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Abstract. This paper presents a general family of 3D hinged dissections
for polypolyhedra, i.e., connected 3D solids formed by joining several rigid
copies of the same polyhedron along identical faces. (Such joinings are
possible only for reflectionally symmetric faces.) Each hinged dissection
consists of a linear number of solid polyhedral pieces hinged along their
edges to form a flexible closed chain (cycle). For each base polyhedron P
and each positive integer n, a single hinged dissection has folded config-
urations corresponding to all possible polypolyhedra formed by joining
n copies of the polyhedron P . In particular, these results settle the open
problem posed in [7] about the special case of polycubes (where P is
a cube) and extend analogous results from 2D [7]. Along the way, we
present hinged dissections for polyplatonics (where P is a platonic solid)
that are particularly efficient: among a type of hinged dissection, they
use the fewest possible pieces.

1 Introduction

Fig. 1. Hinged dissection of
square and equilateral trian-
gle [8]. Different shades show
different folded states.

A dissection of a set of figures (solid 2D or 3D
shapes, e.g., polygons or polyhedra) is a way to
cut one of the figures into finitely many (compact)
pieces such that it can be transformed into any
other of the figures by moving the pieces rigidly.
Dissections have been studied extensively, partic-
ularly in 2D [12, 15]. It is well-known that any two
polygons of the same area have a dissection [5, 12,
16]. By transitivity, it is easy to extend this result
to a dissection of any finite set of polygons. Thus,
in this context, the main interest is in finding the
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dissection of the polygons that uses the fewest possible pieces. On the other
hand, not every two polyhedra of the same volume have a dissection: for exam-
ple, there is no dissection of a regular tetrahedron and an equal-volume cube [5].
This result was a solution to Hilbert’s Third Problem [5].

A hinged dissection of a set of figures is a dissection in which the pieces are
hinged together at points (in 2D or 3D) or along edges (in 3D), and there is
a motion between any two of the figures that adheres to the hinging, keeping
the hinge connections between pieces intact. While a few hinged dissections such
as the one in Figure 1 are quite old [8], hinged dissections have received most
of their study in the last few years [3, 7, 9, 13]. It remains open whether every
two polygons of the same area have a hinged dissection, or whether every two
polyhedra that have a dissection also have a hinged dissection. It also remains
open whether hinge-dissectability is transitive.

Fig. 2. Joining two rigid copies of
a tetrahedron. The face of joining
is reflectionally symmetric.

In this paper we develop a broad family of
3D hinged dissections for a class of polyhedra
called polypolyhedra. For a polyhedron P
with labeled faces, a polypolyhedron of type P
is an interior-connected non-self-intersecting
solid formed by joining several rigid copies
of P wholly along identically labeled faces.
See Figure 2. These joinings must perfectly
match two opposite orientations of the same
face of P , so joinings can occur only along
faces with reflectional symmetry. We call P the base polyhedron. If a polypoly-
hedron consists of n rigid copies of P , we call it an n-polyhedron of type P .
Examples of polypolyhedra include polycubes (where P is a cube) or more gen-
erally polyplatonics (where P is any fixed platonic solid); in any of these cases,
any pair of faces can be joined because of the regular symmetry of the platonic
solids. See Figure 3 for some examples of polycubes.

Fig. 3. Two polycubes of or-
der 8, which have a 24-piece edge-
hinged dissection by our results.

For every polyhedron P and positive in-
teger n, we develop one hinged dissection
that folds into all (exponentially many) n-
polyhedra of type P . This result is superior
to having one hinged dissection between ev-
ery pair of n-polyhedra of type P . The num-
ber of pieces in the hinged dissection is linear
in n and the combinatorial complexity of P .
For polyplatonics, we give particularly effi-
cient hinged dissections, tuning the number
of pieces to the minimum possible among a
natural class of “regular” hinged dissections
of polypolyhedra. For polyparallelepipeds (where P is any fixed parallelepiped),
we give hinged dissections in which every piece is a scaled copy of P . All of
our hinged dissections are hinged along edges and form a cyclic chain of pieces,
which can be broken into a linear chain of pieces.



