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Abstract

We consider the problem of approximately integrating a Lipschitz function f (with a known Lipschitz
constant) over an interval. The goal is to achieve an additive error of at most ǫ using as few samples of f as
possible. We use the adaptive framework: on all problem instances an adaptive algorithm should perform
almost as well as the best possible algorithm tuned for the particular problem instance. We distinguish
between DOPT and ROPT, the performances of the best possible deterministic and randomized algo-
rithms, respectively. We give a deterministic algorithm that uses O(DOPT(f, ǫ) · log(ǫ−1/DOPT(f, ǫ)))
samples and show that an asymptotically better algorithm is impossible. However, any deterministic
algorithm requires Ω(ROPT(f, ǫ)2) samples on some problem instance. By combining a deterministic
adaptive algorithm and Monte Carlo sampling with variance reduction, we give an algorithm that uses
at most O(ROPT(f, ǫ)4/3 + ROPT(f, ǫ) · log(1/ǫ)) samples. We also show that any algorithm requires
Ω(ROPT(f, ǫ)4/3 +ROPT(f, ǫ) · log(1/ǫ)) samples in expectation on some problem instance (f, ǫ), which
proves that our algorithm is optimal.

1 Introduction

We consider the problem of approximating a definite integral of a univariate Lipschitz function (with known
Lipschitz constant) to within ǫ using the fewest possible samples. The function is given as a black box:
sampling it at a parameter value is the only allowed operation. It is easy to show that Θ(ǫ−1) samples are
necessary and sufficient for a deterministic algorithm in the worst case (see, e.g., [13]). The results in [1]
imply a Monte-Carlo method that requires only Θ(ǫ−2/3) samples in the worst case.

The Adaptive Framework. The univariate Lipschitz integration problem becomes more interesting
in the adaptive setting. The motivation is that, for a given ǫ, some problem instances have much lower
complexity than others. For example, if f(x) = Lx, where L is the Lipschitz constant, then evaluating f at
the endpoints of the interval over which the integral is taken is sufficient to solve the problem for any ǫ. Thus,
it is desirable to have an algorithm that is guaranteed to use fewer samples on easier problem instances.
Such an algorithm is called adaptive. We formalize this notion by defining the difficulty of a problem as the
performance of the best possible algorithm on that problem:

Definition 1 Let P be a class of problem instances. Let A be the set of all correct algorithms for P (among
some reasonable class of algorithms). Let COST(A, P ) be the performance of algorithm A ∈ A on problem
instance P ∈ P. Define OPT(P ) = minA∈A COST(A, P ). We use DOPT when A is the set of deterministic
algorithms and ROPT when A is the set of randomized algorithms that are correct on each P ∈ P with
probability at least 2/3.

By definition, for every problem instance P , there is an algorithm whose cost on P is OPT(P ). A good
adaptive algorithm is a single algorithm whose cost is not much greater than OPT(P ) for every problem
instance P . Therefore, an adaptive guarantee is in general much stronger than a worst-case guarantee.

The ultimate goal of investigating a problem in the adaptive framework is to design an “optimally
adaptive” algorithm. Suppose P is the set of problem instances and each problem instance P ∈ P has
certain natural parameters, v1(P ), . . . , vk(P ), with the first parameter v1(P ) = OPT(P ). An algorithm is
optimally adaptive if its performance on every problem instance P ∈ P is within a constant factor of every
algorithm’s worst-case performance on the family of instances with the same values for the parameters:
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{P ′ ∈ P | vi(P
′) = vi(P ) for all i}. Note that this definition depends on the choice of parameters, so in

addition to OPT, we need to choose reasonable parameters, such as ǫ, the desired output accuracy.

Related Work. Approximate definite integration is well-studied in numerical analysis (see, e.g., [5]).
However, most practical algorithms, do not assume a Lipschitz bound known in advance (or something
similar) and therefore cannot guarantee a bound on the error, only convergence on a class of functions.
Information-based complexity [12] tends to use assumptions that lead to stronger query complexity guaran-
tees than convergence, but it does not use the adaptive framework. The term “adaptive” in that literature
refers to an algorithm’s ability to use previous sample results to determine where to sample next. To our
knowledge, this paper is the first use of adaptive analysis for integration.

The authors in [14] describe what is essentially our deterministic integration algorithm (they call it
“estimation,” but they use mean, rather than maximum error) but they only prove that it is optimal in the
greedy sense—no global optimality claims are made.

For other problems, optimally adaptive algorithms have been previously designed in the context of set
operations [6], aggregate ranking [7], and independent set discovery in [4]. Lipschitz functions also lend
themselves well to adaptive algorithms. It is shown in [8] that Piyavskii’s algorithm [10] for minimizing a
univariate Lipschitz function performs O(OPT) samples. [3] gives an adaptive algorithm for minimizing the
distance from a point to a Lipschitz curve that is within a logarithmic factor of OPT. [2] gives adaptive
algorithms for several problems on Lipschitz functions.

Our Results. In this paper we give a deterministic algorithm that makes O(DOPT·log(ǫ−1/DOPT)) sam-
ples. We also prove a matching lower bound on deterministic algorithms. When comparing to ROPT, how-
ever, we show that any deterministic adaptive algorithm uses Ω(ROPT2) samples on some problem instance.

We present a randomized adaptive algorithm, lipschitz-mc-integrate, that always uses O(ROPT4/3 +
ROPT · log(ǫ−1)) samples and prove a matching lower bound.

We therefore give optimally adaptive algorithms for the Lipschitz integration problem in the deterministic
and randomized settings. Although the algorithms are simple, in both cases analyzing their adaptive perfor-
mance is nontrivial. To our knowledge, lipschitz-mc-integrate is the first randomized optimally adaptive
algorithm. Also, a simple corollary of the randomized lower bound is that the non-adaptive algorithm based
on the results in [1] is optimal in the worst case.

In practice, problems where we know the Lipschitz constant and nothing else about the function do not
often occur. However, to simplify implementation and analysis, practitioners sometimes make no use of
the extra knowledge and only focus on the Lipschitz condition (e.g. for implicit surface ray tracing in [9]).
Although adaptive optimality is not meaningful in such a case, an adaptive upper bound does provide a
meaningful guarantee.

Some of the results in this paper, primarily in Sections 3 and 4, are based on the first author’s master’s
thesis [2].

2 Problem Basics

We start by giving a precise formulation of the problem we consider:
Problem lipschitz-integration:

Given: (f, a, b, L, ǫ)

Such that: f : [a, b]→ R

and for x1, x2 ∈ [a, b], |f(x2)− f(x1)| ≤ L|x2 − x1|

Compute: I ∈ R such that

∣
∣
∣
∣
∣
I −

∫ b

a

f(x) dx

∣
∣
∣
∣
∣
≤ ǫ

A randomized algorithm needs to be correct with probability at least 2/3. Sampling f is the only way to
obtain information about it.
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Figure 1: Illustration of area looseness. Lipschitz bounds are dashed.

Some input parameters can be eliminated without loss of generality. The problem instance (f, a, b, L, ǫ)

is equivalent to the problem instance (f̂ , 0, 1, 1, ǫ/L(b − a)2) where f̂(x) = f
(

x−a
b−a

) /
L(b − a), so we can

assume without loss of generality that a = 0, b = 1, and L = 1.
We now develop some basic tools we will need for discussing and analyzing the algorithms. Essentially,

we show how to make use of the Lipschitz condition to bound the error of our estimates.
When we sample f at a point, the Lipschitz condition tells us that f lies between the lines of slope 1 and

−1 crossing at that point. If we sample f at two points, the four bounding lines define a rectangle in which
f must lie between these two points. We thus have upper and lower bounds for the integral of f on the
interval between these points, and the difference between these bounds is precisely the area of the rectangle
(see Figure 1). We call this difference area looseness, and it depends on both the length of the interval and
the values of f at the sampled points. A greater difference between values of f (a steeper function) results
in a smaller area looseness. Area looseness is twice the worst-case integration error of approximating f by a
straight line on that interval. Formally, we define area looseness as follows:

Definition 2 Given a Lipschitz function f on [0, 1], define the area looseness of a subinterval [x1, x2] of
[0, 1] as

ALf (x1, x2) =
(x2 − x1)

2 − (f(x1)− f(x2))
2

2
.

