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Abstract
We prove that any finite collection of polygons of equal area has a common hinged dissection.

That is, for any such collection of polygons there exists a chain of polygons hinged at vertices
that can be folded in the plane continuously without self-intersection to form any polygon in
the collection. This result settles the open problem about the existence of hinged dissections
between pairs of polygons that goes back implicitly to 1864 and has been studied extensively
in the past ten years. Our result generalizes and indeed builds upon the result from 1814 that
polygons have common dissections (without hinges). Our proofs are constructive, giving explicit
algorithms in all cases. For two planar polygons whose vertices lie on a rational grid, both the
number of pieces and the running time required by our construction are pseudopolynomial.
This bound is the best possible, even for unhinged dissections. Hinged dissections have possible
applications to reconfigurable robotics, programmable matter, and nanomanufacturing.

1 Introduction

Around 1808, Wallace asked whether every two polygons of the same area have a common dissection,
that is, whether any two equal-area polygons can be cut into a finite set of congruent polygonal
pieces [Fre97, p. 222]. Figure 1 shows a simple example. Lowry [Low14] published the first solution
to Wallace’s problem in 1814, although Wallace may have also had a solution at the time; he
published one in 1831 [Wal31]. Shortly thereafter, Bolyai [Bol33] and Gerwien [Ger33] rediscovered
the result, causing this result to be known sometimes as the Bolyai-Gerwien Theorem.

Lowry’s dissection construction, as described by Frederickson [Fre97], is particularly elegant
and uses a pseudopolynomial number of pieces. In this paper, pseudopolynomial means polynomial
in the combinatorial complexity (n) and the dimensions of an integer grid on which the input is
drawn. Although Lowry’s construction does not require the vertices to have rational coordinates,
pseudopolynomial is easiest to define in this case.1 A pseudopolynomial bound is the best possible
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Figure 1: 4-piece dissection of Greek cross to square from 1890 [Lem90].

in the worst case: dissecting a polygon of diameter x > 1 into a polygon of diameter 1 (for example,
a long skinny triangle into an equilateral triangle) requires at least dxe pieces.

With this worst-case result in hand, attention has turned to optimal dissections using the fewest
pieces possible for the two given polygons. This problem has been studied extensively for centuries in
the mathematics literature [Oza78, Coh75, Fre97] and the puzzle literature [Pan49, Lem90, Mad79,
Lin72], and more recently in the computational geometry literature [CKU99, KKU00, ANN+03].

Hinged dissections are dissections with an additional constraint: the polygonal pieces must
be hinged together at vertices into a connected assembly. The first published hinged dissection
appeared in 1864, illustrating Euclid’s Proposition I.47 [Kel64]; see [Fre02, pp. 4–5]. The most
famous hinged dissection is Dudeney’s 1902 hinged dissection [Dud02]; see Figure 2. This surprising
construction inspired many to investigate hinged dissections; see, for example, Frederickson’s book
on the topic [Fre02].

However, the fundamental problem of general hinged dissection has remained open [DMO03,
O’R02]: do every two polygons of the same area have a common hinged dissection? This problem
has been attacked in the computational geometry literature [AN98, DDE+05, Epp01, DDLS05] but
has only been solved in special cases. For example, all polygons made from edge-to-edge gluings of n
identical subpolygons (such as polyominoes) have been shown to have a common hinged dissection
[DDE+05]. Perhaps most intriguingly, Eppstein [Epp01] showed that the problem of finding a
common hinged dissection of any two triangles of equal area is just as hard as the general problem.

Figure 2: Dudeney’s 1902 hinged dissection of a square into a triangle [Dud02].

Hinged dissections are particularly exciting from the perspectives of reconfigurable robotics,
programmable matter, and nanomanufacturing. Recent progress has enabled chemists to build
millimeter-scale “self-working” 2D hinged dissections such as Dudeney’s [MTW+02]. An analog for
3D hinged dissections may enable the building of a complex 3D structure out of a chain of units;
see [Gri04] for one such approach. We could even envision an object that can re-assemble itself
into different 3D structures on demand [DDLS05]. This approach contrasts existing approaches to
reconfigurable robotics (see, for example, [RBKV02]), where units must reconfigure by attaching
and detaching from each other through a complicated mechanism.
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Our results. We settle the hinged dissection open problem, first formally posed in 1999 [DDE+05]
but implicit back to 1864 [Kel64] and 1902 [Dud02]. Specifically, Section 3 proves a universality
result: any two polygons of the same area have a common hinged dissection. In fact, our result is
stronger, building a single hinged dissection that can fold into any finite set of desired polygons of
the same area. The analogous multipolygon result for (unhinged) dissections is obvious—simply
overlay the pairwise dissections—but no such general combination technique is known for hinged
dissections. Indeed, the lack of such a transitivity construction has been the main challenge in
constructing general hinged dissections.

Our construction starts from an arbitrary (unhinged) dissection, such as Lowry’s [Low14]. We
show that any dissection of a finite set of polygons can be subdivided and hinged so that the
resulting hinged dissection folds into all of the original polygons. We give a method of subdividing
pieces of a hinged figure that effectively allows us to “unhinge” a portion of the figure and “re-
attach” it at an alternate location. This construction allows us to “move” pieces and hinges around
arbitrarily, at the cost of extra pieces. In this way, we show how to hinge any dissection.

This initial construction may easily require an exponential number of pieces. However, we show
in Section 5 that a more careful execution of Lowry’s dissection [Low14] attains a pseudopolynomial
number of pieces for two target polygons when the input vertices lie on a rational grid. As mentioned
above, such a bound is essentially best possible, even for unhinged dissections (although we likely do
not obtain the optimal constant exponent). This more efficient construction requires substantially
more complex gadgets for simultaneously moving several groups of pieces at roughly the same cost
as moving a single piece, and relies on specific properties of Lowry’s dissection. The more general
problem of efficient hinge dissection when input coordinates may be irrational (or rational, but
with denominators having an intractably large least common multiple) remains open.

We also solve another open problem concerning the precise model of hinged dissections. In
perhaps the most natural model of hinged dissections, pieces cannot properly overlap during the
folding motion from one configuration to another. However, all theoretical work concerning hinged
dissections [AN98, DDE+05, Epp01, DDLS05] has only been able to analyze the “wobbly hinged”
model [Fre02], where pieces may intersect during the motion. Is there a difference between these
two models? Again this problem was first formally posed in 1999 [DDE+05]. We prove in Section 4
that any wobbly hinged dissection can be subdivided to enable continuous motions without piece
intersection, at the cost of increasing the combinatorial complexity of the hinged dissection by only
a constant factor. This result builds on the Carpenter’s Rule Theorem [CDR03], the theory of
slender adornments [CDD+06], and a recent extension to self-touching linkages [ADG09].

The following theorem summarizes our results:

Theorem 1. Any finite set of polygons of equal area have a common hinged dissection that can
fold continuously without intersection between the polygons. For two target polygons with vertices
drawn on a rational grid, the number of required pieces is pseudopolynomial, as is the running time
of the algorithm to compute the common hinged dissection.

One interesting consequence of this theorem is that any finite set of polyhedral surfaces of
equal surface area have a common hinged dissection: It is known that every polyhedral surface can
be triangulated and then vertex-unfolded into a hinged chain of triangles [DEE+03]. Our results
(specifically Theorem 6) show how to construct a single hinged chain that can fold into any finite
set of such chains, which can then be folded (and glued) into the polyhedral surfaces.
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2 Terminology

In this section, we introduce, formalize, and motivate the key terminology used throughout the
paper. The two central concepts are “hinged figures” and “refinements”, which together embody
a generalized notion of “hinged dissection”. An intuitive definition of hinged dissections is clear:
cut up one shape, hinge the pieces together, fold, and glue back together into another shape. But
defining cuts, gluing, and valid folding require care and these notions can be difficult to work with,
so we take a somewhat different approach. We define a “hinged figure” to be a generalized abstract
form of hinged dissection—pieces hinged together—which can have many different configurations
or possibly none at all. We call one hinged figure a “refinement” of another if the former can take
on all the shapes of the latter, intuitively because the former comes from cutting up and hinging the
latter. In particular, these notions give us a definition for hinged dissection: a hinged figure that is
simultaneously a refinement of two or more given polygons. But the notion of refinement is much
more powerful than this, because it allows refining general hinged figures and not just polygons,
and this idea will be central to our construction.

Figure 3: A tree-like hinged figure, its incidence graph (bold), and part of its boundary path.

2.1 Hinged Figures

A hinged figure A (see Figure 3) is defined formally as a finite collection of simple, oriented polygons
(the pieces of A) together with a finite collection of hinges, where a hinge is a (nonempty) finite
cyclic list of vertices of pieces. These pieces and hinges must satisfy the following conditions:

1. The abstract topological space T (A), formed from the pieces of A by identifying all vertices
in each hinge of A, is connected.

2. Each hinge of A contains at most one vertex from each piece of A.

3. Each vertex of each piece of A is contained in at most one hinge.2

Intuitively, Condition 1 says that the pieces are joined into a connected assembly, Condition 2
says that no two vertices of any piece are “pinched” together, and Condition 3 guarantees that no
two hinges are “collocated”. The cyclic order of vertices defining hinge will indicate the counter-
clockwise order in which these pieces appear in the plane; this is formalized in the discussion of
planar configurations below.

2Technical comment: we consider two hinged figures to be equivalent if they differ only in the addition or removal
of 180◦ vertices of pieces and/or hinges incident with only one vertex.
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The incidence graph of a hinged figure is the bipartite graph that has a vertex corresponding
to every piece and every hinge, such that two nodes are connected by an edge if one represents a
piece and the other represents a hinge on that piece; see Figure 3. Because T (A) is connected, A’s
incidence graph is also connected.3 A hinged figure is tree-like if the incidence graph is a tree, and
it is chain-like if the incidence graph is an open chain, i.e. a path.

We do not require hinged figures to be tree-like in general, so that our definition captures many
existing hinged dissections that hinge pieces together in cycles, such as Lindgren’s classical dissec-
tion of two quadrilaterals with equal corresponding angles [Fre97, p.26] and the polyform hinged
dissections of [DDE+05]. Nonetheless, most of the hinged figures generated by our algorithms will
be tree-like.

A (planar) configuration of a hinged figure A is a map f : T (A)→ R2 satisfying the properties
listed below. (Note that each piece of A is naturally a subspace of T (A), so we may consider f as a
map from each piece separately such that all vertices in each hinge map to the same point in R2.)

1. Each piece is mapped by f isometrically into the plane while preserving its orientation.

2. The images under f of the interiors of distinct pieces do not intersect in the plane.

3. For each hinge h, the cyclic order of pieces defining h corresponds to the counterclockwise
order of the images of those pieces around point f(h) in the plane.