Our solution combines several techniques to obtain increasingly more gen-
eral families of hinged dissections. We reduce the problem of finding a hinged
dissection of polypolyhedra of type P to finding a hinged dissection of P that
has “exposed hinges” at certain locations on its surface. We find the first such
hinged dissection for every platonic solid, exploiting that such a solid is star-
shaped and has a Hamiltonian cycle on its faces. Then we relax the star-shaped
constraint, generalizing P to be any solid with a Hamiltonian cycle on its faces,
using a more general refinement scheme based on the straight skeleton. Then we
relax the Hamiltonicity constraint by using a Hamiltonian refinement scheme.
Finally, we show how faces with more than a single reflectional symmetry can
be joined even when their labeled rotations are not equal. This step uses a gen-
eral “twister” gadget, a hinged dissection that can rotate by any angle that is a
multiple of 360◦/k for fixed k.

Our results generalize analogous results about hinged dissections of “poly-
forms” in 2D [7]. For a polygon P with labeled edges, a polyform of type P is an
interior-connected non-self-intersecting planar region formed by joining several
rigid copies of P wholly along identically labeled edges. In particular, polyforms
include polyominoes (where P is a square) and polyiamonds (where P is an equi-
lateral triangle). In 2D, edges are always reflectionally symmetric (about their
midpoint), so a polyform can join any pair of identically labeled edges. For any
polygon P and positive integer n, [7] develops a single vertex-hinged dissection
that folds into all n-forms of type P . The same paper asks whether analogous
dissections exist in 3D, in particular for polycubes; we solve this open problem,
building on the general inductive approach of [7].

We do not know whether our hinged dissections can be folded from one config-
uration to another without self-intersection. (The same is true of most previous
theoretical work in hinged dissections [3, 7, 9].) However, we demonstrate such
motions for the most complicated gadget, the twister.

Our results have applications in self-assembly and nanomanufacturing, and
may find applications in self-reconfigurable robotics. Existing reconfigurable
robots (see, e.g., [19]) consist of units that can attach and detach from each
other, and this mechanism is complicated; 3D hinged dissection may offer a way
to avoid this complication and still achieve arbitrary reconfiguration.4 In self-
assembly, recent progress has enabled chemists to build millimeter-scale “self-
working” 2D hinged dissections [17]. An analog for 3D hinged dissections may
enable building a complex 3D structure out of a chain of units. If the process is
programmable, we could even envision an object that can re-assemble itself into
different 3D structures on demand. These directions have recently been explored
(so far at a more macroscale) using ideas from this paper [14].

2 Polyplatonics

In this section we demonstrate our approach for constructing a hinged dissection
of polypolyhedra of type P in the special case that P is a platonic solid. Although
4 This idea was suggested by Joseph O’Rourke in personal communication, Nov. 2004.



several of the details change in more general settings in later sections, the overall
approach remains the same.

First, we find a suitable hinged dissection of the base polyhedron P . The
exact constraints on this dissection vary, but two necessary properties are that
the hinged dissection must be (1) cyclic, forming a closed chain (cycle) of pieces
in which there is a single hinge connecting every consecutive pair of pieces and
there are no other hinges, and (2) exposed in the sense that, for every face of P ,
there is a hinge in H that lies on the face (either interior to the face or on its
boundary). For platonic solids, these hinges will be edges of the polyhedron.
Second, we repeat n copies of this hinged dissection of P , spliced together into
one long closed chain. Finally, we prove that this new hinged dissection can fold
into all n-polyhedra of type P , by induction on n.

2.1 Exposed Cyclic Hinged Dissections of Platonic Solids

Fig. 4. Carving a regular tetrahedron into
four face-based pyramids.

We construct an exposed cyclic
hinged dissection of any pla-
tonic solid as follows. First we
carve the platonic solid into
a cycle of face-based pyramids
with the platonic solid’s cen-
troid as the apex. Thus, a re-
fined tetrahedron consists of four triangle-based pyramids (irregular tetrahe-
dra); a refined cube consists of six square-based pyramids; a refined octahedron
consists of eight triangle-based pyramids; a refined dodecahedron consists of
twelve pentagon-based pyramids; and a refined icosahedron consists of twenty
triangle-based pyramids. Every platonic solid has a Hamiltonian cycle on its
faces. Consequently, the pieces in the refinement can be hinged together in a
cycle, following the Hamiltonian path on the faces. Figure 5 shows unfoldings of
these hinged dissections, in particular illustrating the Hamiltonian cycle.

Because there is a hinge dual to every edge in the Hamiltonian path on
the faces, every face of the platonic solid has exactly two hinges. Therefore,
the hinged dissection is exposed. Even more, we can merge adjacent pairs of
pyramids along a face, halving the number of pieces, and leave exactly one hinge
per face of the platonic solid. Now two faces share every hinge, but still the
hinged dissection is exposed because every face has a hinge along its boundary.
Thus we have proved

Theorem 1. The platonic solid with f faces has an exposed cyclic hinged dis-
section of f/2 pieces in which every hinge is an edge of the platonic solid.