When it is clear which f we are talking about, we simply write AL(x1, x2).

Our analysis relies on area looseness being well behaved. The following proposition shows that it has
the properties one would expect a bound on integration error to have and that an additional sample in the
middle of the interval decreases total area looseness quickly.

Proposition 1 Area-looseness has the following properties:
(1) 0 ≤ AL(x1, x2) ≤ (x2 − x1)

2/2.
(2) If x′

1 ≤ x1 < x2 ≤ x′
2 then AL(x1, x2) ≤ AL(x′

1, x
′
2).

(3) If x ∈ [x1, x2], then AL(x1, x) + AL(x, x2) ≤ AL(x1, x2).
(4) AL

(
x1,

x1+x2

2

)
+ AL

(
x1+x2

2 , x2

)
≤ AL(x1, x2)/2.

Proof: (1) Note that (x2 − x1)
2 ≥ (f(x1) − f(x2))

2 ≥ 0, where the first inequality follows form the
Lipschitz condition. Therefore, (1) holds.

(2) This follows directly from (1) and (3).
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(3) The Lipschitz condition implies that |x1 − x| ≥ |f(x1) − f(x)| and |x2 − x| ≥ |f(x2) − f(x)|,
and therefore |(x1 − x)(x2 − x)| ≥ |(f(x1) − f(x))(f(x2) − f(x))|. In addition, (x1 − x)(x2 − x) ≤ 0, so
(f(x1)− f(x))(f(x2)− f(x)) ≥ (x1 − x)(x2 − x). Multiplying through, we get that

f(x1)f(x2) + f(x)2 − f(x1)f(x)− f(x2)f(x) ≥ x1x2 + x2 − xx1 − xx2.

Rearranging, we get that

−x1x2 + f(x1)f(x2) ≥ x2 − xx1 − xx2 − f(x)2 + f(x)f(x1) + f(x)f(x2).

Adding
x2
2+x2

1−f(x1)
2−f(x2)

2

2 to both sides to complete the squares, we get that

(x2 − x1)
2 − (f(x1)− f(x2))

2

2
≥ (x− x1)

2 − (f(x1)− f(x))2

2
+

(x2 − x)2 − (f(x1)− f(x))2

2
.

From the definition of AL, the last inequality is equivalent to (3).
(4) Let xm = (x1 + x2)/2. The proposition claims that if f is Lipschitz, then

(x2 − x1)
2 − (f(x2)− f(x1))

2

2
≥ (xm − x1)

2 − (f(xm)− f(x1))
2 + (x2 − xm)2 − (f(x2)− f(xm))2.

Because (xm − x1) = (x2 − xm) = (x2 − x1)/2, the claim can be written as

(x2 − x1)
2 − (f(x2)− f(x1))

2

2
≥ (x2 − x1)

2

2
− (f(xm)− f(x1))

2 − (f(x2)− f(xm))2.

Thus, we need to show that

(f(x2)− f(x1))
2 ≤ 2(f(xm)− f(x1))

2 + 2(f(x2)− f(xm))2.

Notice that the right hand side can be written as af(xm)2+bf(xm)+c, where a = 4 and b = −4f(x1)−4f(x2).
This expression has a single global minimum at f(xm) = −b/2a, which is fm = (f(x1)+f(x2))/2. Therefore,
we have

2(fm − f(x1))
2 + 2(f(x2)− fm)2 ≤ 2(f(xm)− f(x1))

2 + 2(f(x2)− f(xm))2.

But we can rewrite the left hand side as

2

(
f(x2)− f(x1)

2

)2

+ 2

(
f(x2)− f(x1)

2

)2

= (f(x2)− f(x1))
2,

which gives us the claim. 2

For the lower bounds, both on OPT and on adaptive algorithms, we need “extremal” Lipschitz functions,
whose integral is either maximal or minimal, given the samples. We call these functions HI and LO . We
also define looseness, the maximum difference between HI and LO over an interval.

Definition 3 Given a Lipschitz function f , and 0 ≤ a < b ≤ 1, define the Lipschitz functions HI b
a and LOb

a

on [a, b] asfollows:

HI b
a(x) = min(f(a) + x− a, f(b) + b− x)

LOb
a(x) = max(f(a)− x + a, f(b)− b + x)

Also define looseness Lf as Lf(a, b) = b− a− |f(b)− f(a)|.

See Figure 2. We now present some properties of our definitions.
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Figure 2: Illustration of HI and LO .

Proposition 2 Given a Lipschitz function f , the functions HI b
a and LOb

a have the following properties:
(1) If g is Lipschitz, g(a) = f(a), and g(b) = f(b), then for x ∈ [a, b], HI b

a(x) ≥ g(x) ≥ LOb
a(x).

(2) AL(a, b)/(b− a) ≤ max
x∈[a,b]

(HI b
a(x) − LOb

a(x)) = L(a, b) ≤ 2AL(a, b)/(b− a)

(3) The functions have the following integrals:

∫ b

a

HI b
a(x) dx = (b− a)

f(a) + f(b)

2
+ AL(a, b)/2

∫ b

a

LOb
a(x) dx = (b− a)

f(a) + f(b)

2
−AL(a, b)/2

.

Proof: (1) This inequality follows immediately from the Lipschitz condition on g.
(2) We prove the equation for when f(a) < f(b). The proof is analogous for the other case. Note that

HI b
a(x) ≤ f(a)+x− a and LOb

a ≥ f(b)− b+x. Therefore, HI b
a(x)−LO b

a(x) ≤ f(a)− f(b)+ b− a = L(a, b).
On the other hand HI b

a((a + b)/2)− LOb
a((a + b)/2) = (f(a) + (b− a)/2)− (f(b)− (b− a)/2) = L(a, b).

For the inequalities, we have: AL(a, b) = L(a,b)(b−a+|f(a)−f(b)|)
2 . But b−a ≤ b−a+|f(a)−f(b)| ≤ 2(b−a).

Therefore, AL(a, b) ≤ L(a, b)(b− a) ≤ 2AL(a, b).

(3) We prove the equation
∫ b

a HI b
a(x) dx = (b − a) f(a)+f(b)

2 + AL(a, b)/2. The proof of the second
equation is analogous. Note that for f(a) + x− a ≤ f(b) + b− x precisely when x ≤ (f(b)− f(a) + a + b)/2.
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Therefore, the integral may be written as

∫ b

a

HI b
a(x) dx =

∫ (f(b)−f(a)+a+b)/2

a

f(a) + x− a dx +

∫ b

(f(b)−f(a)+a+b)/2

f(b) + b− xdx =

=
3f(a) + f(b) + b− a

4
· f(b)− f(a) + (b− a)

2
+

+
f(a) + 3f(b) + b− a

4
· f(a)− f(b) + (b − a)

2
=

= f(a) · f(b)− f(a) + (b − a)

4
+ f(b) · f(a)− f(b) + (b− a)

4
+

+
f(a) + f(b) + b− a

4
· (b − a) =

= (b− a)
f(a) + f(b)

2
+

(f(b)− f(a))(f(a)− f(b))

4
+

(b− a)2

4
=

= (b− a)
f(a) + f(b)

2
+ AL(a, b)/2,

as desired. 2

Proposition 3 Given a Lipschitz function f , looseness has the following properties:
(1) 0 ≤ L(a, b) ≤ b− a
(2) If a′ ≤ a ≤ b ≤ b′, then L(a, b) ≤ L(a′, b′).

(3) If x1 ≤ x2 ≤ · · · ≤ xn, then
∑n−1

i=1 L(xi, xi+1) ≤ L(x1, xn).