4. Whenever two distinct hinges map to the same point in the plane, the pieces incident to these
hinges do not form a topological crossing at the point. (For two such hinges h and h′, two
pieces P and Q incident to h are topologically crossed with two pieces P ′ and Q′ incident
to h′ if the counterclockwise cyclic order of the four polygons f(P ), f(Q), f(P ′), f(Q′) in the
plane around the point f(h) = f(h′) is f(P ), f(P ′), f(Q), f(Q′) or f(P ), f(Q′), f(Q), f(P ′).)

A hinged figure is realizable if it admits at least one such configuration.
Recall that our definition of hinged figure is primarily combinatorial. In particular, there is no

stipulation that hinged figures be realizable. (A simple example of an unrealizable hinged figure is
five squares joined at a common hinge.) The reason for our general definition is that some of our
results, such as Lemma 4 below, make use of potentially unrealizable hinged figures as intermediate
steps toward realizable hinged figures.

The boundary ∂A of a hinged figure A is the collection of oriented cycles formed from traversing
all edges of all pieces in Euler-tour order, as illustrated in Figure 3. The Euler-tour order is
defined as follows: from a counterclockwise-oriented edge uv of a piece P , we proceed to the
counterclockwise-next edge vw of P if v is not a hinge, or else we proceed to the counterclockwise-
next edge vw of the next piece Q incident to the hinge v (in other words, the next piece Q appearing
in the hinge’s cyclic list). The boundary traces each hinge point multiple times; we distinguish these
as distinct boundary points. For a tree- and chain-like hinged figure, the boundary consists of a
single cycle incorporating all edges of the pieces.

It will be helpful to consider portions of hinged figures, called “subfigures”. Suppose we have a
hinged figure A and a subset S of A’s pieces. Define the restriction of A to S to be the pieces of S
together with hinges defined as follows: for each hinge h of A incident to at least one polygon in S,
form the cyclic sublist of the vertices of h belonging to pieces in S. The result is not necessarily
connected, but instead forms a collection of disconnected hinged figures. This definition may be
compared to the notion of “induced subgraph” from graph theory; in fact, the effect of the above

3In particular, this fact follows because the incidence graph may be realized as a deformation retraction [Hat02,
p. 2] of T (A).
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restriction on the incidence graph of A is to form the induced subgraph on the nodes corresponding
to pieces in S and hinges incident to something in S. We call a hinged figure B a subfigure of A if
the pieces of B are a subset of the pieces of A and the restriction of A to this subset of pieces is
exactly B.

2.2 Refinement of Hinged Figures

In this section, we define the important concept of refinement. In its specialization to realizable
hinged figures A and B, the statement “A is a refinement of B” will imply that B may be obtained
from A by gluing part of A’s boundary together and that A may be obtained from B by cutting
some of B’s pieces and modifying hinges appropriately. In the further specialization that B is a
single polygon, this intuitively means that A is a refinement of B if A has a configuration in the
shape of B, ignoring all cuts and hinges. We will use this observation to formally define the notion
of hinged dissection of polygons.

However, the concept of refinement we define is more general, applying to arbitrary—and not
just realizable—hinged figures. The usefulness of our generalized definition of refinement is that
it is versatile enough to allow not only regular hinged dissections of polygons, but also a kind of
“hinged dissection of hinged figures”; Lemmas 2 and 3 below illustrate this idea.

We call a function f : T (A)→ T (B) a refining map, written f : A ≺ B or simply A ≺ B, and
say that A is a refinement of B via f , if f satisfies the properties below. (Recall that such a map
induces both a mapping of each piece P in A to a region f(P ) in T (B) (not necessarily a whole
piece of B) and induces a mapping of each hinge h in A to a point f(h) in T (B) (not necessarily
a hinge of B).)

0. f is surjective: f(T (A)) = T (B).

1. f is isometric and orientation preserving on each piece of A: it maps each piece of A to a
congruent subset of one of B’s pieces. Further, every piece of A and its image under f in T (B)
have the same orientation as determined by the (piece) orientations of A and B, respectively.

2. The interiors of pieces in A do not overlap in their image under f .

3. Cyclic hinge order is preserved. Specifically, consider a hinge h in A incident to pieces
P1, P2, . . . , Pp. If f(h) is incident to pieces Q1, Q2, . . . , Qq in B (listed in the order specified
by f(h) if f(h) is a hinge of B—otherwise, there is just one piece Q1 and m = 1), then only a
cyclically consecutive interval of pieces Pi, Pi+1, . . . , Pj (where indices are treated modulo p)
map under f into each piece Qk, they appear in counterclockwise order around f(h) in Qk,
and the concatenation of these intervals in order for k = 1, 2, . . . , q consists of all pieces
P1, P2, . . . , Pp in that cyclic order.

4. No two hinges of A topologically cross in B. For two hinges h and h′ with f(h) = f(h′),
two pieces P and Q incident to h are topologically crossed in B with two pieces P ′ and
Q′ incident to h′ if the induced cyclic order around f(h) = f(h′) on the four pieces is
f(P ), f(P ′), f(Q), f(Q′) or f(P ), f(Q′), f(Q), f(P ′).

Next we illustrate the two key properties of refinements. First, in the special case that B is a
realizable hinged figure, a refinement A ≺ B corresponds to the intuitive notion that hinged figure
A can take on all configurations of B. Second, the property of refinement is transitive, even though
it is not clear that the concept of “hinged dissection” is itself transitive.
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Lemma 2. If f : A ≺ B is a refining map, and if g : B → R2 is a configuration of B, then the
map g ◦ f : A→ R2 is a configuration of A, called the configuration induced by refinement f .

Lemma 3. The property of refinement is transitive: if f : A ≺ B and g : B ≺ C, then g◦f : A ≺ C.

Proof of Lemmas 2 and 3. The condition for a map h1 : T (B) → T (C) to be a refinement of B
and a map h2 : T (B) → R2 to be a configuration of B are nearly identical; the only difference is
that h2 is mapping into a less complicated topological space and h2 is not necessarily surjective. As
a result, the proofs of Lemmas 2 and 3 are nearly identical, so we focus on the proof for Lemma 3.

Suppose f : A ≺ B and f : B ≺ C are refinements. Properties 0–3 of refinement are clearly
preserved under composition, so we now verify that g ◦ f also has Property 4. Suppose that we
have pieces P and Q incident to hinge h and pieces P ′ and Q′ incident to hinge h′ as in Property 4.
Further suppose for contradiction that the induced cyclic order of these four polygons under g ◦ f
is g(f(P )), g(f(P ′)), g(f(Q)), g(f(Q′)); the other ordering is symmetric.

Suppose first that P and Q are mapped via g ◦ f into the same piece R of C. By the ordering
above, P ′ also maps into R between g(f(P )) and g(f(Q)), while g(f(Q′)) is either not in R or
is not between g(f(P )) and g(f(Q)) in R. Either way, the induced cyclic order of the polygons
f(P ), f(Q), f(P ′), f(Q′) is f(P ), f(P ′), f(Q), f(Q′), contradicting that f has Property 4.

The same contradiction is reached if g(f(P ′)) and g(f(Q′)) are in the same piece of C, so
now suppose that the four polygons P,Q, P ′, Q′ map via g ◦ f to four distinct pieces R,S,R′, S′

respectively in C. Then they also map into distinct pieces U, V, U ′, V ′ respectively in B. If f(h)
and f(h′) are in fact the same hinge of B, then because f has Property 4, the cyclic order around
f(h) = f(h′) is U, V, U ′, V ′ (without loss of generality, by swapping indices if necessary), and
because g has Property 3, the cyclic order around g(f(h)) is then R,S,R′, S′, contradicting the
assumption that these hinges were crossed in C. In the other case, hinges f(h) and f(h′) are
separate in B, and it follows from Property 4 of g that these hinges map to uncrossed hinges in C,
which is again contrary to assumption.

If A and B are both realizable hinged figures, then it is clear that A ≺ B corresponds to the
natural idea that B may be obtained from A by gluing part of ∂A together. In the special case that
B is a single polygon, we call a hinged figure A with A ≺ B a hinged dissection of B. Lemma 2
together with Property 0 show that A can indeed take on the shape of polygon B. More generally, a
hinged dissection of polygons P1, P2, . . . , Pn is a hinged figure A that is simultaneously a refinement
of each Pi, 1 ≤ i ≤ n. In particular, hinged dissections are necessarily realizable.

3 Universal Hinged Dissection

In this section, we show (in Theorem 6) that any finite collection of hinged figures F1, F2, . . . , Fn
using the same set of pieces has a common refinement C with C ≺ Fi for all 1 ≤ i ≤ n. As a con-
sequence, we obtain (in Corollary 7) that any finite collection of equal-area polygons P1, P2, . . . , Pn
has a hinged dissection, that is, a hinged figure C that is simultaneously a refinement of (and hence
has a configuration in the shape of) each Pi. At this stage, we do not claim that the common re-
finement C may be continuously deformed between these configurations; the problem of continuous
motion between configurations is addressed later, in Section 4.

Theorem 6 follows from two lemmata. First, Lemma 4 describes how a certain type of ma-
nipulation called “rooted subtree movement” allows arbitrary re-organization of the pieces of a
hinged figure. Second, Lemma 5 shows how to effectively simulate a rooted subtree movement that
transforms hinged figure F into F ′ by finding a hinged figure refining both F and F ′, which means

7



by Lemma 2 that the hinged figure can take on all configurations that F and F ′ can. In the end,
this simulation will let us prove Theorem 6 and thus Corollary 7.

Mimicking this structure, Section 3 is organized as follows. In Section 3.1, we define the concept
of rooted subtree movement and prove Lemma 4. In Section 3.2, we state Lemma 5 and show how
the two lemmata may be used to prove Theorem 6 and Corollary 7. Because the proof of Lemma 5 is
especially technical, we defer its proof until Section 3.4, first giving additional motivating exposition
in Section 3.3.

3.1 Rooted Subtree Movement

Consider a tree-like hinged figure F . If there are two disjoint hinged figures R and S with distin-
guished boundary points r ∈ ∂R and s ∈ ∂S such that F is equivalent to the hinged figure obtained
by identifying points r and s to a single hinge, we write F = (R, r) ∨ (S, s),4 and call (R, r) and
(S, s) rooted subtrees of F . Given a hinged figure F = (R, r) ∨ (S, s) and another point s′ ∈ ∂S,
the rooted subtree movement of rooted subtree (R, r) from (S, s) to (S, s′) is an operation trans-
forming F into F ′ = (R, r) ∨ (S, s′). Figure 4 shows two examples of rooted subtree movements:
transforming (a) into (b), and transforming (b) into (c).

Rooted subtree movements suffice to arbitrarily re-arrange the pieces of any tree-like hinged
figure:

Lemma 4. For any two tree-like hinged figures A and B with the same set of k pieces, there is a
sequence of at most 2k − 2 rooted subtree movements that transforms A into B.