These exposed hinged dissections have the fewest possible pieces, subject to
the exposure constraint, because a hinge can simultaneously satisfy at most two
faces of the original polyhedron.



cube

icosahedron
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Fig. 5. Unfolded exposed cyclic hinged dissections of the platonic solids. The bold lines
indicate a pair of edges that are joined by a hinge but have been separated in this figure
to permit unfolding. The dashed lines denote all other hinges between pieces. In the
unfolding, the bases of all of the pyramid pieces lie on a plane, and the apexes lie above
that plane (closer to the viewer).

2.2 Inductive Hinged Dissection

Next we show how to build a hinged dissection of all n-platonics of type P based
on a repeatable hinged dissection of a platonic solid P . The hinged dissection
is essentially n repetitions of the exposed hinged dissection from the previous
section. Specifically, the nth repetition of a cyclic hinged dissection is the result of
cutting the cyclic hinged dissection at an arbitrary hinge to form an open chain,
repeating this open chain n times, and then reconnecting the ends to restore a
closed chain. Thus, if there are k pieces H1,H2, . . . ,Hk connected in that order
(and cyclically) in a cyclic hinged dissection, then the nth repetition consists
of nk pieces H1, . . . ,Hk,H1, . . . ,Hk, . . . . . .H1, . . . ,Hk connected in that order
(and cyclically). (Although the order H1, . . . ,Hk depends on where we cut the
cyclic order, the resulting nth repetition is independent of this cut.)

We prove that this hinged dissection has the desired foldings by an induc-
tive/incremental construction based on the following tool, similar to [7, Prop. 1]:

Lemma 1. Every n-polyhedron of type P has a copy of P whose removal results
in a (connected) (n− 1)-polyhedron, provided n > 1.

Proof. The graph of adjacencies between copies of P in an n-polyhedron is a
connected graph on n vertices. Any spanning tree of this graph has at least two
leaves, and the removal of either leaf leaves the original graph connected. The
resulting pruned graph is the adjacency graph of a (n− 1)-polyhedron. 2

Reversing the inductive process of this lemma implies that any n-polyhedron
of P can be built up by adding one copy of P at a time, yielding a connected
1-, 2-, . . . , and (n− 1)-polyhedron along the way.

Theorem 2. Given an exposed cyclic hinged dissection of the platonic solid P
in which exactly one piece is incident to each face of P , the nth repetition of this
hinged dissection can fold into any n-platonic of type P .



Proof. The proof is by induction. The base case of n = 1 is trivial: there is only
one 1-platonic of type P , namely P itself. The exposed hinged dissection satisfies
all the desired properties.

Consider an n-platonic Q of type P . By Lemma 1, one copy P1 of P can be
removed from Q to produce an (n− 1)-platonic Q′. By induction, the (n− 1)st
repetition of the exposed hinged dissection can fold into Q′. Also, P1 itself can
be decomposed into an instance of the exposed hinged dissection. Our goal is to
merge these two hinged dissections.

Let P2 denote a copy of P in Q′ that shares a face f with P1. Suppose the
exposed cyclic hinged dissection of P consists of pieces H1,H2, . . . ,Hk in that
order. Let Hi denote the piece in the hinged dissection of P2 incident to face f .
Let h be a hinge incident to f (which must be an edge of f) and thus incident
to Hi. Suppose by symmetry that the other piece in Q′ incident to hinge h
is Hi+1.

Then we rotate P1 so that its piece Hi+1 is flush against the Hi piece in
P2, along the shared face f between P1 and P2. We further rotate P1 so that
the hinge h′ between pieces Hi and Hi+1 in P1 aligns with the hinge h between
pieces Hi and Hi+1 in P2. We then replace hinges h and h′ with two hinges,
one from Hi in P2 to Hi+1 in P1, and the other from Hi in P1 to Hi+1 in P2.
The resulting hinged dissection is a single cycle, and every instance of piece Hi

hinges to pieces Hi−1 and Hi+1, so the resulting hinged dissection is a folding
of the nth repetition of H1,H2, . . . ,Hk as desired. 2

Corollary 1. If P is the platonic solid with f faces, then there is an (nf/2)-
piece cyclic hinged dissection that can fold into all n-platonics of type P .

