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ABSTRACT
David A. Huffman (1925–1999) is best known in computer

science for his work in information theory, particularly Huff-
man codes, and best known in origami as a pioneer of curved-
crease folding. But during his early paper folding in the 1970s,
he designed and folded over a hundred different straight-crease
origami tessellations. Unlike most origami tessellations de-
signed in the past twenty years, Huffman’s straight-crease tes-
sellations are mostly three-dimensional, rigidly foldable, and
have no locking mechanism. In collaboration with Huffman’s
family, our goal is to document all of his designs by reverse-
engineering his models into the corresponding crease patterns,
or in some cases, matching his models with his sketches of crease
patterns. Here we describe several of Huffman’s origami tessel-
lations that are most interesting historically, mathematically, and
artistically.

INTRODUCTION
David A. Huffman was a brilliant mathematician, computer

scientist, and artist. Sadly, he wrote only one paper devoted to
mathematical paper folding, in 1976 [1]. His paper describes
fundamentals of both straight and curved creases, in particular
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using a dual diagram to analyze both local behavior and inter-
actions among creases. Beyond his paper, Huffman designed
and folded hundreds of models and sculptures, and took copi-
ous notes on his ideas and designs, but never published and only
twice exhibited his work (at U. C. Santa Cruz in 1977 and at Xe-
rox PARC in 1998). More recently, a 2012 exhibit [2] revealed
several of his pieces to the public for the first time.

In this paper, we focus on Huffman’s straight-crease designs,
particularly his work in the area now known as origami tessella-
tions. (Huffman’s pioneering curved-crease designs are the study
of other ongoing work [3].)

An origami tessellation is a folding design where both the
crease pattern and the folded state use repeated elements to form
a two-dimensional pattern, typically according to the symmetries
of one of the 17 periodic “wallpaper groups”. Origami historian
David Lister [4,5] attributes the origin of origami tessellations to
Shuzo Fujimoto, a Japanese schoolteacher of mathematics who
self-published the first origami tessellation book Twist Origami
in 1976. In 1966, however, artist Ronald Resch patented several
origami tessellation designs [6]. Huffman met Resch in 1968,
and they talked more extensively at University of Utah in 1973,
while Huffman was on sabbatical and Resch was a professor
there. Both Huffman and Resch may have been influenced by
these discussions, though we have no clear documentation to this
effect. Huffman’s tessellation designs spanned the 1970s while
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he was a professor at University of California, Santa Cruz.
An explosion in artistic origami tessellations over the

past two decades includes Chris Palmer’s work in fabric, Joel
Cooper’s representational sculpture, and Eric Gjerde’s book [7].
On the mathematics side, Lang and Bateman [8] recently charac-
terized a general family of flat-folded origami tessellations, while
another recent result [9] can be interpreted as algorithmic design
of a family of 3D origami tessellations.

Huffman’s tessellations are remarkably different in style
from most modern tessellations as well as Fujimoto’s histori-
cal tessellations. The latter tessellations typically fold flat and
are locked (not rigidly foldable): the finished piece is two-
dimensional and, from the folded form, it is impossible to flat-
ten back out into its original square without bending along non-
crease lines. Most of Huffman’s origami tessellations, on the
other hand, are three-dimensional and not locked: they can be
rigidly folded into their final form by bending the material just at
the crease lines.

Our ongoing work, in collaboration with the Huffman fam-
ily, aims to document, reverse engineer, and analyze David Huff-
man’s origami tessellation designs, of which there are over one
hundred. In this paper, we detail the reverse-engineering process
for one representative example, and detail (our reconstructions
of) one family of closely related models.

RECONSTRUCTION PROCESS
Our starting point is Huffman’s physical models, sculptures,

and handwritten notes, which are being photographed, scanned,
and organized into an archive as part of the curved-crease analy-
sis [3]. In some cases, we have both Huffman’s hand drawing of
a crease pattern as well as his folded model, but often we have
only one or the other. Our reconstruction process differs depend-
ing on whether we work mainly from a (scanned) hand-drawn
crease pattern or (a photograph of) a folded model. In either case,
our goal is to produce an accurate vector drawing of the crease
pattern, print it out (using a Graphtec cutting plotter to score the
crease lines), and fold it to ensure that we correctly reconstructed
the design.

When starting from a crease pattern, our process is fairly
simple. We estimate the exact positions of the crease lines by
determining the underlying grid system—most patterns follow
a regular square or triangular/hexagonal lattice—and measuring
lengths of creases as accurately as possible. Sometimes the re-
sulting folding is not accurate enough, so we adjust the creases
and repeat.

