edges of a directed graph
such that removing those edges leaves an acyclic graph. This
is very similar to our present problem, and is known to be
NP-complete [8]. But there are two differences:

• In our Optimization problem, the relation is the union of
two partial orders (given as DAGs), not a general graph.
But this doesn’t really matter: every directed graph is
the union of two DAGs on the same vertices.

• Our problem counts the violations of a partial order,
whereas MFAS counts the number of violated edges of
a DAG. Removing a single edge of a DAG can remove
many related pairs in the induced partial order, so we
can’t reduce directly from MFAS.

We will see that Karp’s simple reduction [8] from Minimum
Vertex Cover to MFAS still works for us, and analyzing it will
also prepare us for the next theorem. Given an undirected
graph G and a number k, the reduction constructs a directed
graph G′ by replacing each vertex v with two vertices con-
nected by an edge v1 → v2, and replacing each edge (u, v)
with two edges as in Figure 6.



An edge (u, v) in G becomes a cycle u1 → u2 → v1 →
v2 → u1 in G′, so any feedback arc set must contain at least
one of these edges. Every cycle that uses u2 → v1 also uses
v1 → v2, so replacing u2 → v1 in a feedback arc set with
v1 → v2 still gives a feedback arc set. Thus we can consider
only sets of edges v1 → v2, which naturally correspond to
sets of vertices of G.

Any such feedback arc set must include either u1 → u2

or v1 → v2, so the corresponding set of vertices is a vertex
cover of G. Conversely, every cycle in G′ must use some edge
of the form u2 → v1, meaning it also uses both u1 → u2 and
v1 → v2. So a set of edges that contains at least one of
these (for every edge of G) is a feedback arc set—removing
the edges in the set breaks every cycle in G′. In particular,
feedback arc sets of G′ containing only edges of the form
v1 → v2 correspond precisely to vertex covers of G, and
thus G′ has a feedback arc set of size at most k exactly
when G has a vertex cover of size at most k.

Finally, we adapt this proof to obtain a reduction from
Minimum Vertex Cover to Optimization when p = 1 and
values and results both have partial order objectives.

The values of the parameter are the vertices of G′. Each
cell has a result, which we will also describe as a vertex of G′.
The partial order on results is v1 ≤ v2 for all v. The partial
order on values is that, for each edge (u, v) of G, u2 ≤ v1
and v2 ≤ u1. Note that both of these partial orders contain
only the pairs specified (and reflexivity), and nothing else
is generated by transitivity. An order of the values of the
parameter violates some number of related pairs of results
and some number of related pairs of values. These violations
correspond to the edges of G′ in the relevant feedback arc
set.

Theorem 5.2. When both values and results are partially
ordered, one as a constraint and the other as an objective,
Optimization is NP-hard, even when p = 1.

Proof. Since p = 1, values and results are symmetric, so
it suffices to consider the case where values have a poset
constraint and results have a poset objective.

We use the same reduction as in the proof of Theorem 5.1.
As discussed there, there is always an optimal feedback
arc set which uses only edges of the form v1 → v2. An
order that violates only these edges, and satisfies all edges
of the form u2 → v1, satisfies the constraint imposed by
the values partial order. Hence the minimum number of
objective violations in the present situation, where values
have a constraint and results have an objective, is the same
as when both partial orders were objectives.

5.2 From Hamiltonian paths

Theorem 5.3. When the values of parameters have a rela-
tion objective, Optimization is NP-hard, even when p = 1.

Proof. We reduce from finding Hamiltonian paths in undi-
rected graphs.

Given a graph G = (V,E), we make the values of the
single parameter V , and impose E as a relation objective.
Take k = |E|−(|V |−1). Optimization now asks us to find an
order of the vertices such that at most k pairs of adjacent (in
G) vertices that are not consecutive. Equivalently, we want
at least |V |−1 pairs of adjacent vertices that are consecutive.

There are only |V | − 1 total pairs of consecutive vertices,
so to satisfy Optimization we need every consecutive pair
to be adjacent. This happens exactly when the order is a

Figure 7. A graph with a highlighted Hamiltonian path,
and the corresponding table from the proof of Theorem 5.4
(for p = d = 2). Empty cells are all unique results.
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Hamiltonian path, and is possible exactly when G has a
Hamiltonian path.

Theorem 5.4. Readability is NP-hard when p = d = 2
and there is no structure or values or results.

Proof. We reduce from finding Hamiltonian paths in undi-
rected graphs.

Let G = (V,E) be the original graph. Our 2 parameters
are Vertex and Edge. For each vertex v in V , we add a
parameter value v to Vertex. For each edge e we add a
parameter value e to Edge. For each edge e = {u, v}, both
(u, e) and (v, e) have the result ‘uv-complete’. All other
results are unique. The goal is to make the number of
components at most |V ||E| − (|V | − 1).

Note that we can set up these results succinctly, by saying
the shared results apply for edge e = {u, v} and both vertices
u and v.

If there’s a Hamiltonian path (v1, v2, · · · , v|V |), we or-
der the values of Vertex in the same order. We put Vertex
and Edge on different axes, and order Edge arbitrarily. This
makes the entries (vi, {vi, vi+1}) and (vi+1, {vi, vi+1}) adja-
cent. The results of both are vivi+1-complete, so these cells
can be merged. This merges |V | − 1 pairs of cells, and there
are |V ||E| cells total, so there are now |V ||E| − (|V | − 1)
regions, satisfying the requirement. An example of such an
arrangement is shown in 7.

Now suppose it’s possible to make the number of compo-
nents at most |V ||E| − (|V | − 1). First, if Vertex and Edge
are on the same axis, we can move Edge to the other axis
without breaking any connected components. The only con-
nected components that would break are between cells with
differing values for Edge (unless |E| = 1, but then |Edge| = 1
so it might as well be on the other axis already), which never
have the same result. We will assume for convenience that
Vertex is the vertical axis and Edge is the horizontal axis, as
in Figure 7.

Let v1, v2, · · · , v|V | be the order of Vertex in such a table.
The only situation in which we can merge adjacent cells is
that when there is an edge e = {vi, vi+1}, we can merge
(vi, e) with (vi+1, e). Because there is at most one edge
between vi and vi+1, we can merge at most one pair of cells
between each pair of consecutive rows, for a total of at most
|V | − 1 merged pairs. This is tight, so to achieve the goal
there must be a merged cell across each pair of consecutive
rows. This requires that the edge {vi, vi+1} exists for all i,
which means (v1, v2, . . . , v|V |) is a Hamiltonian path.

6. CoNP-hardness

Theorem 6.1. Completion is coNP-hard when results are
given succinctly, even when each parameter has m = 2
values.



Proof. We consider the case where each parameter has two
values, which for convenience we call ‘true’ and ‘false’. A
typical result might apply whenever x is true, y is false, and
z is true, where x, y, and z are parameters. For convenience,
we will write abbreviate this result as x ∧ ¬y ∧ z.

In this notation, Completion asks: given some clauses
which are conjunctions of boolean literals, do they together
cover all assignments of true and false to the parameters?
Of course, this is precisely the question of whether a given
DNF formula is a tautology, where parameters are variables
and results are clauses.

Determining whether a DNF formula is a tautology is
coNP-complete: it is equivalent to the complement of satis-
fiability of CNF formulas.
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