3 Generalized Interior Dissection

The proof of hinged dissections for polyplatonics consists of two main parts:
(1) the construction of an exposed cyclic hinged dissection of a single platonic
solid, with the property that at most one piece is incident to each face, and (2) an
inductive argument about the nth repetition. In this section we generalize the
first part to any polyhedron with a Hamiltonian cycle on its faces. The second
part will remain restrictive until future sections.

3.1 Exposed Cyclic Hinged Dissections of Hamiltonian Polyhedra

The exposed cyclic hinged dissection for platonic solids from Section 2.1 essen-
tially exploited that platonic solids, like all convex polyhedra, are “star-shaped”.
A polyhedron is star-shaped if it has at least one point c in its interior from which
the line segment to any point on the polyhedron’s surface remains interior to the
polyhedron. Any star-shaped polyhedron can be carved into face-based pyramids
with apexes at c. These pyramids can be hinged together cyclically at the edges
of the polyhedron crossed by the Hamiltonian cycle on the faces.

Dissection of a polyhedron into face-based pyramids with a common apex is
possible precisely when the polyhedron is star-shaped. However, it is not hard to



obtain a dissection of an arbitrary polyhedron into one piece per face, though the
pieces are no longer pyramids. One approach is to use the straight skeleton [2, 1,
10, 6]. The straight skeleton is normally defined as a particular one-dimensional
tree structure contained in a given two-dimensional polygon. For our purposes,
the relevant property is that the tree structure subdivides the polygon into ex-
actly one region per polygon edge, and only that region is incident to that
polygon edge [2].

The straight skeleton can be generalized to 3D as a decomposition of a given
polyhedron into exactly one cell per facet, and only that cell is incident to that
facet. We imagine sweeping every facet perpendicularly inwards at the same
speed in parallel. Faces change geometry as they are inset by clipping or extend-
ing to where they meet adjacent faces. Faces may become disconnected, in which
case the sweep continues with each piece, or disappear, in which case the sweep
continues without that face. In the end, the entire polyhedron is swept, and
the regions swept by individual faces form a partition with the desired property
that exactly one region is incident to each facet. Erickson [11] points out that
the straight skeleton is no longer well-defined in 3D: there are choices during the
offset process that can be resolved multiple ways. However, for our purposes, we
just need a single straight skeleton, with an arbitrary decision for each choice,
for a suitable decomposition.

As before, the pieces can be hinged together cyclically at the edges of the
polyhedron crossed by the Hamiltonian cycle. Thus, for any polyhedron with
a Hamiltonian cycle on its n faces, we obtain an n-piece exposed cyclic hinged
dissection with the property that each face of the polyhedron is incident to
exactly one piece.

3.2 Inductive Hinged Dissection

The second part of the argument is the inductive construction. The key steps
here are the two rotations of an added piece P1. The first rotation ensures that
the next piece in the hinging of P1 (Hi+1) is against the piece to which we want
to join P1 (Hi of P2). The second rotation ensures that the exposed hinges of
these two pieces coincide.

These rotations enforce restrictions on what types of polypolyhedra we can
build. The first rotation essentially requires that all faces of P “look the same” (in
addition to having the same shape): the rotation that brings any face to any other
face should result in an identical copy of P (but with faces relabeled). The second
rotation requires that all orientations of a face look the same. Unfortunately,
these two restrictions force P to be a platonic solid. The goal of the remaining
sections is to remove these restrictions, in addition to the restriction that P has
a Hamiltonian cycle on its faces.

4 Surface Refinement

In this section we remove two constraints on the base polyhedron P : the require-
ment that P has a Hamiltonian cycle on its faces, and the requirement that all



faces of P look the same. We achieve both of these generalizations by subdividing
each face of P by a collection of linear cuts.

First, we divide each reflectionally symmetric face of P along one of its lines
of symmetry. Recall that joinings between copies of P are possible only along
reflectionally symmetric faces. Now if we can arrange for these symmetry lines
to be hinges in an exposed cyclic hinged dissection of the new polyhedron P ′,
then whenever we attempt to attach a new piece P ′

1, we are guaranteed that the
two consecutive pieces Hi and Hi+1 of the hinging that we need to place against

Fig. 6. Hamiltonian refinement
of five faces in a hypothetical
polyhedron, shown here unfolded.
Bold lines outline faces. Dashed
lines show triangulations and are
not cuts. Thin solid lines are cuts.
The curved line shows a Hamilto-
nian cycle induced by the span-
ning tree of this unfolding.

each other are in fact the two reflectional
halves of the original face. Thus the first ro-
tation in the induction construction does ex-
actly what we want: it brings together the
two identically labeled faces of P .