Proof: (1) This follows immediately from the Lipschitz condition.
(2) By (3) and (1), L(a′, b′) ≥ L(a′, a) + L(a, b) + L(b, b′) ≥ L(a, b)

(3) By definition,
∑n−1

i=1 L(xi, xi+1) = xn − x1 −
∑n−1

i=1 |f(xi+1)− f(xi)|. But by the triangle inequality,
∑n−1

i=1 |f(xi+1)− f(xi)| ≥ |f(xn)− f(x1)|. 2

3 Proof Sets

In order to compare the running time of an algorithm on a problem instance to DOPT, we define the concept
of a proof set for a problem instance. A set P of points in [0, 1] is a proof set for problem instance (f, ǫ) and
output x if for every f ′ that is equal to f on P , x is a correct output on (f ′, ǫ). In other words, sampling f at
a proof set proves the correctness of the output. We say that a set of samples is a proof set for a particular
problem instance without specifying the output if some output exists for which it is a proof set.

It is clear from the definition that sampling a proof set is the only way a deterministic algorithm can
guarantee correctness: if an algorithm doesn’t sample a proof set for some problem instance, we can feed it a
problem instance that has the same value on the sampled points, but for which the output of the algorithm
is incorrect. Conversely an algorithm can terminate as soon as it has sampled a proof set and always be
correct. Thus, DOPT is equal to the size of a smallest proof set.

In order to analyze the deterministic algorithm, we will compare the number of samples it makes to the
size of a proof set P . We will need some tools for doing this.

Let P be a nonempty finite set of points in [0, 1]. Consider the execution of an algorithm which samples
a function at points on the interval [0, 1) (if it samples at 1, ignore that sample). Let s1, s2, . . . , sn be the
sequence of samples that the algorithm performs in the order that it performs them. Let It be the set of
unsampled intervals after sample st, i.e., the connected components of [0, 1)−{s1, . . . , st}, except make each
element of It half-open by adding its left endpoint, so that the union of all the elements of It is [0, 1). Let
[lt, rt) be the element of It−1 that contains st.
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Figure 3: Different types of samples.

Then sample st is a:

split if [lt, st) ∩ P 6= ∅ and [st, rt) ∩ P 6= ∅
squeeze if [lt, st) ∩ P 6= ∅ or [st, rt) ∩ P 6= ∅, but not both

fizzle if [lt, rt) ∩ P = ∅.

These definitions are, of course, relative to P . See Figure 3. We can now bound the number of samples of
different types:

Proposition 4 The number of splits is at most |P | − 1.

Proof: Let at be the number of elements of It that intersect P . If st is a split, then at−at−1 = 1, otherwise
at = at−1. Because the elements of It are disjoint, at ≤ |P |. Unless P = {1} (in which case, there can be no
splits), a0 = 1, so at most |P | − 1 splits can occur. 2

To bound the number of squeezes, we will first want the following easy fact:

Proposition 5 Let ai, for 1 ≤ i ≤ |P |, and b be positive real numbers. Suppose that
∑|P |

i=1 ai ≤ ǫ−1. Then
∑|P |

i=1 logb ai ≤ |P | logb(ǫ
−1/|P |).

Proof: By the arithmetic-geometric mean inequality,
|P |

√
∏|P |

i=1 ai ≤
P|P |

i=1 ai

|P | ≤ ǫ−1

|P | . Taking the logarithm

with base b of both sides gives us
P|P |

i=1 logb ai

|P | ≤ logb(ǫ
−1/|P |). Multiplying both sides by |P | gives us the

desired result. 2

Proposition 6 Suppose that for all i and j with i 6= j, |si− sj| > ǫ and that for all t, st = (lt + rt)/2. Then
if |P | ≤ ǫ−1/2, the number of squeezes is at most |P | log2(ǫ

−1/|P |).

Proof: Let IP t = {[a, b) ∈ It | [a, b) ∩ P 6= ∅}. If J ∈ IP t, define S(J) to be the number of squeezes that
have occurred to intervals containing J :

S(J) =

t∑

i=1

{
1 if si is a squeeze and J ⊂ [ri, li)
0 otherwise.

We claim the invariant that for all t,

∑

[a,b)∈IPt

(b − a) · 2S([a,b)) = 1. (1)

We prove (1) by induction on t. The base case t = 0 is clear because unless P is trivial, IP0 = {[0, 1)} and
S([0, 1)) = 0 because there have been no squeezes. For the inductive step, assume (1) holds for t− 1. If st

is a fizzle, no intervals containing points of P are affected and the sum remains the same. If st is a split,
interval [lt, rt) is replaced by [lt, st) and [st, rt) in IP t and S([lt, st)) = S([st, rt)) = S([lt, rt)) because no
new squeezes have occurred and the sum remains unchanged. Finally, if st is a squeeze, the interval [lt, rt) in
IP t is replaced by an interval J of half the length, but S(J) = S([lt, rt)) + 1, so the sum remains the same.
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Now, by assumption, each element of It is longer than ǫ, so, writing (1) for t = n gives:

∑

[a,b)∈IPn

ǫ · 2S([a,b)) <
∑

[a,b)∈IPn

(b− a) · 2S([a,b)) = 1, which means
∑

[a,b)∈IPn

2S([a,b)) < ǫ−1.

Using Proposition 5, we obtain
∑

[a,b)∈IPn
S([a, b)) < |P | log2(ǫ

−1/|P |), which implies that the total number

of squeezes is at most |P | log2(ǫ
−1/|P |). 2

We now characterize proof sets for lipschitz-integration.

Proposition 7 Let P = {x1, x2, . . . , xn} such that 0 ≤ x1 < x2 < · · · < xn ≤ 1. Then P is a proof set for

problem instance (f, ǫ) if and only if x2
1 + (1 − xn)2 +

∑n−1
i=1 AL(xi, xi+1) ≤ 2ǫ.

Proof: The value M = x1 · f(x1) + (1 − xn) · f(xn) +
∑n−1

i=1

(

(xi+1 − xi) · f(xi)+f(xi+1)
2

)

is within ǫ of
∫ 1

0
f(x) dx because

∣
∣
∣
∣
x1 · f(x1)−

∫ x1

0

f(x) dx

∣
∣
∣
∣
≤ x2

1

2
,

∣
∣
∣
∣
(1− xn) · f(xn)−

∫ 1

xn

f(x) dx

∣
∣
∣
∣
≤ (1− xn)2

2
,

and for each i,
∣
∣
∣(xi+1 − xi) · f(xi)+f(xi+1)

2 −
∫ xi+1

xi
f(x) dx

∣
∣
∣ ≤ 1

2 · AL(xi, xi+1) by Proposition 2.

In the other direction, if x2
1 + (1− xn)2 +

∑n−1
i=1 AL(xi, xi+1) > 2ǫ, then two functions, fHI and fLO , can

be constructed such that fHI (xi) = f(xi) = fLO(xi) but
∫ 1

0
fHI (x) dx −

∫ 1

0
fLO(x) dx > 2ǫ, which means

that no matter what value an algorithm outputs after sampling P , that value will be incorrect for either fHI

or fLO . 2

4 Deterministic Algorithm and Analysis

Proposition 7, together with Proposition 1 immediately shows the correctness of a trivial algorithm. Let
n = ⌈ǫ−1/4⌉ and let the algorithm make n samples, at 1

2n , 3
2n , . . . , 2n−1

2n and output the integral M as in
the proof of Proposition 7. It is correct because the area-looseness of every interval is at most (1/n)2/2.
Because there are n − 1 intervals, the total area-looseness of all of them is at most (n − 1)/(2n2). Also,

x2
1 = (1−xn)2 = 1/(2n)2, so x2

1 +(1−xn)2 +
∑n−1

i=1 AL(xi, xi+1) = n/(2n2) ≤ 2ǫ. Therefore, Θ(ǫ−1) samples
are always sufficient (and if, for instance, f is a constant, necessary).

We now give a deterministic adaptive algorithm.