Proof. We use induction to prove a slightly more general result: for any two tree-like hinged figures
A and B, where the m pieces of A form a superset of the k pieces of B, there is a sequence of at
most 2k− 2 subtree movements that transforms A into a tree-like hinged figure A′ containing B as
a subfigure. When m = k, then A, A′, and B have the same set of pieces, so A′ = B and we have
transformed A into B, proving the lemma.

This stronger result may be proven by induction on k. The base case k = 1 is trivial: performing
2k − 2 = 0 subtree movements, we arrive at A′ = A, which certainly contains B (a single polygon)
as a subfigure. For k > 1, B has a (leaf) piece L attached to only one other piece in B. Let B̃
be the subfigure of B formed by the other k − 1 pieces. By induction, A can be transformed by
at most 2(k − 1)− 2 = 2k − 4 subtree movements into a tree-like hinged figure Ã containing B̃ as
a subfigure. It remains to transform Ã in order to contain B as a subfigure, or in other words, in
order to connect L and B̃ so that they form a subfigure identical to B.

We use two rooted subtree movements to move L into place. Because Ã is tree-like and B̃’s
pieces are connected in Ã, there is a unique edge in Ã’s incidence graph incident to L whose removal
separates L from B̃’s pieces. This removal corresponds to a decomposition Ã = (R, r)∨ (S, s) such
that B̃’s pieces are entirely in S, L is in R, and r is a vertex of L, as in Figure 4(a). Let p and
q be the boundary points of L and B̃, respectively, that are hinged together in B. Now define
A′′ = (R, r)∨ (S, q), which may be obtained from Ã via the rooted subtree movement of (R, r) from
(S, s) to (S, q), as in Figure 4(b). Finally define A′ = (R, p) ∨ (S, q), which may be obtained from
A′′ by the rooted subtree movement of (S, q) from (R, r) to (R, p), as in Figure 4(c).

The two rooted subtree movements transforming Ã to A′ fix the pieces of B̃, so these pieces
still form a copy of B̃ within A′. Furthermore, this copy of B̃ is hinged at point q to point p of
piece L in A′, so restricting A′ to the pieces of B forms a copy of B, completing the proof.

4This notation comes from algebraic topology, where this operation of joining two topological spaces at a single
point is known as wedge sum [Hat02, p. 10] or wedge product [DK01, p. 136].
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(a) The original hinged fig-
ure (R, r) ∨ (S, s).
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(b) First step: rooted sub-
tree (R, r) has been moved
from (S, s) to (S, q).

r

p

s

q
S

R

(c) Second step: rooted sub-
tree (S, q) has been moved
from (R, r) to (R, p), thus po-
sitioning L correctly relative
to the other pieces of B.

Figure 4: Rooted subtree movements suffice to arbitrarily re-arrange the pieces of a hinged figure, because
they allow one piece to be properly positioned at a time. Here we show how two rooted subtree movements
suffice to move the (shaded) piece L into the correct place relative to the other (shaded) pieces B̃ of the
target shape B.

Note that Lemma 4 is purely combinatorial in nature; the intermediate hinged figure Ã may not
be realizable, even if A and B are. It is here that we require the general combinatorial definition
of hinged figures. This nonrealizability will not affect our overall argument, because when we use
this lemma we will only need that the final hinged figure B is realizable.

3.2 Common Hinged Dissections Exist

The key lemma of our argument is a way to simulate a rooted subtree movement in a hinged figure
by refining that figure, in the following precise sense:

Lemma 5. Consider the rooted subtree movement of (A, a) from (B, b) to (B, b′), which transforms
hinged figure F = (A, a) ∨ (B, b) into F ′ = (A, a) ∨ (B, b′), and suppose that G ≺ F . Then there
exists a hinged figure H such that H ≺ G ≺ F and H ≺ F ′.

Intuitively, the use of G ≺ F instead of just F itself enables this lemma to be applied repeatedly
while only refining. Because of the length and technical detail of the proof of Lemma 5, we give
further motivation in Section 3.3 and postpone the argument until Section 3.4. Subject to Lemma 5,
however, we now state and prove the main theorem of Section 3:

Theorem 6. For any finite collection of hinged figures F1, F2, . . . , Fn using the same set of pieces,
there exists a hinged figure C with C ≺ Fi for all 1 ≤ i ≤ n.

Proof that Lemma 5 implies Theorem 6. The proof proceeds by induction on n. The base case
n = 1 is trivial: let C = F1. For n > 1, we can assume by induction that there is a common
refinement C ′ of the hinged figures F1, F2, . . . , Fn−1. We will show how to further refine C ′ into a
hinged figure C so that C ≺ Fn as well. By Lemma 3, these properties imply that C ≺ Fi for all
1 ≤ i ≤ n.

We construct a common refinement C of C ′ and Fn by a combination of Lemmas 4 and 5.
Because F1 and Fn use the same set of pieces, we can apply Lemma 4 to obtain a sequence of
rooted subtree movements M1,M2, . . . ,Mm that transform F1 into Fn. (In place of F1, we could
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as easily use any Fi with 1 ≤ i < n.) Suppose that movement Mj transforms hinged figure Kj into
Kj+1, where K1 = F1 and Km+1 = Fn, and let G1 = C ′ ≺ F1 = K1. For each movement Mj in
order, we apply Lemma 5 with Gj ≺ Kj to obtain a hinged figure Gj+1 such that Gj+1 ≺ Gj and
Gj+1 ≺ Kj+1. By the latter property, we can iterate this construction m times, resulting in a hinged
figure Gm+1 such that Gm+1 ≺ Km+1 = Fn and Gm+1 ≺ Gm ≺ Gm−1 ≺ · · · ≺ G2 ≺ G1 = C ′ (by
Lemma 3). Therefore C = Gm+1 is the desired common refinement of Fn and C ′.

Corollary 7. Any finite collection of polygons P1, P2, . . . , Pn of equal area have a hinged dissection.

Proof. By the Lowry-Wallace-Bolyai-Gerwien Theorem [Low14, Wal31, Bol33, Ger33, Fre97, p. 222],
there exists a common decomposition of P1, P2, . . . , Pn into finitely many polygons L1, L2, . . . , Lk.

For each i with 1 ≤ i ≤ n, we construct a tree-like hinging Fi of pieces L1, L2, . . . , Lk that
refines Pi as follows. First we build a spanning tree of the dual graph of the pieces as they arrange
to form Pi. Then, for each edge of this spanning tree, we hinge together the two corresponding
pieces at any one shared vertex.

By Theorem 6, we can find a common refinement C ≺ Fi for all 1 ≤ i ≤ n. Combining Lemma 3
together with the fact that Fi ≺ Pi, we obtain that C ≺ Pi for all 1 ≤ i ≤ n. Therefore C is the
desired hinged dissection.

3.3 Moving Rooted Subtrees: Motivation

Here we motivate the construction used to prove Lemma 5. This section is not formally necessary
for the proof, but helps clarify the underlying intuition.

Lemma 4 shows that any re-arrangement of a hinged figure’s pieces may be obtained via rooted
subtree movements. We cannot directly use this result to find common hinged dissections, as hinged
dissections and rooted subtree movement are apparently in conflict: hinged dissections do not allow
the disconnection of hinges while rooted subtree movements may disconnect hinges.

The goal of Lemma 5 is to resolve this conflict, roughly implementing rooted subtree movement
using hinged figures. The key idea in this construction is to connect the two rooted subtrees by a
long thin chain of isosceles triangles that “covers” the distance between the broken hinge and the
new hinge. In order to create room to “store” this chain, a second chain must be cut away from
the boundary path.

Figure 5 illustrates the idea. Consider the hinged figure F = (A, a) ∨ (B, b) as in the left of
Figure 5(a), where A is the quadrilateral and B is the union of the two triangles. Suppose we
wish to perform the rooted subtree movement of (A, a) from (B, b) to (B, b′), in order to create
the hinged figure F ′ = (A, a) ∨ (B, b′) on the right of Figure 5(a). We construct the hinged figure
H shown in Figure 5(b), which constructs the isosceles triangle chains just described. Notice that
just removing kites from piece A would result in a polygon that is self-touching and therefore not
simple, but this may be fixed by cutting and rehinging a small triangle as shown in Figure 5(b).
The left and right sides of Figure 5(c) respectively illustrate how to give a refining map from H to
each of F and F ′, thus establishing that H is a common refinement of F and F ′.

Unfortunately, Lemma 5 is more complicated than what the construction just presented can
handle. The issue is that we do not wish to find a common refinement of F and F ′, but rather a
common refinement of some refinement G ≺ F and F ′. The reason for this is illustrated by our
proof of Theorem 6: in order to simulate several consecutive rooted subtree movements on the same
set of pieces, we need G to preserve previous refinements.

The full Lemma 5, which moves subtree (A, a) not in F but in its refinement G ≺ F , has two
difficulties. First, the hinge between a and b in F may correspond to multiple hinges in G, so we
must “break” all of these hinges simultaneously with separate chains. Second, the boundary path
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A

(a) The original hinged figure F (left)
and the target F ′ (right).

D

C

(b) The hinged figure H
that refines both F and F ′.

(c) Illustrating the refining maps H ≺ F
(left) and H ≺ F ′ (right).

Figure 5: The construction for moving a rooted subtree with refinement. Using chains as shown, we may
find a common refinement G of two hinged figures F and F ′ related by a rooted subtree movement of (A, a)
from (B, b) to (B, b′).

between b and b′ in F may correspond to multiple, disjoint boundary paths in G, so we must cut
the equivalent of chain C of Figure 5(b) from this broken boundary path. The details of the full
construction, which are along similar lines but distinct from Figure 5, are formalized in the next
subsection.

3.4 Proof of Lemma 5

In this section, we give the construction and proof of Lemma 5, completing the proof of Theorem 6.

3.4.1 Free Regions

Our first, rather mundane task is to reserve space along the edges and near the vertices of the
pieces in the given hinged figure, for carving out small isosceles triangles to perform rooted subtree
movements. We refer to this reserved space as free regions. The free regions consist of small
triangles attached to each edge and small circular sectors attached to each vertex. To define these
regions, we define the following notation. For an angle α < 90◦ and a length `, let 4α(`) denote an
isosceles triangle with base of length ` and base angles of α. For an angle β, point P , and radius r,
let β̂(P, r) be a circular sector (pie wedge) centered at P with angle β and radius r.

Lemma 8. For any simple, counterclockwise-oriented polygon V = V1V2 · · ·Vn, there exist an angle
β and a radius r small enough so that the isosceles triangle 4β(|ViVi+1|) inside V with base along
the edge ViVi+1, and some circular sector β̂(Vi, r) drawn inside V , for all i ∈ {1, 2, 3}, are pairwise
disjoint except at the vertices of V .