One interesting detail is that, while Huffman’s designs of-
ten appeared to have triangular or hexagonal symmetry, he drew
his crease patterns on (square) graph paper, so he often rounded
the triangular grid onto the square grid. Figure 1 shows a sim-
ple example. Mathematically, this rounding removes some of the
symmetry in the design, but in practice the difference is imper-

FIGURE 1: David Huffman’s drawing of an origami tessella-
tion crease pattern (date unknown) in which the triangle is nearly
equilateral after being rounded to have corners on a square grid.
Used with permission of the Huffman family.

ceptible. Our reconstructions treat this rounding as an artifact of
Huffman’s process and not part of the mathematical design, and
thus use an exact triangular grid.

Reconstructing a design from a photograph is much more
complicated. Huffman often explored many variations of a de-
sign, and we exploit this fact by modifying previous reconstruc-
tions to determine many reconstructions, often by guessing and
trying small variations until producing the desired one. For the
first design in each family, however, we needed a more pre-
cise strategy. First we broke each tessellation into tileable units,
which are repeated to form the overall model. From there, we
reconstructed a crease pattern for each unit using a mixture of
techniques, and then tiled a page with those units.

RECONSTRUCTING “THREE AXIS WOVEN DESIGN”
For sake of example, we detail the reconstruction process

for one of Huffman’s most stunning origami tessellations. Fig-
ure 2 shows our starting point, and Figure 4 shows our finished
reconstruction. This was one of our first reconstructions from a
photographed model. In fact, after further searching through the
Huffman archives, we discovered Huffman’s crease pattern for
the model, shown in Figure 3, which turns out to be identical to
our reconstruction, aside from Huffman’s rounding of equilateral
triangles to a square grid. Nonetheless, it serves as an instructive
example of our reconstruction process.

Refer to Figures 5 and 6 for notation and step-by-step partial
reconstructions.
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FIGURE 2: Our photograph of David Huffman’s design “Three
Axis Woven Design” (date unknown), which was the basis of our
reconstruction.

FIGURE 3: David Huffman’s hand-drawn crease pattern for his
design “Three Axis Woven Design” shown in Figure 2. Used
with permission of the Huffman family.

Step 1. The inset hexagon is formed by a hexagon of creases:
A1,A2,A3,A4,A5,A6.

Step 2. The little orthogonal valley fold is crease B1. From
looking at the interior wall of the hexagon, we see that said inte-
rior wall is made out of right triangles (angles unknown) so we

FIGURE 4: Our reconstruction of David Huffman’s “Three Axis
Woven Design”.

know that segment B1 is perpendicular to segment A1.

Step 3. In the intersection of A1 and B1 is segment C1, which
runs behind the triangle that makes up the outer face of the inte-
rior hexagon wall. We cannot actually see C1, but because of the
symmetry of the hexagon, we can infer that it exists. The angle
between B1 and A1 is 90 degrees. The angle between B1 and C1
is also 90 degrees. Thus, the angle between A1 and C1 is 180
degrees, meaning that A1 and C1 must be the same line.

Step 4. We know that A2 and C1 end up collinear in the folding.
The only way for them to be collinear is for the angle between
them to be bisected. That angle is 60 degrees, thus D1 must be
30 degrees away from both of them.

Step 5. D1 and B2 meet at point P2.

Step 6. E1 is a valley fold radiating from point P1. In the folded
form, it is parallel to A2. Because C1 lies along the same line as
A2 and there are no fold lines running between E1 and C1, we
know E1 and C1 are parallel.

Step 7. F1 is a valley fold which also comes from P1, and is 60
degrees away from E1.

Step 8. The section of C2 between Q2 and Q3 is the same length
as A2. Points Q3, Q4, and R1 define an equilateral triangle, so the
section of C2 between Q3 and R1 is also the same length as A2.
Thus, the total length of C2 is twice the length of A2.
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FIGURE 5: Points and lines of interest in Figure 2 for reconstructing Huffman’s “Three Axis Woven Design”.
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FIGURE 6: Step-by-step partial reconstructions of Huffman’s “Three Axis Woven Design”.
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Step 9. At this point, it looks like we can put together two tiles.
However, there is still a problem: C2 appears to terminate at
R1. However, C′4, which must meet C2, seems to terminate at
T1. Thus, we know that C2 cannot end at R1. Instead, A2 meets
C′4, and R1 is left as part of the smaller mini triangles. On closer
inspection, A′2 wraps around and terminates at T1, while C′4 con-
tinues on the same path and finishes at S1. If A2 were to meet R1,
then there would be no miniature triangles, and we would have
an inaccurate reconstruction.

Step 10. When we extend the lines we have so far, F2 and E ′5
intersect at point U1.

Step 11. G1 runs from point U1 to the intersection of C1 and C′5.

Step 12. H2 runs from point U1, and intersects C′5 two A lengths
away from its start. We know it is two A lengths away because the
parallelogram defined by P1, T1, U ′4, and P′5 has sides of length
2A. Each side is defined by A3 and C′2. C′2 is equal to A4, so
each side is the sum of those segments, and thus is of length 2A.
This locks all proportions into place, and our reconstruction is
complete.