Algorithm lipschitz-integrate

1. Sample f(0) and f(1).
2. Do while the total area-looseness of unsampled intervals is greater than 2ǫ:

3. Find the interval (x, y) between two adjacent sampled points that maximizes AL(x, y).
4. Sample f((x + y)/2).

5. Output the integral of the linear interpolation through the samples.

In terms of implementation, the algorithm maintains the total area-looseness of the current unsampled in-
tervals, the unsampled intervals themselves in a linked list, and uses a priority queue to choose the unsampled
interval with the largest area-looseness at every step and sample in the middle of it.

The correctness of the algorithm is clear from Proposition 7: the algorithm stops precisely when the
total area-looseness of the unsampled intervals is no more than 2ǫ. We need to analyze the algorithm’s
performance.

Theorem 1 Algorithm lipschitz-integrate makes O(DOPT · log(ǫ−1/DOPT)) samples on problem in-
stance (f, ǫ).
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f(x)

x

Figure 4: Lower bound construction for deterministic algorithms with n = 16 and k = 4.

Proof: We will actually compare the number of samples to DOPT(f, ǫ/2) rather than to DOPT(f, ǫ). We
can do this because if we take a proof set for DOPT(f, ǫ) and sample in the middle of every unsampled
interval, then by Proposition 1 (4), we will obtain a proof set for DOPT(f, ǫ/2). Thus, DOPT(f, ǫ/2) ≤
2 ·DOPT(f, ǫ) + 1. So let P be a proof set for (f, ǫ/2) of size DOPT(f, ǫ/2).

First, we argue that no interval of length smaller than 4ǫ is ever subdivided. Suppose for contradiction
that among n intervals I1, . . . , In of lengths a1, . . . , an, interval Ik with ak < 4ǫ is chosen for subdivision.
By Proposition 1 (1), AL(Ii) ≤ a2

i /2, so
√

AL(Ik) ≤ 2ǫ. On the other hand,
∑

ai = 1, so
∑√

AL(Ii) ≤ 1.

Multiplying the inequalities, we get
∑

AL(Ii) ≤
∑√

AL(Ii)AL(Ik) ≤ 2ǫ. But this implies that the algorithm
should have terminated, which is a contradiction.

Now, we count the number of samples relative to P . The number of splits is O(|P |) by Proposition 4.
The above paragraph shows that we can use Proposition 6 to conclude that there are O(|P | log(ǫ−1/|P |))
squeezes. We now show that there are O(|P |) fizzles and so prove the theorem.

A fizzle occurs when an interval not containing a point of P is chosen for subdivision. Consider the
situation after n points have been sampled. Let the sampled points be 0 = x1 ≤ x2 ≤ · · · ≤ xn = 1.
Because the total area-looseness of intervals between points of P is at most ǫ, by repeated application of
Proposition 1 (2,3), we have

∑

[xi,xi+1)∩P=∅ AL(xi, xi+1) ≤ ǫ. The algorithm has not terminated, so the total

area-looseness must be more than 2ǫ, which implies that
∑

[xi,xi+1)∩P 6=∅ AL(xi, xi+1) > ǫ. Because there

are at most |P | elements in the sum on the left hand side, the largest element must be greater than ǫ/|P |.
Therefore, there exists a k such that [xk, xk+1) contains a point of P and AL(xk, xk+1) > ǫ/|P |. So if a fizzle
occurs, the area-looseness of the chosen interval must be at least ǫ/|P |.

Now let St be the set of samples made by the algorithm after time t. Define At as follows: let
{y1, y2, . . . , yn} = St ∪ P with 0 = y1 ≤ y2 ≤ · · · ≤ yn and let At =

∑n−1
i=1 AL(yi, yi+1). Clearly, At ≥ 0,

At ≥ At+1 (by Proposition 1 (3)), and therefore, At ≤ A0 ≤ 2ǫ. Every fizzle splits an interval between
adjacent y’s into two. Because the area-looseness of the interval before the split was at least ǫ/|P |, by
Proposition 1 (4), At decreases by at least ǫ/(2|P |) as a result of every fizzle. Therefore, there can be at
most 4|P | fizzles during an execution. 2

We prove a matching lower bound, showing that the logarithmic factor is necessary and that lipschitz-

integrate is optimally adaptive:

Theorem 2 For any deterministic algorithm and for any ǫ > 0 and any integer k such that 0 < k < ǫ−1/2,
there exists a problem instance (f, ǫ) of lipschitz-integration with DOPT(f, ǫ) = O(k) on which that
algorithm performs Ω(k log(ǫ−1/k)) samples.

Proof: Let n = k⌊1/
√

2ǫk⌋. Divide the parameter space [0, 1] into n equal regions and group them into
k groups of n/k regions each. In each group, let n/k − 1 regions have slope 1 and let 1 region have slope
−1 (see Figure 4 for an illustration). Sampling at 0, 1, and every point where the slope of f changes is a
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proof set because the area looseness of all unsampled intervals is 0. This implies that for any such function,
DOPT ≤ 2k + 2 = O(k).

Now we show that any algorithm will need additional samples on some function of this type. Consider a
group, and consider an interval I consisting of the region on which f has negative slope in that group and an
adjacent region in that group. Because the value of f is the same on the endpoints of I, AL(I) = 2/n2 ≥ 4ǫ/k.
Therefore, an algorithm that does not find the negative-slope region or an adjacent one in at least k/2 groups
will not be correct on some inputs. Finding the negative-slope region in each group is a binary search that
needs Ω(log(n/k)) = Ω(log(ǫ−1/k)) samples and this needs to be done independently for Ω(k) groups, giving
us the bound. 2

5 Algorithm lipschitz-mc-integrate

A standard strategy in a Monte Carlo integration algorithm is to sample at a point picked uniformly at
random from an interval. The expected value of such a sample, scaled by the length of the interval, is
precisely the value of the integral over the interval, so the goal is to minimize the variance. When the
function is Lipschitz, the variance of the integral estimate based on such a sample can be as high as a
constant times the fourth power of the length of the interval. However, if we use the fact that when the
area looseness of an interval is low, we approximately know the function, we can adjust the sample to get
an unbiased estimator of the integral over that interval whose variance is the square of the area looseness in
the worst case. Procedure mc-sample shows how to do this.

Procedure mc-sample(x1, x2):

1. Let x be a random number, uniformly chosen from [x1, x2]
2. If f(x1) ≤ f(x2), then sample←

(
f(x)− x + x1+x2

2

)

3. Else sample←
(
f(x) + x− x1+x2

2

)

4. Return sample · (x2 − x1)

Proposition 8 mc-sample(x1, x2) returns an unbiased estimator of
∫ x2

x1
f(x) dx that has variance at most

AL2(x1, x2).

Proof: Because x is uniform, E[x− (x1 +x2)/2] = 0 so E[sample] = E[f(x)]. Also, because x is uniform,
the definition of expectation implies that E[f(x)] =

∫ x2

x1
f(x)/(x2 − x1) dx, so the estimator is unbiased.

We bound the variance when f(x1) ≤ f(x2). The other case is symmetric. The variance of the return
value is equal to var(sample)·(x2−x1)

2 = var(f(x)−x)·(x2−x1)
2. Because f is Lipschitz, f(x2)−(x2−x) ≤

f(x) ≤ f(x1) + (x − x1), so f(x2) − x2 ≤ f(x) − x ≤ f(x1) − x1. If a random variable is always within
an interval, its variance can be at most one quarter of the square of its length. Therefore, var(f(x) − x) ≤
(x2−x1 + f(x1)− f(x2))

2/4 = L(x1, x2)
2/4. By Proposition 2 (2), L(x1, x2)

2(x2−x1)
2/4 ≤ AL2(x1, x2). 2

In order to compute the integral over [0, 1], we would like an estimator for that integral with low variance.
If we split [0, 1] into intervals whose total AL2 is small and run mc-sample on each interval, we will get
such an estimator, as shown in the following corollary.

Corollary 1 Let 0 = x1 < x2 < · · · < xn = 1 and suppose
∑n−1

i=1 AL2(xi, xi+1) ≤ ǫ2/3. Let Î =
∑n−1

i=1 mc-sample(xi, xi+1). Let I =
∫ 1

0
f(x) dx. Then Pr[|Î − I| ≥ ǫ] ≤ 1/3.