Throughout the rest of this section, the triangles and sectors defined in Lemma 8 for some
suitable β and r are called the free regions for their respective edges and vertices of the polygon V ;
see Figure 6.

Proof. We first prove the result for triangles. For a counterclockwise-oriented triangle T = ABC
with side lengths a, b, c, semiperimeter s = 1

2(a + b + c), and angles of δ, ε, ζ, we choose βT <
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Figure 6: The free regions (lightly shaded) in triangle ABC are separated by the dark circles and the angle
trisectors `a, `′a, `b, `

′
b, `c, `

′
c.

1
3 min{δ, ε, ζ} and rT < min{s − a, s − b, s − c}. We claim that the three triangles 4βT

(AB),
4βT

(BC), and 4βT
(CA) with bases along their respective edges AB, BC, and CA, along with

the three sectors β̂T
(A, rT ), β̂T

(B, rT ), β̂T
(C, rT ), can be drawn in ABC without overlap, as in

Figure 6. Indeed, 4βT
(AB) is contained in the triangle TA between AB and the two trisectors `a

and `′b, sector β̂T
(A, rT ) is contained in the sector SA = δ̂/3(A, s−a) between trisectors `a and `′a,

and likewise for B and C. The six regions TA, TB, TC , SA, SB, SC are interior-disjoint because they
are separated by the trisecting lines and darkly shaded circular sectors δ̂(A, s− a), ε̂(B, s− b),
and ζ̂(C, s−c) in Figure 6. Therefore the claim follows for the six described regions in the triangle
ABC.

For the case of a general polygon V = V1V2 · · ·Vn, we first triangulate V = V1V2 · · ·Vn by
n− 2 diagonals. For each triangle T = ViVjVk in the triangulation, calculate βT and rT as above,
and draw the associated free regions in T . Then, as all the resulting triangles and sectors are
interior-disjoint by construction, choosing β = minT {βT } and r = minT {rT } suffices.

3.4.2 Chains

Next we define a structure similar to the chains of isosceles triangles in Figure 5. Our new con-
struction, however, will need to use kites in addition to triangles, so we generalize accordingly.

For a sequence of positive lengths `1, `2, . . . , `n and two angles α1 > α2 ≥ 0, we define the chain
Cα1,α2(`1, `2, . . . , `n) to be the chain-like hinged figure with 2n pieces M1,M2, . . . ,M2n formed as
follows; refer to Figure 7. The pieces are all similar kites: for 1 ≤ i ≤ 2n, piece Mi = XiWiYiZi
has interior angles of α1 − α2 at Xi and at Yi, 180◦ + 2α2 at Wi, and 180◦ − 2α1 at Zi. The kites
differ in their scale, but they come in odd–even pairs of equal size: for 1 ≤ i ≤ n, M2i−1 and M2i

are scaled so that |X2i−1Y2i−1| = |X2iY2i| = `i. If α2 > 0, this kite is concave; and if α2 = 0, the
kite degenerates into a triangle. For each 1 ≤ i < 2n, kite Mi is hinged at vertex Yi to vertex Xi+1

of the next kite Mi+1. The initial point C0 of the chain C is the vertex X1, and the final point C1

is the vertex Y2n. When α2 = 0, the chain Cα1,α2(`1, `2, . . . , `n) = Cα1,0(`1, `2, . . . , `n) is actually a
chain of triangles, so we refer to such a chain as a triangle chain for clarity; likewise, we refer to
the chain Cα1,α2(`1, `2, . . . , `n) as a kite chain when α2 > 0.

As defined, the chain Cα1,α2(`1, `2, . . . , `n) is an abstract hinged figure that admits many con-
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C0 = X1

`1 `2`1 `2 `n`n
Y1∼X2 Y2∼X3 Y3∼X4 Y4∼X5 Y2n = C1

M1 M2

M4

W3

M3

Z3

α1
α2

M2n−1 M2n

Figure 7: Definition of the chain Cα1,α2(`1, `2, . . . , `n).

figurations in the plane. In the case α2 = 0, one configuration of particular interest places
C0 = X1, Y2 ∼ X3, Y4 ∼ X5, . . . , Y2n−2 ∼ X2n−1, Y2n = C1 at a common point, and packs the
odd–even kite pairs tightly around this point in cyclic order, so that M2 shares an edge with M3,
M4 shares an edge with M5, and so on. We call this configuration a triangle sweep and denote it
by C+

α1,0
(`1, `2, . . . , `n). This configuration looks like a collection of n abutting rhombi organized

cyclically around a point, as in Figures 5 and 9.

3.4.3 Construction

We may now finally prove Lemma 5, which we restate here for reference.

Lemma 5. Consider the rooted subtree movement of (A, a) from (B, b) to (B, b′), which transforms
hinged figure F = (A, a) ∨ (B, b) into F ′ = (A, a) ∨ (B, b′), and suppose that G ≺ F . Then there
exists a hinged figure H such that H ≺ G ≺ F and H ≺ F ′.

The construction proceeds in three steps. First, we identify the pieces adjacent to the points a
and b. Then, we cut a chain along the boundary of B. Finally, we cut a chain from A, which may
be interchanged with the boundary chain as illustrated in Figures 8–9.

Proof. First note that, because A and B are subfigures of a tree-like figure F , A and B are them-
selves tree-like. Thus, the boundary ∂B is connected, and there are exactly two boundary paths
from b to b′. Choose the path γ that winds counterclockwise around the boundary of B. Also
choose a refining map f : G ≺ F .

Step 1: Locate the pieces connecting (A, a) and (B, b). Consider the behavior of G near
the hinge h of F connecting points a and b: let h1, h2, . . . , hn be all hinges of G with the property
that hi has two incident pieces that map under f into A and B respectively. (In other words, hinges
h1, h2, . . . , hn are the refinement in G of hinge h in F .)

Because pieces are by definition simple polygons, any piece of G is incident to at most one of
h1, . . . , hn. For each i, let Lai and Lbi be two pieces incident to hi so that f(Lai ) ⊂ A and f(Lbi) ⊂ B;
if there are more than two pieces incident to hi, we may choose any pieces Lai and Lbi with the above
description, and the extra pieces will not affect the construction below. Without loss of generality,
we may assume that these pieces have been numbered so that their induced cyclic counterclockwise
order around h is f(La1), f(La2), . . . , f(Lan−1), f(Lan), f(Lbn), f(Lbn−1), . . . , f(Lb1).

Step 2: Cut a chain along the boundary path. We first add some extra 180◦ vertices to the
boundary ∂G: Namely, any boundary point p ∈ ∂G that is collocated (via map f) with a vertex of
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(a) The hinged figure G arranged
to illustrate its refining map G ≺
F for a two-pieced hinged fig-
ure F .
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3

L
a(∗)
1

C2
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D2
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D3

E3

(b) The constructed common refinement of G
and F ′. Step 2 constructs the triangle chains Ci,
and Step 3 constructs the triangle chains Di and
kite chains Ei.

Figure 8: The construction for Lemma 5, illustrating its refinement of G.
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Figure 9: The construction for Lemma 5, illustrating its refinement of F ′.
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any piece in G will itself be declared a (possibly 180◦) vertex of its piece. We also declare b′ to be
a vertex of its piece if it is not already.

The path γ is defined to follow ∂B. The set f−1(γ) (where f : G ≺ F is the refining map
from above) is contained in ∂G, and is the union of finitely many edges and vertices of ∂G. Let Γ
be the collection of subpaths along ∂G formed by these edges of f−1(γ). Informally, these paths
in Γ follow the boundary ∂G for a while, until skipping over a portion of ∂G interior to B, then
returning to following a portion of ∂G, and so on. Let S1, S2, . . . , Ss denote the maximal portions
of Γ that follow ∂G without skipping, in order, so that in particular Γ is the concatenation of these
portions, or equivalently, γ is the in-order concatenation of f(S1), . . . , f(Ss). More precisely, the
transitions from Sj to Sj+1 are precisely where the last vertex of Sj does not match the first vertex
of Sj+1 because they are separated by a positive distance in ∂G.

Next we define some of the parameters for a chain construction along Γ. Apply Lemma 8 to
obtain a free-region radius and angle for each piece in G incident to Γ. Let r and α be the smallest
such radius and angle respectively. We repeatedly subdivide each edge of each Si of length more
than 2r at its midpoint, so that all resulting edges have length at most 2r. Let t denote the total
number of edges along Γ after this subdivision. Let 2`(e) ≤ 2r denote the length of each edge e
along Γ, and for any subsequence S of edges in Γ, let `(S) denote the sequence of `(e) for each edge
e along S in order. Also let β = α/(2t).

Now, for each 1 ≤ j ≤ s, we separately construct a chain for Sj . For each edge e along Sj , we
cut two 4β(`(e)) triangles inward in the piece with their bases each spanning a disjoint half of e.
Because β is less than the free-region angle α along each edge along the path Sj , all these removed
isosceles triangles fit within their pieces. We rehinge these removed triangles into a triangle chain
Cβ,0(`(Sj)) and attach it to G by hinging its final point to the last vertex of Sj (as it was before).

Next, for each 2 ≤ j ≤ s, we cut a triangle sweep C+
β,0(`(S1), `(S2), . . . , `(Si−1)) from the free

sector at the first vertex of Sj , and then make the incident piece of G simple by removing and
rehinging a small corner as shown in Figure 8(b). This triangle sweep has total angle 2β(|S1| +
|S2| + · · · + |Si−1|) ≤ 2tβ = α, and the largest triangle has diagonal max `(S1, S2, . . . , Si−1) ≤ r,
so the triangle sweep fits in the free sector. We attach the final point of the triangle sweep
C+
β,0(`(S1), `(S2), . . . , `(Si−1)) to the initial point of the previously constructed triangle chain Cβ,0(`(Sj)),

which together form the triangle chain Cj indicated in Figure 8(b).
To see that this construction still refines G, note that each of the s triangle chains C1, C2, . . . , Cs

may simply fill in the spaces from which they were cut.

Step 3: Cut a chain at hinge h. Now we show how to refine G around hinges h1, h2, . . . , hn.
For each 1 ≤ i ≤ n, we cut a triangle sweep C+

iβ/n,0(`(Γ)) in the free region in Lai at hi. The
resulting nonsimple piece has two corners at hi, so we cut off and rehinge the more counterclockwise
of the two, denoting the resulting piece (without this small corner) by L

a(∗)
i . As before, by our

choice of r and β, the ith kite sweep can fit within the free sector of Lai at hi.
Next, for 2 ≤ i ≤ n, we cut each of the 2t triangles4iβ/n(`(e)) removed from Lai into two pieces:

a slightly smaller triangle 4(i−1)β/n(`(e)) with the same base, and the remaining kite whose four
angles are β/n, 180◦+ 2(i− 1)β/n, β/n, and 180◦− 2iβ/n. We hinge the new triangles into a new
triangle chain Di = C(i−1)β/n,0(`(Γ)), and hinge the kites into a kite chain Ei = C(i−1)β/n,iβ/n(`(Γ)),
as in Figure 8(b). For i = 1, we hinge the uncut triangles into the triangle chain E1 = Cβ/n,0(`(S))),
while D1 does not exist. For 1 ≤ i ≤ n, we attach the initial point of Di (if it exists) and the initial
point of Ei to hinge hi of La(∗)i , and we attach the final point of Ei to hinge hb.