Second, we divide each face of P ′ so that
any spanning tree of the faces in P ′ trans-
lates into a Hamiltonian cycle in the result-
ing polyhedron P ′′. This reduction is simi-
lar to the Hamiltonian triangulation result
of [4] as well as a refinement for hinged dis-
section of 2D polyforms [7, Section 6]. We
conceptually triangulate each face f of P ′ us-
ing chords (though we do not cut along the
edges of that triangulation). Then, for each
triangle, we cut from an arbitrarily chosen
interior point to the midpoints of the three
edges. Figure 6 shows an example of this pro-
cess. For any spanning tree of the faces of P ′,
we can walk around the tree (i.e., follow an
Eulerian tour) and produce a Hamiltonian
cycle on the faces of P ′′.

In particular, we can start from the matching on the faces of P ′ from the
reflectionally symmetric pairing, and choose a spanning tree on the faces of P ′

that contains this matching. Then the resulting Hamiltonian cycle in P ′′ crosses
a subdivided edge of every line of symmetry. (In fact, the Hamiltonian cycle
crosses every subdivided edge of every line of symmetry.) Thus, in the exposed
cyclic hinged dissection of the Hamiltonian polyhedron P ′′, there is an exposed
hinge along every line of symmetry. Therefore all joinings between copies of
P ′′ can use these hinges, which means that the first rotation in the induction
construction happens automatically from joining along corresponding faces.

5 Mutually Rotated Base Polyhedra: Twisters

The last generalization concerns the second rotation in the inductive construc-
tion. If every reflectionally symmetric face has only one line of symmetry, this
second rotation is automatic just from making the faces meet geometrically.



However, if a face has more than one line of symmetry, the polypolyhedron may
require different rotations of the two base polyhedra around their common face.

To enable these kinds of joinings, we introduce the twister gadget shown in
Figure 7. This gadget allows the top face to rotate by any integer multiple of
360◦/k with respect to the bottom face. The volume occupied by the twister
gadget is a prism with a regular k-gon as a base.
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Fig. 7. The twister gadget with k = 4: 32 pieces allowing any between none and three
quarter turns. For visual clarity, the two layers are drawn substantially separated in
(a) and slightly separated in (b) and (c); in fact they are flush. (d) shows the result of
unfolding along the perimeter hinges. (c) shows a refolding that achieves a half turn.

To construct the pieces, we slice this prism in half parallel to the base, leaving
two identical prisms, one stacked atop the other. Then we divide each prism by
making several planar cuts perpendicular to the base: in projection of a regular
k-gon, we cut from the center to every vertex, to the midpoint of every edge,
and to each quarter point between a vertex and an edge midpoint. The resulting
8k pieces are all triangular prisms.

We hinge these prisms together cyclicly as follows. Two hinges connect the
top and bottom levels, lying (in projection) along a cut from the center to an
edge midpoint. For each remaining cut from the center to an edge midpoint (in
projection), and for each cut from the center to a vertex (in projection), there
is a hinge connecting the two incident pieces on the “inside” (on the bottom of
the top prism and on the top of the bottom prism). For each cut from the center
to a quarter point (in projection), there is a hinge connecting the two incident
pieces on the perimeter of the regular k-gon.

The perimeter hinges enable the twister to unfold as shown in Figure 7(d)
to make all the inside hinges parallel. The inside hinges allow the twister to be
further unfolded from this state into a convex three-dimensional “ring”. Then
we can reverse the process, collapsing the 3D ring back down along the inside



hinges to a nearly flat unfolding like Figure 7(d), and folding it back along the
perimeter hinges into the regular k-gon configuration. In between the unfolding
and folding, by rotating the ring state, we can change which pieces are ultimately
on which layer as shown in Figure 7(c).

Specifically, by this continuous folding process, we can move any multiple of
4 pieces from the top layer to the bottom layer on one side of the gap where the
layers connect, and the same number of pieces from the bottom layer to the top
layer on the other side of the gap. If we move 4j pieces on either side, we rotate
the top regular k-gon by j · 360◦/k relative to the bottom regular k-gon. If we
restrict j to satisfy 0 ≤ j < k (which suffices for the desired set of k possible
rotations), then there are four pieces A1, A2, A3, A4 that always remain on the
top layer and four pieces B1, B2, B3, B4 that always remain on the bottom layer.