Proof: By Proposition 8, Î is an unbiased estimator of I with variance at most
∑n−1

i=1 AL2(xi, xi+1), which

is at most ǫ2/3. From Chebyshev’s inequality, we obtain that Pr[|Î − I| >
√

3
√

ǫ2/3] ≤ 1/3, as necessary. 2

The remaining difficulty is to find a small number of intervals whose total AL2 is smaller than ǫ2/3.
Note that the deterministic adaptive algorithm in Section 4 finds a small number of intervals whose total
AL is smaller than ǫ. We show that we can use the same idea here. Thus, to obtain a randomized adaptive
algorithm, we use a deterministic adaptive algorithm to get a rough idea of the function and then use Monte
Carlo sampling with variance reduction (mc-sample) to improve our estimate of the integral.
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Algorithm lipschitz-mc-integrate:

1. Sample f(0) and f(1).
2. Do while the total AL2 of unsampled intervals is greater than ǫ2/3:

3. Find the interval (x, y) between two adjacent sampled points that maximizes AL2(x, y).
4. Sample f((x + y)/2).

5. Run mc-sample on each interval between adjacent sampled points and output the sum.

Correctness is guaranteed by Corollary 1 because the algorithm exits the loop in lines 2–4 only when the
total AL2 of intervals between sampled points is no more than ǫ2/3.

6 Performance Analysis

Theorem 3 On problem instance (f, ǫ) algorithm lipschitz-mc-integrate performs O(ROPT4/3(f, ǫ) +
ROPT(f, ǫ) log(1/ǫ)) samples.

We prove this theorem with three lemmas. The first gives a lower bound on ROPT in terms of a set of
points. The second two give an upper bound on the runtime of the algorithm in terms of this set of points.

For the analysis of the algorithm, let f be the Lipschitz function input to lipschitz-mc-integrate.

Lemma 1 Given f , there exists a set of points 0 = x1 < x2 < · · · < xn = 1 such that for 1 ≤ i ≤ n − 2,
AL(xi, xi+1) = 3ǫ, and AL(xn−1, xn) ≤ 3ǫ. Furthermore, ROPT(f, ǫ) ≥ (n− 2)/3.

Proof: We begin by constructing a set of points that satisfies the conditions. Obviously, x1 should be 0.
Suppose we have constructed the first k points and xk 6= 1. If AL(xk, 1) ≤ 3ǫ, set xk+1 = 1 and we are done.
Otherwise, notice that f is continuous, so AL is also continuous. By Proposition 1 (1), AL(xk, xk) = 0.
Therefore, by the intermediate value theorem, there is an x ∈ [xk, 1] such that AL(xk, x) = 3ǫ and we set
xk+1 to be that x.

Consider an algorithm A that is correct with probability at least 2/3 on all inputs and consider its
executions on f . Let ei for 1 ≤ i ≤ n− 2 be the expected number of samples A performs in (xi, xi+1). We
claim that in order for A to be correct, it must have ei ≥ 1/3 for all i and therefore, the total expected

number of samples is
∑n−2

i=1 ei ≥ (n− 2)/3.
Suppose for contradiction, that ei < 1/3 for some i. Then, by Markov’s inequality, the probability

that A samples in (xi, xi+1) is less than 1/3. Now consider two functions defined as follows: f̂1(x) =

f̂2(x) = f(x) everywhere except (xi, xi+1) and f̂1(x) = LOxi+1
xi

(x) and f̂2(x) = HI xi+1
xi

(x) on (xi, xi+1). By

Proposition 2 (3),
∫ 1

0
f̂2(x)dx −

∫ 1

0
f̂1(x) = AL(xi, xi+1) = 3ǫ, so no output is correct for both f̂1 and f̂2.

Suppose, that we feed f̂1 and f̂2 with probability 1/2 each as input to A. Conditioned on A not sampling
in (xi, xi+1), the output of A is independent of which function was input. Therefore, conditioned on A not

sampling in (xi, xi+1), the probability of error is at least 1/2. Because f̂1 = f̂2 = f not on (xi, xi+1), the
probability of A not sampling on (xi, xi+1) is greater than 2/3, so the probability of error is greater than
1/3, which implies that A is invalid. 2

Because the number of samples in step 5 is smaller (by 1) than the number of samples in steps 1–4, we
only focus on the samples in steps 1–4. For the analysis, we split the execution of the algorithm into two
phases. The algorithm is in Phase 1 while there is a pair of adjacent sampled points xi and xi+1 for which
AL(xi, xi+1) > 3ǫ. When all pairs of adjacent samples have AL at most 3ǫ, the algorithm is in Phase 2.
Note that by Proposition 1 (2), area looseness between adjacent samples never increases as the algorithm
executes, so once it enters Phase 2, it never goes back to Phase 1. We now bound the number of samples
made in steps 1–4 in the phases.

Lemma 2 In Phase 1, lipschitz-mc-integrate makes O(ROPT(f, ǫ) log(1/ǫ)) samples on problem in-
stance (f, ǫ).
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Proof: Let X be the set of xi’s constructed as in Lemma 1. We count the samples made by lipschitz-

mc-integrate relative to X . By Proposition 4, there are at most O(|X |) splits. We now need a lower
bound on the size of intervals in Phase 1 to count the number of squeezes. We note that an interval whose
length is smaller than

√
6ǫ has area looseness at most 3ǫ (by Proposition 1 (1)) and will therefore never be

chosen for subdivision in Phase 1. Therefore, in Phase 1, every interval has length at least
√

6ǫ/2. So by
Proposition 6, there are at most |X | log((

√
6ǫ/2)−1/|X |) = O(|X | log(1/ǫ)) squeezes. There are no fizzles

because any interval whose area looseness is greater than 3ǫ must have a point of X (by Proposition 1 (2)
and by construction of X). By Lemma 1, |X | = O(ROPT(f, ǫ)), so we have the claimed bound. 2

Lemma 3 In Phase 2, lipschitz-mc-integrate uses at most O(ROPT(f, ǫ)4/3 + ROPT(f, ǫ) log(1/ǫ))
samples on problem instance (f, ǫ).

Proof: After Phase 1 is complete, the area looseness between adjacent sampled points is at most 3ǫ.
Let 0 = y1 < y2 < · · · < ym = 1 be the smallest subset of sampled points (including 0 and 1) such that
AL(yi, yi+1) ≤ 3ǫ for all y. We claim that m ≤ 6 · ROPT(f, ǫ). Consider the set of xi’s constructed as
in Lemma 1. If yi’s are a minimal set of points with area looseness no greater than 3ǫ between adjacent
ones, then every interval of the form [xi, xi+1] has at most two yi’s (if there are three, the middle one is
unnecessary). Therefore there are at most twice as many yi’s as xi’s.

Now assume the algorithm makes more samples in Phase 2 than in Phase 1 because otherwise, it makes
O(ROPT(f, ǫ) log(1/ǫ)) samples and we are done. We apply Propostion 9 to prove this lemma. Let Y be

the set of yi’s, let Z(0) be the set of sampled points at the end of Phase 1 and let t0 = 550 · ROPT4/3. We
have A =

∑m−1
i=1 AL(yi, yi+1) ≤ 18 · ROPT · ǫ. By Proposition 9, after t0 samples, the total AL2 will be at

most 4608·(6·ROPT)2·(18·ROPT)2ǫ2

5503ROPT4 ≤ ǫ2/3 so the algorithm will stop after t0 steps. 2

The following proposition shows that as our algorithm samples, the total squared area looseness declines
as the cube of the number of samples. We prove it by associating a number with each interval that is an
upper bound on its area looseness. We then show that these numbers are within a factor of four of each
other and use this to show that that the sum of their squares decreases as the cube of the number of samples.