As before, these modifications result in a refinement of G because each piece may take its
original position. This completes our construction of the desired refinement H ≺ G.
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Refining F ′. It remains to show that this hinged figure H is also a refinement of F ′. To do so,
we describe the intended alternate configuration of H shown in Figure 9. For 2 ≤ i ≤ n, chain
Di fills in the triangle sweep of Lai−1, while Lan’s triangle sweep remains unfilled. The kite chains
E1, E2, . . . , En fit together to form a refinement of a triangle chain Cβ,0(`(Γ)), which fills in the
triangle chains Cβ,0(`(S1)), Cβ,0(`(S2)), . . . , Cβ,0(`(Ss)) taken from edges along Γ. For 1 ≤ i < s,
the chain Ci fills in the triangle sweep C+

β,0(`(S1), `(S2), . . . , `(Si)) taken from the first vertex of
Si+1. Finally, chain Cs fills in the unfilled triangle sweep of Lan. This is exactly the desired form
of F ′, so we are done.

4 Continuous Motion

Corollary 7 constructs a hinged dissection that has a configuration in the form of each of n polygons.
This section shows how to further refine that hinged dissection to enable it to fold continuously
into each polygon while avoiding intersection among the pieces. In other words, this section proves
that the questions of common hinged dissection in the wobbly hinged and the continuous models
are equivalent. This equivalence follows directly from the main theorem of this section:

Theorem 9. Any hinged figure A has a refinement B ≺ A so that any two configurations of B
are reachable by a continuous non-self-intersecting motion. The number of pieces in B is at most
thrice the total number of vertices of pieces in A.

Given polygons P1, P2, . . . , Pn of equal area, Corollary 7 guarantees that they have a hinged
dissection F . By Theorem 9, there is a refinement F ′ ≺ F that is universally reconfigurable without
self-intersection. In particular, F ′ can continuously deform between any of the configurations
induced by P1, P2, . . . , Pn. This hinged figure F ′ solves the problem, proving the first sentence of
Theorem 1.

To prove Theorem 9, we require two preliminary results. The first deals with polygonal chains
and slender adornments (Section 4.1), and the second chainifies a given hinged figure (Section 4.2).

4.1 Slender Adornments

Slender adornments are defined by Connelly et al. [CDD+06]. An adornment is a connected,
compact region together with a line segment AB, called the base, lying nonstrictly inside the region.
Furthermore, the two boundary arcs from A to B must be piecewise differentiable, with one-sided
derivatives existing everywhere. An adornment is slender if, for every point P on the boundary
other than A and B, the primary inward normals at P—that is, the rays from p perpendicular
to the one-sided derivatives at p—intersect the base segment AB (possibly at the endpoints). For
example, a triangle ABC whose angle at the vertex C opposite the base AB is nonacute (≥ 90◦)
is slender [CDD+06].

In [CDD+06], it is shown that certain chains of slender adornments are universally reconfig-
urable. Specifically, a strictly simple polygonal chain has the property that edges intersect each
other only at common endpoints.

Theorem 10. [CDD+06, Theorem 8] A strictly simple polygonal chain adorned with slender adorn-
ments to either side can always be straightened or convexified.

This theorem implies that any strictly simple open chain adorned with slender adornments is
universally reconfigurable: to find a continuous motion between two configurations c1 and c2, we
can simply follow a motion from c1 to the straight configuration c, and then reverse a motion from
c2 to c.
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As we will see in Section 4.2, it is relatively easy to refine a hinged dissection into a chain of
slender adornments. Unfortunately, however, it is more difficult to obtain the property of strict
simplicity. Therefore we turn to a recent generalization of Theorem 10 obtained in [ADG09].
Specifically, an adornment is strictly slender if, for every point P on the boundary other than A
and B, the inward normals at P intersect the relative interior of the base segment AB (excluding
the endpoints). For example, a triangle ABC whose angle at the vertex C opposite the base AB
is strictly obtuse (> 90◦) is strictly slender.

Theorem 11. [ADG09, Theorem 4] Any open polygonal chain adorned with strictly slender adorn-
ments to either side can always be straightened.

This theorem drops the condition of strict simplicity but adds the requirements that the chain
be open and that the adornments be strictly slender. Fortunately, these conditions are much easier
for us to attain.

4.2 Chainification

Next, we prove that any hinged figure has a refinement that is chain-like and adorned with (strictly
slender) strictly obtuse triangles:

Theorem 12. Any hinged figure F has a chain-like refinement G ≺ F so that G consists of a chain
of similarly oriented, strictly obtuse triangles hinged at their acute-angled vertices. The number of
pieces in G is at most thrice the total number of vertices of pieces in F .

Proof. Refer to Figure 10. First we refine F to consist of a tree of triangles hinged at vertices,
as follows. For each n-sided piece L with n ≥ 4, draw a collection of triangulating diagonals.
Sequentially, for each such diagonal V1Vi currently in piece V = V1V2 . . . Vk (which may be a
refinement of an original piece), replace V with two pieces V1V2 . . . Vi and ViVi+1 . . . V1 hinged
at V1, attaching the hinge originally at Vi to its corresponding position on either refined piece. The
resulting figure consists of triangles hinged at vertices, with the number of triangles at most the
total number of vertices of pieces in G.

Next, if the resulting triangulated figure is not tree-like, we repeatedly remove an edge from a
cycle in the incidence graph (i.e., remove the corresponding piece from its hinge) until the graph
becomes tree-like. Call this refinement H.

For each triangular piece ABC in H, divide ABC into three triangles AIB, BIC, CIA, where I
is the incenter of4ABC. Note that ∠BIC = 180◦− 1

2∠B− 1
2∠C > 180◦− 1

2(∠A+∠B+∠C) = 90◦,
i.e., ∠BIC is strictly obtuse, and likewise for the others. Finally, by hinging these strictly obtuse
triangles at the base vertices by walking around H’s boundary, we obtain the desired chain-like
refinement G.

Now it is easy to prove Theorem 9, i.e., that any hinged figure A has a universally reconfigurable
refinement B.

Proof of Theorem 9. We apply Theorem 12 to refine the given hinged figure A into a chain-like
hinged figure B consisting of strictly obtuse triangles hinged along their bases. Thus B is an open
chain adorned with strictly obtuse adornments. Therefore Theorem 11 applies, and we obtain
a motion from any configuration of B to a common (straight) configuration, proving universal
reconfigurability.
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Figure 10: Chainifying a hinged figure. We first refine each piece into triangles and detach hinges to make
the figure tree-like (middle), and then we cut each triangle into three smaller triangles at the incenter to
form a chain-like hinged figure (right).

5 Pseudopolynomial Bounds

Our algorithm can produce hinged dissections with an exponential number of pieces, as the number
of triangle chains required to move a rooted subtree increases with the complexity of the current
refinement, as in Figures 8–9. Thus, depending on the specific sequence of subtree movements
(Lemma 4), sequential refinements can more than double the complexity of the figure at each step.

In the special case that the target polygons can be drawn on a rational grid, however, we can
do better. We now describe how to combine the preceding steps with ideas of Eppstein [Epp01]
and the classic rectangle-to-rectangle dissection of Montucla [Oza78] to perform a hinged dissection
using only a pseudopolynomial (that is, polynomial in the dimensions of the grid) number of pieces,
proving the second sentence of Theorem 1. In contrast to Theorem 6, this transformation applies
only to hinged dissections between exactly two polygons lying on a common grid, rather than to
arbitrarily many arbitrary target shapes.

5.1 Motivation and Overview

The overall idea is as follows. The general construction is inefficient because movements may
traverse the same boundary segments many times, leading to a recursive application of the con-
struction in Lemma 5 and causing exponentially many interconnections as a result of the layered
triangle chains. By performing some initial simplifying steps, we instead ensure that the recursion
is of constant depth.

At a high level, our algorithm triangulates the polygons into hinged chains of equal-area tri-
angles, as described in Section 5.2, and then hinge-dissects between corresponding pairs of trian-
gles while preserving the vertices at which adjacent triangles interconnect. The latter triangle-
to-triangle hinged dissection mimics the classic construction for general (unhinged) dissections by
Lowry [Low14, Fre97], and proceeds in two stages. The first stage is a simple hinged dissection from
any triangle to some rectangle, given in Section 5.4, which we use on both triangles to reduce to a
rectangle-to-rectangle problem. The second stage is a hinged version of the rectangle-to-rectangle
dissection of Montucla [Oza78]; see Section 5.5. But for the whole construction to work, we need
to compose these hinged dissections sequentially so that our figure refines all the intermediate
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steps. With unhinged dissections, this composition is easy: just overlay the cuts. The apparent
nontransitivity of hinged dissections has always been a stumbling block in this approach.

In Section 5.6, we show how to compose hinged dissections while preserving all existing hinges
and foldings using a new tool called pseudocuts. Effectively, this tool lets us add a cut and a hinge
through an existing hinged figure by only refining that figure (similar to how Lemma 5 allows us to
perform subtree movement even if we are actually working with a refinement of the input figure).
The tool is built out of iterated rooted subtree movement, modified somewhat for efficiency.

For the preceding constructions to work efficiently, we need to perform our hinged dissections
on each pair of triangles as though they existed in isolation, in the sense that dissection operations
on one triangle should not affect the rest of the triangle chain. This isolation would fail, for
example, if we performed a rooted subtree movement on a single triangle, but the boundary path
between the source and destination points crossed outside that triangle and followed the boundary
of the rest of the chain. To prevent this, at any point in our construction where a movement or
similar operation would follow a boundary path outside the current triangle, we first perform a
rooted subtree movement, moving the hinge joint that connects the two adjacent triangles so that
it no longer lies on (the interior of) the boundary that will be traversed. The specific movement
operations are specified on a case-by-case basis in the sections that follow whenever an operation
might manifest this conflict.

However, attempting to preserve isolation in this way causes a further conflict: the intention
is to prevent operations on one triangle from altering its neighbors, but the subtree movement of
Lemma 5 modifies the subtree being moved, which in this case is the neighboring triangle itself. To
resolve this and maintain full isolation between distinct triangles, we develop one additional tool,
the unaltered rooted subtree movement of Section 5.3, which is a modification to rooted subtree
movement with the additional property that it does not modify the pieces within the moved rooted
subtree. This allows the previously described steps to be performed on each triangle in isolation.
Because of the necessity of this tool throughout our construction, we present it rather early in this
section.