FAMILIES
Many of Huffman’s origami tessellation designs are closely

related to each other. We call two designs directly related if there
is a relatively simple transformation that turns one design into
the other, and call two designs related or belonging to the same
family if there is a sequence of such transformations.

In many origami tessellation designs, the repeating unit of
the crease pattern can be characterized as in Figure 7 to have
bounding polygon of valley folds, and an interior tree (or nearly
tree) structure of mountains. To compare (or transform) two tes-
sellations, we focus on just this repeating unit, and ignore other
auxiliary creases.

In these settings, the transformations we allow are symmet-
ric shifts of the angles of the tree; point enlarging; and shears,
stretches, compressions, and twists of the crease pattern, so long
as they preserve symmetry. The stretches and compressions di-
late or contract either all or parts of the tree, subject to preserv-
ing tree symmetry. A twist is comprised of fixing the center of
the tree and then stretching and rotating the rest of the tree and
boundary around that point. We can also enlarge points into
polygons, as long as there are at least three incident lines, two
or more of which must be leaves of the tree; the expanded poly-
gon must have a number of vertices between 2 and the number
of creases incident to the point.

In a transformation, we allow changing the bounding poly-
gon, to enable different clipping the tree to different shapes for
tiling. We also allow modifying other auxiliary creases. We

tree

leaf edge

bounding valley folds

leaf node

FIGURE 7: The components of a repeating unit.

forbid changing the mountain-valley assignment of individual
creases. (We can allow flipping all creases, though.)

THE VANES FAMILY
Figure 8 illustrates one family of Huffman designs we have

identified, their crease patterns, and their direct relations. We
call the family “Vanes” after Huffman’s own name for one of
the designs: “Raised Vanes, Both Vertical and Horizontal”. Fig-
ures 4 and 11–19 give photographs of our folded reconstructions
of these designs.

Next we describe some of the direct relations between mem-
bers of the Vanes family.

Redrawing the bounding polygon. “Stars-Triangles” and
“Raised Vanes, Both Vertical and Horizontal” share a tree. To
transform from one to the other, we simply redraw the bounding
polygon.

Tree angle shifts. To go from “Raised Vanes, Both Vertical and
Horizontal” to “Crippled Vanes”, we merely enlarge the angle of
the two leaves of the end of the tree in “Raised Vanes”.

Shears. “Three Axis Woven Design” is a sheared version of
“Rectangular Woven Design”, sheared from a square grid to an
equilateral triangle grid.

Stretches and compressions. “Rectangular Woven Design” is
a stretched version of “Exdented Boxes”, stretching the square
center into a rectangle.

Twists. To make “Pinwheels”, we fix the center of the square in
“Exdented Boxes” and rotate the leaves 22.5◦ around the center,
and then redraw the bounding polygon.
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FIGURE 8: The Vanes Family Tree
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FIGURE 9: The twist to make “Pinwheels”.

Point to polygon. To make “Rectangular Woven Design” from
“Extruded Boxes”, we enlarge both nodes into polygons, forming
the rectangle of “Rectangular Woven Design”.

FIGURE 10: Enlarging the nodes of “Extruded Boxes”.

CONCLUSION
The family of reconstructions presented here just scratch the

surface of Huffman’s origami tessellations, of which there are
over a hundred. In ongoing work, we are reconstructing, ana-
lyzing, and categorizing all of his designs. We expect there to
be roughly twenty different families, most of which should be
loosely linked. By reconstructing his tessellations, we aim to
open the world of three-dimensional tessellations. Most work to-
day is centered on tightly locked, two-dimensional tessellations,
and we look forward to encouraging further exploration of Huff-
man’s three-dimensional, rigidly foldable tessellation style.
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FIGURE 11: Our reconstruction of David Huffman’s origami tes-
sellation (title and date unknown), which we call “Waterbombs”.

FIGURE 12: Our reconstruction of David Huffman’s origami
tessellation (title and date unknown), which we call “Exdented
Boxes”.

FIGURE 13: Our reconstruction of David Huffman’s origami
tessellation (title and date unknown), which we call “Extruded
Boxes”.

FIGURE 14: Our reconstruction of David Huffman’s origami tes-
sellation (title and date unknown), which we call “Pinwheels”.
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FIGURE 15: Our reconstruction of David Huffman’s “Raised
Vanes, Both Vertical and Horizontal” (date unknown).

FIGURE 16: Our reconstruction of David Huffman’s “Rectangu-
lar Woven Design” (date unknown)

FIGURE 17: Our reconstruction of David Huffman’s “Squares
With Legs” (date unknown).

FIGURE 18: Our reconstruction of David Huffman’s origami
tessellation (title and date unknown), which we call “Stars-
Triangles”.

FIGURE 19: Our reconstruction of David Huffman’s origami tes-
sellation (title and date unknown), which we call “Tessellation of
Doom”.
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