Proposition 9 Let Y = {y1, . . . , ym} with 0 = y1 < · · · < ym = 1, and let A =
∑m−1

i=1 AL(yi, yi+1).
Consider the sequence Z(0), Z(1), Z(2), . . . of sets of samples where Z(0) ⊇ Y is an arbitrary superset of Y
and, for each t ≥ 1, Z(t) = Z(t−1) ∪ {z(t)} where z(t) is the midpoint (x(t) + y(t))/2 of the interval (x(t), y(t))
of Z(t−1) with the largest area looseness AL(x(t), y(t)). Then, for any t0 ≥ |Z0|,

∑

(x,y)∈I(Z(t)) AL2(x, y) ≤
(4608m2A)/t30.

Proof: In this proposition if X = {x1, . . . , xn} is a set of real numbers with x1 < · · · < xn, let I(X) =
{(xi, xi+1) | 1 ≤ i < n}.

First we define a number q(t)(x, y) associated with each interval (x, y) of Zt. Define q(0)(x, y) = L(x, y) ·
(y − x). For t > 0, let Q(t) = L(x(t), y(t)) · (y(t) − x(t)). Define q(t)(x(t), z(t)) = q(t)(z(t), y(t)) = Q(t)/2, and
define q(t)(x, y) = min{q(t−1)(x, y), 2Q(t)} for all other intervals (x, y) (those without z(t) as an endpoint).

We claim that q(t)(x, y) ≥ L(x, y) · (y − x). For t = 0, this property holds with equality. For t > 0,
q(t)(x(t), z(t)) = Q(t)/2 = L(x(t), y(t)) · (y(t)−x(t))/2. The claim follows for (x(t), z(t)) because L(x(t), y(t)) ≥
L(x(t), z(t)), by Proposition 3 (2), and because (y(t)−x(t))/2 = z(t)−x(t). The claim follows symmetrically for
(z(t), y(t)). For all other intervals (x, y) of Z(t), t > 0, we know by induction on t that q(t−1)(x, y) ≥ L(x, y) ·
(y−x), so it remains only to show that 2Q(t) ≥ L(x, y)·(y−x). By Proposition 2 (2), 2Q(t) ≥ 2AL(x(t), y(t)).
Because (x(t), y(t)) has the maximum area looseness among intervals of Z(t−1), 2AL(x(t), y(t)) ≥ 2AL(x, y).
By Proposition 2 (2), 2AL(x, y) ≥ L(x, y) · (y − x). Thus 2Q(t) ≥ L(x, y) · (y − x) and the claim follows.

Let I(t) = I(Z(t)) \ I(Z(0)) be the set of intervals of Z(t) that are the result of subdivision. Notice
that for t > 0, t < |I(t)| ≤ 2t. We claim that max(x,y)∈I(Z(t)) q(t)(x, y) ≤ 4 min(x,y)∈I(t) q(t)(x, y), for

any t > 0. (For t = 0, I(t) is empty, so the claim is meaningless.) We use the argument above that
2Q(t) ≥ L(x, y) · (y− x) for any interval (x, y) of Z(t), and thus 2Q(t) ≥ max(x,y)∈I(Z(t)) q(t)(x, y). For t = 1,

max(x,y)∈I(Z(1)) q(1)(x, y) ≤ 2Q(1), and min(x,y)∈I(1) q(1)(x, y) is the common value Q(1)/2 assigned to the

two intervals (x(1), z(1)) and (z(1), y(1)) resulting from the first subdivision. Thus the base case of t = 1

12



follows. For t > 1, let
M+ = max

(x,y)∈I(Z(t−1))\{(x(t),y(t))}
q(t−1)(x, y)

and let
M− = min

(x,y)∈I(t−1)\{(x(t),y(t))}
q(t−1)(x, y).

By the inductive hypothesis on t, max(x,y)∈I(Z(t−1)) q(t−1)(x, y) ≤ 4 min(x,y)∈I(t−1) q(t−1)(x, y), so by dropping

a term each from each side, M+ ≤ 4M−. By construction of the q(t)’s, we have min(x,y)∈I(t) q(t)(x, y) =

min{M−, Q(t)/2} and max(x,y)∈I(Z(t)) q(t)(x, y) = max{min{M+, 2Q(t)}, Q(t)/2}. As argued above, Q(t) ≤
q(t−1)(x(t), y(t)), and by dropping terms from the induction hypothesis, q(t−1)(x(t), y(t)) ≤ 4M−. From this,
we conclude that min{4M−, 2Q(t)} = max{min{4M−, 2Q(t)}, Q(t)} ≥ max{min{M+, 2Q(t)}Q(t)/2} and the
claim follows.

The intervals in I(Z(0)) ∪ I(Z(1)) ∪ · · · ∪ I(Z(t0)) (removing duplicate occurrences of intervals) form
a natural structure of rooted binary trees. For each 1 ≤ t ≤ t0, define the interval (x(t), y(t)) to be the
parent of intervals (x(t), z(t)) and (z(t), y(t)). This definitions yields a unique parent interval for every
interval in I(1) ∪ · · · ∪ I(t0). The parent of such an interval may not be in I(1) ∪ · · · ∪ I(t0), but it is in
I(Z(0)) ∪ I(Z(1)) ∪ · · · ∪ I(Z(t0)). The intervals without parents are thus precisely the intervals in Z(0),
which we define as roots. This parent and root structure defines a forest of rooted binary trees on intervals
in I(Z(0)) ∪ I(Z(1)) ∪ · · · ∪ I(Z(t0)). Every interval is a subinterval of its parent and has half the length.
The leaves of the trees correspond precisely to intervals of Z(t0).

We now obtain an upper bound on the q(t)’s. Let I
(t0)
j = {(x, y) ∈ I(t0) | yj ≤ x < yj+1}. We claim that,

for all 1 ≤ j < m,
∑

(x,y)∈I
(t0)

j

q(t0)(x, y)/(y − x) ≤ 6L(yj, yj+1).

The intervals in I
(t0)
j are precisely the leaves of the trees of nonzero height rooted at intervals of Z(0) that

are subintervals of (yj , yj+1). By Proposition 3 (3), it suffices to prove the claim separately for each such
tree: for each tree T in the forest, with root interval (r(T ), s(T )) of Z(0) and with leaves Λ(T ),

∑

(x,y)∈Λ(T )

q(t0)(x, y)/(y − x) ≤ 6L(r(T ), s(T )).

For the proof, we make the following stronger claim about the subtree T (r, s) rooted at any nonleaf node
(r, s):

∑

(x,y)∈Λ(T (r,s))

q(t0)(x, y)/(y − x) ≤ (6− 23−h(T (r,s)))L(r, s).

Let (a, b) and (c, d) be the left and right children of (r, s), respectively. If both (a, b) and (c, d) are leaves, then
h(T ) = 1 and q(t0)(a, b) = q(t0)(c, d) = L(r, s) · (s−r)/2, so q(t0)(a, b)/(b−a)+q(t0)(c, d)/(d−c) = 2L(r, s) as
desired. If neither (a, b) nor (c, d) are leaves, then we can break the sum into two pieces and apply induction
on height to each piece:

∑

(x,y)∈Λ(T (r,s))

q(t0)(x, y)

y − x
=

∑

(x,y)∈Λ(T (a,b))

q(t0)(x, y)

y − x
+

∑

(x,y)∈Λ(T (c,d))

q(t0)(x, y)

y − x

≤ (6− 23−h(T (a,b)))L(a, b) + (6− 23−h(T (c,d)))L(c, d)

≤ (6− 23−h(T (r,s)))(L(a, b) + L(c, d)),

which by Proposition 3 (3) is at most (6 − 23−h(T (r,s)))L(r, s) as desired. If exactly one of (a, b) and (c, d)
is a leaf, then we relabel so that (a, b) is the leaf. Let (e, f) be a leaf of T (c, d) whose distance in the
tree from (c, d) is h(T (c, d)) = h(T (r, s)) − 1. so that f − e = (d − c)/2h(T (r,s))−1 = (b − a)/2h(T (r,s))−1.
Because max(x,y)∈I(Z(t0)) q(t0)(x, y) ≤ 4 min(x,y)∈I(t0) q(t0)(x, y), we have q(t0)(a, b) ≤ 22q(t0)(e, f). Thus

q(t0)(a, b)/(b − a) ≤ q(t0)(e, f) · 23−h(T (r,s))/(f − e). At the time t that interval (e, f) was created from its
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parent (g, h), q(t)(e, f) = L(g, h) · (f − e), which by Proposition 3 (2) is at most L(c, d) · (f − e). As time t
progresses, q(t)(e, f) only decreases. Thus q(t0)(e, f)23−h(T (r,s))/(f − e) ≤ L(c, d)23−h(T (r,s)). By induction
on height,

∑

(x,y)∈Λ(T (r,s))

q(t0)(x, y)

y − x
=

q(t0)(a, b)

b− a
+

∑

(x,y)∈Λ(T (c,d))

q(t0)(x, y)

y − x

≤ L(c, d)23−h(T (r,s)) + (6− 23−h(T (c,d)))L(c, d)

= (6 + 23−h(T (r,s)) − 24−h(T (r,s)))L(c, d)

= (6− 23−h(T (r,s)))L(c, d),

which by Proposition 3 (2) is at most (6 − 23−h(T (r,s)))L(r, s) as desired. This completes the proof of the
claim.