Unaltered rooted subtree movement also provides a way to obtain the one remaining property
needed for our hinged dissection. The steps so far do not guarantee that the attachment vertices of
one triangle map to the attachment vertices of the other, which is required for a common refinement
of the chains. Using unaltered rooted subtree movement, we can perform the final step of moving
the hinge joint that connects two adjacent triangles so that it lies at the correct boundary point of
each of those triangles, satisfying this final requirement.

At the very end, we apply Theorem 9 to guarantee continuous motion between the input con-
figurations.

In what follows, we describe the many pieces of this algorithm, followed in Section 5.7 by a
detailed description of the algorithm and a proof of our pseudopolynomial bound.

5.2 Triangulation

For simplicity, we assume by suitable scaling that both polygons are initially drawn on the integer
grid. Our first step reduces the input polygons to two chains of equal-area triangles. Specifically,
we need two chains with an equal number of triangles, where the ith triangles in both chains have
the same area. To achieve this, we will simply guarantee that all triangles in both chains have the
same area. We also obtain the property that all vertices in the resulting figure lie on the 1

3 -integer
grid, which is useful in our efficiency analysis.

Lemma 13. Every polygon whose vertices lie on the integer grid can be refined into a hinged chain
of area-1

6 triangles in such a way that every vertex in the chain lies on the 1
3 -integer grid.
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Proof. First we triangulate the polygon using its vertices and all grid points within its boundaries
(inclusive). Every triangle in such a triangulation has three boundary grid points and zero interior
grid points, so by Pick’s Theorem [Pic00, GS93], has area exactly 1

2 . We then chainify these
triangulations similar to Theorem 12, but cutting to the centroid rather than the incenter. Using
the centroid means that the resulting triangles may not be obtuse (as they were in Theorem 12),
but guarantees that the smaller triangles trisect the area. Because the choice of interior point does
not affect the topology of the construction, the result is still a chain. Thus, this process reduces
the polygon to a chain of triangles, all with identical area 1

6 . The vertices are integer grid points
and centroids of triangles lying on the integer grid, which lie on the 1

3 -integer grid as required.

Given these chains of equal-area triangles, our task reduces to describing a hinged dissection
between each pair of triangles in such a way that the connecting vertices of one triangle map to the
connecting vertices of the other triangle. Eppstein [Epp01] originally proposed this approach for
proving the existence of hinged dissections. Here we use it to reduce the number of pieces required:
if the hinged dissection for each pair of triangles requires only pseudopolynomially many pieces,
then the overall hinged dissection requires at most a pseudoquadratic factor more (quadratic in
the original grid dimensions), because the area of the input polygons themselves must be at most
pseudoquadratic.

5.3 Unaltered Rooted Subtree Movement

In Lemma 5, we showed that subtrees in a hinged figure could be moved not just in a hinged figure F ,
but also in any refinement H ≺ F , allowing effective commutativity in subtree movements. For our
pseudopolynomial construction, we find it useful to be able to perform rooted subtree movements
without modifying the pieces in one of the subtrees. By contrast, recall that our construction in
Lemma 5 cuts a kite sweep out of one subtree and cuts a triangle chain out of the other subtree.
Here we describe a modification to Lemma 5 that performs all changes in one subtree.

b

A

B

b′

a

(a) (b) (c)

Figure 11: Moving the subtree (A, a) from (B, b) to (B, b′) by modifying only the parent tree B.

Lemma 14. Consider the rooted subtree movement of (A, a) from (B, b) to (B, b′), which transforms
hinged figure F = (A, a) ∨ (B, b) into F ′ = (A, a) ∨ (B, b′), and let G ≺ F be a refinement of F .
Then there exists a hinged figure H such that H ≺ G ≺ F , H ≺ F ′, and the subtree A in H is
unaltered, that is, the refinement H ≺ G is the identity function on the inverse image of A.

The proof is identical to a special case of Lemma 5, with some minor modifications. We first
describe the intuition for these modifications, followed below by the explicit formal changes.

In the original lemma, we cut a kite sweep out of the subtree (A, a), which extended into a long
triangle chain reaching all the way from the source point b to the destination point b′. At the same
time, we cut a series of triangle chains out of the traversed boundary γ, connecting them to the
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point furthest along γ and making each subsequent chain longer so that, when the subtree A had
been moved, the chain at b′ could fill in the empty space left by A’s kite sweep.

In order to avoid modifying A, however, we will instead cut the kite sweep out of (the free
region at) (B, b′), connecting it to the base point a. Then, when A has reached the destination
point, there is an empty kite sweep at the source point b that needs to be filled in (rather than at
a, as before). We therefore reverse the direction of the boundary kite chains, so that they connect
to the earliest point along γ, with the shortest chain at the end of γ and preceding chains growing
longer so that the largest chain connects to b and can fill in the empty region left by the kite sweep.

Proof of Lemma 14. We modify the proof of Lemma 5 as follows. First, in Step 2, we re-attach
the removed triangle chains by hinging its first (rather than final) vertex to the first (rather than
last) vertex of Sj . Second, also in Step 2, for each 1 ≤ j ≤ s − 1, we cut a triangle sweep
C+
β,0(`(Ss), `(Ss−1), . . . , `(Si+1)) (rather than for 2 ≤ j ≤ s cutting C+

β,0(`(S1), `(S2), . . . , `(Si−1))).
Finally, in Step 3, we cut the triangle sweep in the free region in Lbi (rather than Lai ), so it does not
modify the subtree being moved. With these substitutions, the remainder of the proof proceeds
unchanged from that of Lemma 5. Figure 11 shows an example of these modifications.

5.4 Triangle to Rectangle

The classic construction for general (unhinged) dissections by Lowry [Low14, Fre97] reduces the
problem of triangle-to-triangle dissection to that of rectangle-to-rectangle dissection by converting
each triangle into a rectangle. In fact, this classical three-piece dissection can be hinged, as we now
illustrate.

Lemma 15. There is a three-piece hinged dissection from any triangle to some rectangle.

Proof. See Figure 12. Define the base of a triangle to be the side opposite the obtuse angle, if there
is one, or else any side of the triangle. Cut parallel to the base at half the height of the triangle.
Cut perpendicular from this line to the apex of the triangle (opposite the base). Hinge the two
triangular pieces at the boundary points so that they rotate down to fill a rectangle of half the
height of the triangle.

Figure 12: Three-piece hinged dissection of any triangle into some rectangle.

5.5 Rectangle to Rectangle

Next we describe a pseudopolynomial hinged dissection between any two rectangles of equal area.
Roughly speaking, we start with the classic (unhinged) dissection of Montucla [Oza78, Fre97], which
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(c) Moving the end of B to
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Figure 13: The stages of the rectangle-to-rectangle transformation.

(a) (b) (c)

Figure 14: The possible cases (up to reflection) when capping the rectangle base.

is “almost” hinged in that all but one of the pieces is easy to hinge, and then we make it hinged
using our unaltered rooted subtree movement tool from Lemma 14.

First we define a notion of “replacement” that will enable us to use the construction in the
context of a larger hinged dissection. Suppose P is a piece of a tree-like hinged figure H, and
that P has one or two distinct vertices p, q belonging to hinges. Thus we can write H = ((A, a) ∨
(P, p), q) ∨ (B, b) for (possibly empty) rooted subtrees (A, a) and (B, b). A replacement in H of
piece P with another polygon P ′ is a hinged figure H ′ = ((A, a)∨ (P ′, p′), q′)∨ (B, b) for arbitrarily
chosen vertices p′, q′ of P ′. (Here, we implicitly map q′ to a corresponding vertex of (A, a)∨ (P ′, p′).
Also, note that if p′ = q′, then this mapping is not unique.)

Lemma 16. Any two rectangles A and B of equal area have a common hinged dissection. Further-
more, given a tree-like hinged figure H in which A is a piece with at most two vertices belonging to
hinges, and given a refinement G ≺ H, there is a hinged figure F with F ≺ G and F ≺ H ′, where
H ′ is the replacement in H of A with B.

Proof. Suppose by symmetry that B has the smallest minimum side length. We begin by aligning
both rectangles with their shorter edges on the horizontal axis and their longer edges on the vertical
axis. Label the vertices of A and B by ai and bi, respectively, for i ∈ {1, 2, 3, 4} starting at the top
left and continuing clockwise. Next we identify the two top-left vertices a1 and b1, and then rotate
B counterclockwise (about b1) until its lowest vertex b4 is horizontally aligned with the base of A.
The result is that the two rectangles have equal horizontal cross-section from a1 = b1 down to b3.

Figure 13a illustrates the first sequence of cuts. First we cut B along A’s right edge a2a3,
hinging at the bottom of the cut, and rotate the extended portion of B clockwise by 180◦ to cover a
strip of A. Again we cut B, now along the left side a1a4, hinging at the bottom, and rotate it back
in, covering another horizontal strip of A. We continue in this way until the remaining segment of
B extending past A’s boundary is no longer enough to cover an entire horizontal strip.

Next we cap the top subtriangle a1b2a2 of B as follows. We apply the transformation of
Lemma 15 (Figure 12) to this portion of the figure, cutting horizontally at half its height and
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vertically from b2, then rotate the resulting pieces out to form a rectangular cap with the same
width as A; see Figure 13b.

There are two cases on the bottom: the remaining segment of B extends either up and left,
or down and right. In the fortunate former case, we can perform the entire transformation using
only classic-style manipulations, as shown in Figure 13b. First swing the extended portion back
into A. This move results in a “triangular” bottom, similar to the triangle that was on top of A,
but offset horizontally and wrapping through the edge of A. We can make this bottom rectangular
by a transformation similar to the Lemma 15: cut horizontally at its vertical midpoint the same
as before, and then vertically as shown in Figure 14 so that the pieces line up with the border of
A when we swing them up. Every rectangle base (or its horizontal reflection) will fall into one of
the three cases of Figure 14, so this transformation is always possible.

Finally, we are left with the case where the end of B extends down and to the right. Using our
tools above, we can directly reduce this case to the previous case; refer to Figure 13c. First, we cut
B along edge a2a3, hinging at the top. To obtain a hinged dissection of R and R′, we can apply
Lemma 5 to move the resulting subtree counterclockwise around the figure to line up with the left
side of A (as though it had wrapped around from the left side in the first place). This proves the
first sentence of the lemma.