To allow the twister gadget to attach to other pieces on its top and bottom,
we need to add exposed hinges. We remove the inner hinge connecting A2 and
A3, which in projection connects the center to a vertex of the regular k-gon, and
replace it with a corresponding outer hinge on the top side of the twister gadget.
Similarly, we remove the inner hinge connecting B2 and B3, whose projection
connects the center to the same vertex of the regular k-gon, and replace it with a
corresponding outer hinge on the bottom side of the twister gadget. The modified
twister gadget can be folded continuously as before, except that now we keep
A2 rigidly attached to A3 and B2 rigidly attached to B3 when opening up into
a three-dimensional ring, not folding the two outer hinges at all.

We embed the modified twister gadget in each face of the base polyhedron
P that has k-fold symmetry for k ≥ 3. More precisely, we carve out of P a thin
prism with a small regular k-gon base, centered at the symmetry center of the
face, and infuse this carved space with a twister gadget. Then we construct the
refinement P ′′ of P as before, choosing an arbitrary line of symmetry of a k-fold
symmetric face for the subdivision and resulting matching. The line of symmetry
actually now “bends” slightly to dip underneath the thin twister gadget at the
center. Normally the hinged dissection of P ′′ would have a hinge along this line
of symmetry, connecting the two incident pieces C and D. Instead, we rotate
the embedded twister gadget so that its outer hinges (those between A2 and A3

and between B2 and B3) align with this chosen line of symmetry, and so that
B2 is atop C and B3 is atop D. Then we replace the outer hinge between B2

and B3 with a hinge between B2 and C and a hinge between B3 and D. (All
three of these hinges lie geometrically along the same line segment in the folded
configuration.)

In the inductive construction of an n-polyhedron of type P , we use the outer
hinge between pieces A2 and A3 to combine two copies of P ′′′ along a k-fold
symmetric face, k ≥ 3. This hinge lies along the chosen line of symmetry, in the
middle of the face, and therefore can be aligned between the two copies. Note
that the resulting construction has two copies of the twister gadget joined along
their top sides, which is redundant because it allows up to two full turns of the
faces, but we cannot easily remove this redundancy while having two identical
copies of a single hinged dissection.



Two copies of P ′′′ joined along a face of k-fold symmetry can now rotate with
respect to each other by j · 360◦/k, for any desired 0 ≤ j < k. This property is
exactly what we need to perform the second rotation in the inductive argument
of hinged dissectibility.

This completes our construction of a hinged dissection that folds into all
n-polyhedra of type P , for any positive integer n and for any polyhedron P .

6 Self-Similar Hinged Dissections

This section considers a related side problem from the main line of the paper,
called “self-similar hinged dissections”. A hinged dissection is self-similar if every
piece is similar to (a scaled copy of) the base polyhedron P . Self-similar dissec-
tions (without hingings) are well-studied in recreational mathematics, usually in
2D, so it is natural to consider their hinged, 3D counterparts.

Figure 8 gives a self-similar exposed hinged dissection of a cube, which by
our techniques leads to a self-similar hinged dissection of all n-cubes, for any n.
The dissection is simple, dividing the cube into a 2 × 2 × 2 array of identical
subcubes. The hinging is less trivial because of the requirement that every face
of the original cube has an exposed hinge. The hinges are always between the
midpoint of an original edge to the center of an original face, so two hinges
between adjacent cubes can always be brought into alignment, after possible
rotation around the shared face, during the merging process in the inductive
construction.
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Fig. 8. A hinged dissection of a cube into a 2× 2× 2 array of 8 subcubes. This hinged
dissection can be used in place of that in Figure 5; every face has (at least) one exposed
hinge. Top-left: The dissection. Top-right: The cyclic hinging. Bottom: Unfolded after
cutting one hinge. Hinges are drawn bold.

The resulting dissection of n-cubes uses 8n pieces (compared to 3n pieces
from Corollary 1):



Theorem 3. The nth repetition of the cyclic hinged dissection in Figure 8 con-
sists of 8n identical cubes and folds into all n-cubes.

This hinged dissection of a cube is clearly the smallest exposed self-similar
hinged dissection of the cube, and hence is optimal among such dissections.
The hinged dissection also applies more generally to any parallelepiped (e.g., an
x× y × z box) as the base shape P .

This extension has been used in an interactive sculpture [18] consisting of
roughly a thousand identical wooden blocks (boxes) hinged together according to
Figure 8. (For manipulation purposes, the chain was broken into small segments.)
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