Finally consider Z(t0). Let M+ = max(x,y)∈I(Z(t0)) q(t0)(x, y). For any interval (x, y) ∈ I(t0), M+ ≤
4q(t0)(x, y), so for any j,

∑

(x,y)∈I
(t0)
j

M+/(y − x) ≤ 4
∑

(x,y)∈I
(t0)
j

q(t0)(x, y)/(y − x), which by the previous

claim is at most 24L(yj, yj+1). Because leaf intervals in a tree partition the root interval,
∑

(x,y)∈I
(t0)

j

(y−x) ≤
yj+1 − yj . Multiplying these two inequalities,

24L(yj, yj+1) · (yj+1 − yj) ≥
∑

(x,y)∈I
(t0)
j

∑

(x′,y′)∈I
(t0)
j

M+

y − x
(y′ − x′)

=
∑

(x,y)∈I
(t0)
j

M+ +
∑

(x,y)∈I
(t0)
j

∑

(x′,y′)∈I
(t0)
j

x<x′

(

M+ y − x

y′ − x′
+ M+ y′ − x′

y − x

)

= |I(t0)
j |M+ +

∑

(x,y)∈I
(t0)
j

∑

(x′,y′)∈I
(t0)
j

x<x′

M+

(
y − x

y′ − x′
+

y′ − x′

y − x

)

︸ ︷︷ ︸

= α + 1/α ≥ 2

≥ |I(t0)
j |M+ + 2

(|I(t0)
j |
2

)

M+

= |I(t0)
j |2M+.

Summing over j,

m−1∑

j=1

24L(yj, yj+1) · (yj+1 − yj) ≥M+
m−1∑

j=1

|I(t0)
j |2 ≥M+ |I(t0)|2

m
≥M+ t0|I(t0)|

m
.

Now |I(Z(t0))| = |I(Z(0))|+ t0 = |Z(0)|+ t0 − 1. Because t0 ≥ |Z(0)| − 2, 2|I(t0)| ≥ |Z(0)|+ t0 − 1. Thus

∑

(x,y)∈I(Z(t0))

(

q(t0)(x, y)
)2

≤ (|Z(0)|+ t0 − 1)(M+)2

≤ 2|I(t0)|(M+)2

≤ 2|I(t0)|




m

t0|I(t0)|

m−1∑

j=1

24L(yj, yj+1) · (yj+1 − yj)





2

=
1152m2

t20|I(t0)|





m−1∑

j=1

L(yj, yj+1) · (yj+1 − yj)





2

,

which by Proposition 2 (2) is at most (4608m2A)/(t20|I(t0)|). Recall that q(t0)(x, y) ≥ L(x, y) · (y−x), which

14



is at least AL(x, y) by Proposition 2 (2). Therefore

∑

(x,y)∈I(Z(t0))

AL2(x, y) ≤
∑

(x,y)∈I(Z(t0))

(

q(t0)(x, y)
)2

≤ 4608m2A

t20|I(t0)| .

2

The upper bound follows immediately from the two lemmas we have shown.

7 Randomized Lower Bounds

We begin by using a proof very similar to that of Theorem 2 to show that the logarithmic factor over ROPT
is necessary.

Lemma 4 For any algorithm and for any ǫ > 0 and any integer k such that 0 < k < ǫ−1/2, there exists
a problem instance (f, ǫ) of lipschitz-integration with ROPT(f, ǫ) = O(k) on which that algorithm
performs Ω(k log(ǫ−1/k2)) samples.

Proof: Let n = k⌊1/(k
√

ǫ)⌋. Divide the parameter space [0, 1] into n equal regions and group them into
k groups of n/k regions each. In each group, let n/k − 1 regions have slope 1 and let 1 region have slope
−1 (refer back to Figure 4 for an illustration). The parameters 0, 1, and at every point where the slope of f
changes are a proof set because the area looseness of all unsampled intervals is 0. This implies that for any
such function, ROPT ≤ DOPT ≤ 2k + 2 = O(k).

Now we show that any algorithm will need additional samples on some function of this type. Consider a
group, and consider an interval I consisting of the region on which f has negative slope in that group and an
adjacent region in that group. Because the value of f is the same on the endpoints of I, AL(I) = 2/n2 ≥ 2ǫ.
If there is a problem instance on which an algorithm samples in some I with probability less than 1/3,
the algorithm could be fed that problem instance and the problem instance that has the negative-slope
region exchanged with the positive-slope region in I, with probability 1/2 each. The algorithm would be
able to distinguish between them with probability at most 1/3 and the integrals of the functions differ by
2ǫ, so the algorithm will be wrong at least 1/3 of the time. Therefore, any correct algorithm finds each I
with probability at least 1/3. This is equivalent to a continuous binary search that requires Ω(log(n/k)) =
Ω(log(ǫ−1/k2)) samples. This search must be performed independently in k/3 groups in expectation, so the
expected number of samples is at least Ω(k log(ǫ−1/k2)). 2

To prove that lipschitz-mc-integrate cannot be improved by more than a constant factor, we first
show that Lemma 1 is actually a tight (to within a constant factor) lower bound on ROPT by proving the
following upper bound.

Lemma 5 Given a Lipschitz function f , there is a set of points 0 = x1 < x2 < · · · < xk = 1 such that for
1 ≤ i ≤ k − 2, AL(xi, xi+1) = ǫ/4, and AL(xk−1, xk) ≤ ǫ/4. Furthermore, ROPT(f, ǫ) ≤ 2k − 1.

Proof: The construction of the xi’s is completely analogous to that performed in the proof of Lemma 1.
To prove that ROPT(f, ǫ) ≤ 2k − 1, we give an algorithm that solves lipschitz-integration and uses
2k − 1 samples on (f, ǫ).

When the algorithm is given a function g, it samples at all xi and then at k − 1 points picked uniformly
at random, one from each interval between xi and xi+1. If at every sample, g(x) = f(x), the algorithm

outputs
∫ 1

0 f(x)dx. Otherwise, it executes a slow deterministic algorithm that is always correct.
We first note that this algorithm uses 2k − 1 samples on (f, ǫ) because in that case, the deterministic

algorithm is never executed. It is also clear that the algorithm is always correct in that case. The al-
gorithm is also correct whenever the deterministic algorithm is executed. Thus, we need to prove that if∣
∣
∣

∫ 1

0
g(x)dx −

∫ 1

0
f(x)dx

∣
∣
∣ > ǫ, then the probability of the deterministic algorithm being executed is at least

2/3. We can immediately disregard g for which g(xi) 6= f(xi) for some i, as the deterministic algorithm is
always executed in this case.
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x1 x2 x3 x4 x5 xk

y2y1 Black points are at (yi, f(yi))

z3 z6 z9 z12 z15z4 z5 z7 z8 z13 z14

White points are at (zi, fi)

In this example:

Each grey rectangle except
the rightmost one has area ǫ/4

K = {1, 2, 4}

n = 2

k = 6

m = 3

Figure 5: Figure for proof of Lemma 6. To illustrate the concepts more clearly, m > n in the figure, although
that is never really the case.