Now suppose that we have hinged figures G ≺ H where H has R as a piece with at most two
vertices belonging to hinges. The construction in this case is identical except for the final rooted
subtree movement in the last case. Let γ be the counterclockwise boundary path of R along which
we wish to move the rooted subtree. If the hinge vertices of R appear along γ, then the rooted
subtree movement would follow the boundary of H instead of R, and thereby modify pieces other
than R, which we do not allow. To prevent this, we move any such hinge vertices out of the way
first, by repeatedly applying unaltered rooted subtree movement of Lemma 14 to move the hinge
farthest along γ to the destination point of γ. Finally we can complete the desired movement of
the subtree along γ, again by unaltered rooted subtree movement of Lemma 14.

5.6 Pseudocuts

Consider two hinged figures G ≺ F . If we make a cut in F , producing F ′, we may not be able to
make the same cut directly in G: attempting to do so may disconnect the figure. In this section, we
describe how to simulate such a cut in G, via an operation we call a pseudocut, which produces a
hinged figure H that is a refinement of both G and F ′. This operation is essentially a more efficient
version of iterated rooted subtree movement.

Lemma 17. Let f1 and f2 be distinct boundary points of a common piece P in a tree-like figure F ,
such that the segment f1f2 is interior to P except at its endpoints. Let F ′ ≺ F be the tree-like
figure obtained by cutting P along f1f2 and hinging at f1. For any g : G ≺ F , there is a common
refinement H with H ≺ G and H ≺ F ′. Furthermore, H differs from G only within the pieces P
for which g(P ) intersects the relative interior of segment f1f2, and H differs from G only within
the free regions incident to f1f2.

Proof. Refer to Figure 15. Let h1, h2, . . . , hn be the points of intersection between the pseudocut
f1f2 and the existing edges of G as mapped by g. In particular, h1 = f1 and hn = f2. After cutting
along f1f2, distinguish identified vertices on each side as hai and hbi .

Our approach is to iteratively cut the pieces along f1f2, applying rooted subtree movement
at each intersection point to maintain the needed connectivity. The key to the efficiency of this
procedure is that, because each of these movements follows a nearly identical boundary path along
the cut line, we can use approximately the same free regions and base vertices for each movement.
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Figure 15: Making a pseudocut across existing edges.

This is similar to the behavior of the boundary chains in Lemma 5, where several chains use
the same points, producing a series of kite chains nested within the outer triangle chains. More
explicitly, we require that every movement over a previously used path includes all previously used
base points, and that all additional base points interpolate between existing base points by even
increments of inverse powers of 2 (that is, all base edges must arise by repeated halving of earlier
edges). If we always select the smallest possible power of 2 (that is, the largest inverse power) that
fits in the respective free regions, this will ensure that on overlapping path segments the length of
each boundary chain is at most twice the length of the longest individual boundary chain, if we
were to consider the movements independently.

We now proceed iteratively, applying the following procedure for each i from 1 to n − 1. (We
assume n > 1, for otherwise the whole operation is trivial.) Cut along the segment hihi+1, hinging
at hi. In the case that there is a hinge at hi+1 connecting to the current polygon, disconnect that
hinge from hbi+1, leaving it connected at hai+1. (In Figure 15, this corresponds to disconnecting the
“top” half of the cut from the hinge at hi+1 so that it can pull away.) Now, if there is a hinge
at hi+1, it may connect to subtrees that need to be moved as well; that is, the cut and hinge in the
original figure F may induce a configuration that identifies these subtrees with hbi+1 rather than
hai+1. (In Figure 15, this would correspond to a subtree that was entirely on the top side of the
cut line.) If the hinge at hi+1 connects to the current polygon, then we could have simply left
these subtrees connected by a hinge to hbi+1 when we separated it. However, such a connection is
not guaranteed, and in this case we will perform separate rooted subtree movements for each such
subtree, moving it from hai+1 to hbi+1.

In the end, we have cut the segment f1f2 by iteratively cutting the subsegments hihi+1. By
construction, the resulting figure is a refinement of G. Furthermore, if there were any additional
hinge connections along the cut, we have performed rooted subtree movements to ensure that
these connections trace around the boundary of the desired cut rather than crossing it, so that the
resulting figure is also a refinement of F ′.

5.7 Analysis

We can now precisely specify the algorithm in terms of the various pieces we have developed.
Intuitively, our procedure is the following.
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1. Triangulate and chainify the polygons into two chains of triangles, each of area 1
6 (Lemma 13).

2. Cut each triangle into three pieces and hinge into a rectangle (Lemma 15).

3. Apply the hinged dissection between matching pairs of rectangles (Lemma 16), combining
with the existing dissection using pseudocuts (Lemma 17).

4. Use unaltered rooted subtree movement to reposition the hinges at the correct attachment
points of each triangle (Lemma 14).

5. Apply Theorem 9 to the hinged dissection to guarantee a continuous motion between all of
its configurations.

While these steps describe the conceptual breakdown of our hinged dissection, for efficiency we
need to slightly modify the order. Specifically, pseudocuts are a relatively expensive operation,
so we can only allow up to a constant number of them for each element in the chain. Thus, we
cannot start with a triangle-to-rectangle hinged dissection and then overlay the whole rectangle-to-
rectangle hinged dissection of Lemma 16 using pseudocuts, as it would use far more than a constant
number of cuts in general. Instead, we actually start with chains of appropriately sized rectangles,
and find a common hinged dissection between them using Lemma 16 first. Then we use pseudocuts
to overlay the triangle-to-rectangle cuts of Lemma 15, of which there are only a constant number.

The actual algorithm that we analyze, then, is as follows.

1. Construct two chains of rectangles, each rectangle of area 1
6 , with dimensions matching those

that would be obtained by sequentially applying Lemma 13 and Lemma 15 to the input
polygons.

2. Apply the hinged dissection between matching pairs of rectangles to obtain a single common
hinged dissection for the two chains (Lemma 16).

3. Using pseudocuts (Lemma 17), overlay this hinged dissection with triangle-to-rectangle hinged
dissections (Lemma 15) to obtain (a refinement of) the original triangles produced by the
triangulation and chainification as in the first step (Lemma 13).

4. Use unaltered rooted subtree movement to reposition the hinges at the correct attachment
points of each triangle (Lemma 14).

5. Apply Theorem 9 to the hinged dissection to guarantee a continuous motion between all of
its configurations.

Theorem 18. The preceding algorithm yields a hinged dissection between any pair of equal-area
grid polygons, using a pseudopolynomial (that is, polynomial in the dimensions of the grid) number
of pieces, in pseudopolynomial time.

Proof. Let n denote the total number of vertices among the two given polygons, and suppose that
their vertices are drawn on an N ×N integer grid (rational vertices can be handled by scaling). We
have trivially that n ≤ N2. Because the triangulation and chainification splits the input polygons
into chains of length O(N2), and the remainder of our construction works independently on each
element of the chain, it suffices to show that our construction is pseudopolynomial (polynomial
in N) when we apply Steps 2–4 to a single pair of rectangles generated by Step 1. That this
pseudopolynomial bound is then preserved by the post-processing in Step 5 follows immediately
from the statement of Theorem 9.
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We analyze the maximum number of pieces in our hinged dissection for a single pair of rectangles
by considering the related question of the smallest possible nonzero value that can be computed
at any intermediate step of the hinged dissection. This value gives a lower bound on, for instance,
the smallest distance δ between any two distinct vertices. We can use this lower bound on δ to
upper bound the number of pieces via a packing argument. Namely, every vertex is surrounded
by an empty disk of radius δ, so at most N2/πδ2 such disks (and hence vertices) can fit in an
area of N2. The pieces in the figure form the faces of a planar graph with these vertices, so their
number is maximized when the graph is a triangulation, resulting in an upper bound of 2N2/πδ2−4
pieces. In particular, if δ ≥ 1/p(N) for some polynomial p, then the number of pieces is at most
2N2p(N)2/π − 4, and is therefore polynomial.

Our task, then, is to show that the smallest nonzero value produced during the computation is
indeed inverse pseudopolynomial, a problem that can be dealt with almost entirely algebraically. We
use the root bounds of Burnikel et al. [BFM+01] which establish lower bounds on nonzero outcomes
from algebraic computations viewed as a directed acyclic graph involving addition, subtraction,
multiplication, division, and algebraic extensions (roots). Under these bounds, it suffices to show
that the depth of the computation graph is bounded by a constant and that all arithmetic constants
used by the computation are themselves pseudopolynomial (meaning they are rational values whose
numerator and denominator are both bounded by a polynomial in N). Note that this is not the
same as saying that the output vertices must be rational: irrational values are permitted as long
as they arise from constant-degree algebraic extensions combined with constant-depth arithmetic
computations.

We describe below how to compute the coordinates of all vertices of our figure with constant
algebraic depth. This requires us to specify the construction more carefully, exploiting the inherent
flexibility in how we choose many of the cuts. For each of the major operations in our construction—
unaltered subtree movement, rectangle-to-rectangle hinged dissection, triangle-to-rectangle hinged
dissection, and pseudocuts—we show that performing the operation increases the existing algebraic
depth by at most an additive constant. The overall conclusion then follows by showing that each
of these operations can occur at most a constant number of times for each rectangle pair in the
original chains.

5.7.1 Rotations and Kite Sweeps

To maintain constant algebraic depth in our hinged dissections, it is important that we never rotate
the same point or vector more than a constant number of (nested) times. For instance, we cannot
have adjacent kites touching along a common angle, as we have described so far for simplicity,
because then computing the coordinates of consecutive kites would require nested rotation. Instead,
whenever we need to perform a rotation, we will use a rational approximation of the angle. We
can approximate an angle within an arbitrary error bound ε by using a ratio of integers that are
polynomial in 1/ε (for instance, by solving for an appropriate Pythagorean triple). We can further
ensure that we always have plenty of room for such approximations, by restricting ourselves to
free regions that use only half of the true available angular space, so we know that there will
also be polynomial error tolerance built into any desired angles, and any single rotation will still
involve only polynomial values. Kite sweeps will thus be spread out near each other but with angles
ensuring that they do not intersect.

The preceding modification as described can produce nonsimple pieces, so we must also cut out
small corners as in Step 3 of Lemma 5. The outermost small corner (the one described in Lemma 5)
can be selected to have any convenient vertices that are simple rational computations with respect
to the corresponding edges. (Any rational interpolation that does not intersect existing edges will
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work, so we can select one that does not increase the existing algebraic complexity by more than an
additive constant.) But any required inner small corners can be produced without any additional
computation at all: by the definition of a free region, we are guaranteed that there will be no other
vertices or edges between adjacent kites. Therefore, we will re-use the central vertices of those
kites, cutting edges between adjacent kites and hinging arbitrarily so that we preserve simplicity
of the figure’s polygons without adding any additional vertices.

5.7.2 Computing Initial Rectangle Chains

As the first step in the algorithm, we need to transform the input polygons into the necessary
rectangle chains. It is straightforward to do this in constant depth, following Lemma 13. First
we triangulate the vertices of the input polygons together with all grid points inside (inclusive).
Clearly every resulting vertex will be pseudopolynomially bounded by definition: it will simply be
some integer point contained in the input polygon. We then chainify as in Lemma 13, with each
added vertex the average of three integer vertices, and thus at constant depth.

To obtain the vertices of the rectangle chain from these computations, for each triangle we select
the longest edge as the “base” to use in Lemma 15. (Comparing edge lengths does not affect our
algebraic depth because the numerical results are not used elsewhere in the computation graph.)
Then we compute the hinge points by taking the average of the respective base point with the
apex. Next we compute the interior cut vertex by projecting the apex of the triangle down to the
nearest point on the edge defined by the two hinges, a standard linear-algebra procedure. Finally,
we obtain the remaining rectangle vertices by rotating the central vertex 180◦ around the hinges.

Note that, during this procedure, we computed the location of the hinge points on the output
rectangles while using only constant depth. We will use this fact again when we hinge-dissect back
into triangles in Step 3.

5.7.3 Unaltered Rooted Subtree Movements

Unaltered rooted subtree movements occur in several contexts: during the rectangle-to-rectangle
transformation (up to three times, once for each of the two possible hinge points along the boundary
path γ and once for the final subtree movement to wrap around the rectangle), before each of the
four pseudocuts for the triangle-to-rectangle transformation (up to two times per pseudocut), and
finally up to four times in Step 4 when we relocate the connections to lie on the proper points at
the base of each triangle (up to twice per triangle). There are thus at most fifteen unaltered rooted
subtree movements for each triangle in the overall chain, and we must show that any one of these
increases the algebraic depth by at most an additive constant.

First, the free regions of the vertices and edges traversed by the boundary path are all simple
computations with respect to the existing vertices as described in Section 3.4.1, though as in
Section 5.7.1, we use rational approximations to the exact margins to avoid increasing depth.

Given these approximations to the free regions, the base vertices of the triangle chains cut
out of the border of the figure can be computed by interpolating between the existing vertices by
fractions, so that each base vertex is dependent only on the two adjacent boundary vertices and a
rational fraction, the magnitude of which is within a constant factor of the length of the respective
edge divided by the corresponding free region bounds computed above. Because the free region
computations require constant algebraic depth, the base points can also be computed with constant
depth, since any single such vertex can be computed independently based only on the two nearest
vertices and the free region bound, along with the rational interpolation factor.

Having computed the base points, the corresponding internal vertex for each chain can then
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be computed from its two base vertices by first computing the center point between the two base
points (requiring one coordinate-wise addition and division by 2), then offsetting orthogonally
(requiring rotation by 90◦) by a sufficiently small rational offset. This yields the inner vertex,
while depending on only two (already constant-depth) vertices, combined with a rational offset
that, as in the preceding, is bounded by the respective free regions and can thus be chosen inverse
pseudopolynomial.

Having computed the vertices of the boundary triangle chain, we can compute the source’s kite
sweep coordinates by re-using the triangle chain coordinates: translate each boundary triangle pair,
to the source point (merging them into a kite by rotating one of them by 180◦), and rotate into the
free region by an appropriate rational angle as in Section 5.7.1. Because the angles chosen in this
way are required only to be nonoverlapping, each kite location can be computed independently, and
each individual vertex computation is still only a constant number of arithmetic operations based
on the previous vertices, so constant depth is preserved. We maintain simplicity of the resulting
pieces by cutting out the additional small corners described in Section 5.7.1.

5.7.4 Rectangle to Rectangle

Consider Step 2 of our algorithm, the rectangle-to-rectangle transformation. The longer dimension
of either rectangle is at most

√
2N because the entire figure was initially drawn on an N ×N grid.

Because by construction the area of each rectangle is 1
6 , this implies that the smaller dimension

must be at least 1
6/(
√

2N).
Now we trace the transformation of Section 5.5, broken down into four substeps.

Step 1: Rotate the rectangles to their initial position. When we rotate the thicker rectangle
to lie vertically, and rotate the narrower rectangle to have the same horizontal cross-section as the
first, we require two quadratic extensions (square roots) to compute the rotation operation, as well
as a constant number of simple arithmetic operations to actually perform the respective rotation
on each vertex of both rectangles.

Step 2: Snake the longer rectangle across the shorter one in strips. Snaking the sec-
ond rectangle back and forth along the first (Figure 13a) can be done using only additions and
subtractions, because all rotations are by 180◦. However, chaining these operations by iteratively
computing each strip from the preceding one would lead to nonconstant depth. Instead, we can
compute the coordinates of the descending rectangle strips by observing that each strip appears
at a fixed vertical distance from the preceding one. Thus, having computed that fixed distance
once by intersecting the lower diagonal of rectangle B with the right side of A, we can multiply it
by increasing integers to find the vertex offset for each strip. These computations require a single
(nonnested) multiplication for each additional vertex, combined with a vector addition to center
the strip offset at the top vertices of A. By the dimension bounds above, the total number of strips
is at most

√
2N

1
6
/(
√

2N)
= 12N2, and thus any integer coefficient used in this step is still polynomially

bounded, as required. Constant depth for the initial strips is thus maintained.

Step 3: Cap the triangles at each end of the rectangle. Capping the triangles at the top
and bottom (Figure 13b) requires rotations by 180◦ and finding the midpoints of the triangles’
altitudes, which is just a division by 2. Thus this part of the computation requires only a constant
number of operations in total.
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Step 4: Relocate B’s extra subtree back to the left of A, if needed. This step consists
of up to three unaltered rooted subtree movements, which preserve constant depth as described in
Section 5.7.3.

5.7.5 Pseudocuts

As in the rectangle-to-rectangle transformation, performing a pseudocut may involve performing
unaltered subtree movement on up to two external connecting hinges. As before, the efficiency of
these operations follows directly from Section 5.7.3, so we need only consider the remainder of the
operation.

Consider a single pseudocut whose defining points f1, f2 are at constant algebraic depth with
respect to the other vertices in the configuration; this is the case in our transformation as shown in
Section 5.7.2. When performing the pseudocut, we add vertices at every intersection of the cut line
with an existing edge. Each such intersection point can be computed independently of the rest, and
requires only a constant number of arithmetic operations, while depending only on the equations
of the cut line and its intersecting edge, thus adding only constant depth to existing computations.

Having computed these intersection points, it only remains to add the chains and sweeps along
the boundary of the cut. This stage is computed nearly identically to the unaltered rooted subtree
movement in Section 5.7.3 above, but with additional constraints from the nesting of the chains.
As in that case, we can obtain simple pseudopolynomial approximations to the free regions in this
neighborhood. We can again compute the base vertices of the chain as simple rational interpolations
of the respective edge’s vertices. If we were to consider any single such movement in isolation, the
interpolation coefficients of the base points would be pseudopolynomially bounded just as before.
We are able to preserve this bound even in the presence of nested chains because of our rule about
re-using base points in subsequent chains: all base points are still computed only from the original
boundary vertices, and we need only alter the previous interpolation coefficients by multiplying
by rational fractions whose denominator is (the smallest possible) power of 2. This rule may be
locally “wasteful” in the sense that all chains may grow to the length of the longest single chain,
and may also be longer than necessary by as much as a factor of 2, but by preserving the constant
computation depth it gives us a better global guarantee.

The internal vertices of the chains are again computed as orthogonal offsets from the center
of the respective base, and thus depend only on those two base vertices and an offset coefficient
derived from the worst-case free region bound. Because in this case successive chains will actually
be nested inside each other, there may need to be up to polynomially many such offset coefficients,
but if so they can be polynomially decreased as the chains are nested deeper. Again, however, each
coefficient is selected as an independent approximation (rather than being computed algebraically
from the previous offset).

The sweeps are again produced as a constant-depth computation derived from the boundary
chain vertices, by first translating to the appropriate vertex, rotating one half 180◦ into a triangle,
and then rotating the whole triangle by an appropriate rational angle as described in Section 5.7.1.
Each such triangle is again independent of the others: every target vertex depends only on its source
triangle, its destination vertex, and its computed (nonoverlapping) rational rotation. Additional
small corners to cut out to preserve simplicity of the pieces are again generated as in Section 5.7.1,
preserving constant depth.
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5.7.6 Triangle to Rectangle

After mapping between the two rectangles, we need to ensure that our hinged dissection can also
transform into both of the original area-1

6 triangles via the simple triangle-to-rectangle hinged
dissection of Lemma 15. Each triangle-to-rectangle hinged dissection requires two cuts, and we
need to perform two of these transformations, one for each target triangle. We add the required
four additional cuts using our pseudocut construction from Lemma 17. We know from Section 5.7.2
that the cut lines for the pseudocut have coordinates that are pseudopolynomially bounded with
respect to the existing computation graph. Then Section 5.7.5 above implies that each pseudocut
adds only constant depth to any of the algebraic computations. Because we need to make only four
such cuts, this stage also adds only constant depth.

5.7.7 The End

The preceding sections show that the computations at each stage of the hinged dissection can be
performed with only constant algebraic depth for each triangle/rectangle pair. It follows that each
such pair is cut into at most a pseudopolynomial number of additional pieces, implying the global
pseudopolynomial bound as required. Because furthermore all the described computation steps are
constructive, the hinged dissection can be performed algorithmically in pseudopolynomial time.

This concludes the proof of Theorem 18.

6 Higher Dimensions

We now briefly discuss hinged figures in three dimensions. A 3D hinged figure is a collection of
polyhedra called pieces hinged along common positive-length edges called hinges. As before, the
cyclic order of pieces around a hinge must remain fixed.

Not every two polyhedra of equal volume have a common dissection. Dehn [Deh00] proved an
invariant that must necessarily match between the two polyhedra. For example, Dehn’s invariant
forbids any two distinct Platonic solids from having a common dissection. Many years later, Sydler
[Syd65] proved that polyhedra A and B have a common dissection if and only if A and B have
the same volume and the same Dehn invariant. Jessen [Jes68] simplified this proof by an algebraic
technique and generalized the result to 4D polyhedral solids. (The 5D and higher cases remain
open.) Dupont and Sah [DS90] gave another proof that illustrates further connections to algebraic
structures. Kreinovich [Kre08] show that Dehn’s condition is decidable.

Clearly, if two polyhedra have no common dissection, then they also have no common hinged
dissection. This presents the following natural conjecture:

Conjecture 19. Given n polyhedra P1, P2, . . . , Pn of equal volume and equal Dehn invariant, there
exists a 3D hinged figure H with H ≺ Pi for 1 ≤ i ≤ n.

We believe that methods similar to those used in this paper can be used to prove Conjecture 19.
With some more care, we also believe that it is possible to guarantee non-self-intersecting motions in
this extension. Finally, we conjecture that our techniques generalize further to refining dissections
of polyhedral solids in arbitrary dimensions into equivalent hinged dissections.
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