Consider an interval (xi, xi+1) and let Si = {x ∈ (xi, xi+1)|g(x) 6= f(x)}. Let pi be µ(S)
xi+1−xi

, the

Lebesgue measure of Si divided by the length of the associated interval. By Proposition 2 (1,2), for x ∈ Si,
|g(x) − f(x)| ≤ 2AL(xi, xi+1)/(xi+1 − xi) ≤ ǫ/2(xi+1 − xi). Therefore,

∫ xi+1

xi
g(x) − f(x) dx ≤ ǫ · pi/2, so

if
∣
∣
∣

∫ 1

0 g(x)dx −
∫ 1

0 f(x)dx
∣
∣
∣ > ǫ, then

∑k−1
i=1 pi > 2. Now notice that pi is the probability that the sample

in (xi, xi+1) is in S (and if such an event occurs, the deterministic algorithm is executed). Thus, we need

to show that
∏k−1

i=1 (1 − pi) ≤ 1/3. Because the sum
∑k−1

i=1 (1 − pi) is smaller than k − 3, the product is
maximized when all of the pi are equal to 2/(k− 1). In that case, the product is equal to (1− 2/(k− 1))k−1.
Because 1 + x ≤ ex, 1− 2/(k − 1) ≤ e−2/(k−1), so (1− 2/(k − 1))k−1 ≤ e−2 ≤ 1/3. 2

The above lemma implies that deterministic algorithms are not very powerful relative to ROPT. For
instance, if f(x) = 0 for all x, ROPT(f, ǫ) = O(ǫ−1/2) by Lemma 5, but DOPT is Θ(ǫ−1). Therefore every
deterministic algorithm requires Ω(ROPT2) samples on some instances. Of course, as Lemma 4 (for small
k) shows, it is easy to construct problem instance families on which deterministic algorithms are just as
powerful as randomized ones.

We are now ready to prove the other part of the lower bound on the performance of randomized algorithms
relative to ROPT. The lower bound we prove actually shows something stronger than simply that for any
algorithm, there is a problem instance on which that algorithm needs Ω(ROPT4/3) samples. We show that
given a function f and a bunch of points yi’s, we can construct a family of functions that are all similar
to f (actually equal to it on yi’s) and have no larger ROPT’s than f , but any algorithm uses Ω(ROPT4/3)
samples on some member of that family. This shows that the 4/3 exponent is necessary for problem instances
of all difficulties and global shapes.

The proof idea is that we build a function family with [0, 1] divided into Θ(ROPT4/3) regions with two

possible integral values differing by Θ(ǫ/ROPT2/3) in each region. If an algorithm samples in fewer than

a constant fraction of the regions, the other regions cause the integral to likely be off by Θ(
√

ROPT4/3) ·
Θ(ǫ/ROPT2/3) = Θ(ǫ). To build these regions, we start with Θ(ROPT) regions with area looseness of each
equal to Θ(ǫ), discard those that have yi’s in them (because they must be fixed) and divide the remaining

regions into Θ(ROPT1/3) parts each.

Lemma 6 Consider a problem instance (f, ǫ). Let n = ⌊ROPT(f, ǫ)/4⌋ − 1. For any set of n parameter
values yi, there exists a function family G such that:

1. For all g ∈ G, and for all i, g(yi) = f(yi).
2. For all g ∈ G, ROPT(g, ǫ) = O(n).
3. For any correct algorithm, there is a g ∈ G such that the algorithm performs Ω(n4/3) samples in

expectation on (g, ǫ).
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Proof: See Figure 5. Consider the set of k points xi, defined as in Lemma 5. From the lemma, we have
k ≥ 2n + 2. Let K = {i ∈ {1, . . . , k − 2}|∀yj: yj 6∈ (xi, xi+1)} denote the set of indices of intervals between
xi’s that do not contain yj ’s. Because the number of yj ’s is at most n, |K| ≥ n.

We now divide each interval whose index is in K into Θ(n1/3) equal parts. The big-O notation allows
us to assume n is at least 343. Let m = ⌊n1/3/7⌋. Consider an interval [xi, xi+1] for i ∈ K and let
zim+j = xi + (xi+1 − xi)j/m for 0 ≤ j ≤ m. Also let fim+j = f(xi) + (f(xi+1) − f(xi))j/m. Note that if
both i and i + 1 are in K, we have defined z(i+1)m and f(i+1)m twice, but the definitions are consistent.

Let B = b1, . . . , bmk be a sequence of variables where bi ∈ {1,−1}. For each possible B define a function:

gB(x) =







HI zi+1
zi

(x), on interval (zi, zi+1) if bi = 1

LOzi+1
zi

(x), on interval (zi, zi+1) if bi = −1

f(x), if it is not between a consecutive pair of defined z’s

where, for the purposes of HI and LO , the value at zi is fi, not f(zi). By Lemma 5, ROPT(gB, ǫ) ≤ 2k− 1.
But by Lemma 1, we have ROPT(f, ǫ) ≥ (p − 2)/3 where p is the number of points necessary for area-
looseness between adjacent ones to be smaller than 3ǫ. But we may apply Proposition 1(4) four times to
obtain 16p intervals whose area-looseness is smaller than ǫ/4. So k < 16p and therefore, ROPT(gB, ǫ) ≤
2k − 1 ≤ 32p = O(n).

If i = am + j, with a ∈ K and 0 ≤ j ≤ m− 1, then ALgB
(zi, zi+1) = ALgB

(zam, z(a+1)m)/m2 = ǫ/4m2.
So by Proposition 2 (3),

∫ 1

0

gB(x) dx = c +
ǫ

8m2

∑

i∈K,0≤j≤m−1

bim+j ,

where c does not depend on B.
Fix an algorithm ALG that solves lipschitz-integration, but use probability amplification to make it

correct with probability at least 5/6. Let tB be the expected number of samples ALG performs on gB. Let
t = maxB tB. By Markov’s inequality, the probability that the algorithm performs more than 6t samples
is no more than 1/6. So without loss of generality, we can assume that ALG always uses no more than 6t
samples and is correct with probability 2/3.

Let S be the set of all possible executions of ALG on all possible gB’s. An “execution” consists of the
parameters where ALG samples in order, the values it receives, and its output. Every particular gB defines
a probability distribution on S. Note that if s ∈ S is an execution and gB1 and gB2 are two functions that
are equal everywhere s samples, then Pr[s|gB1 ] = Pr[s|gB2 ].

Suppose that B is picked uniformly at random. Consider any execution s ∈ S and consider all B such
that gB is consistent with s. Bayes’ Theorem states that Pr[gB|s] = Pr[gB] Pr[s|gB]/ Pr[s]. Note that the
right hand side is the same for all gB’s that are consistent with s.

Suppose for contradiction that 6t ≤ nm/3. Then there are at least 2nm/3 intervals of the form (zi, zi+1)
in which s does not sample. Therefore, there are q variables bi whose value does not influence whether gB is
consistent with s, and q ≥ 2nm/3. So the true integral value is c + ǫ

8m2 · (2V − q) where V is distributed as
the sum of q Bernoulli variables. Assume without loss of generality that q is even (otherwise, look at q− 1).
The probability that 2V − q is exactly zero is

(
q

q/2

)
/2q, which, by Stirling’s approximation (see appendix),

is smaller than
√

2/(πq).

Because for all a, Pr[2V − q = a] ≤ Pr[2V − q = 0], we have Pr[|2V − q| < √q/3] <
√

2/(πq)
√

q/3 < 1/3,
so Pr[|2V − q| > √q/3] > 2/3. Therefore, with probability at least 1/3, the value of the integral is at least

c+ ǫ
8m2

√
q/3 and with probability 1/3, it is at most c− ǫ

8m2

√
q/3. Because q = 2n⌊n1/3/7⌋ ≥ 686⌊n1/3/3⌋4 =

686m4, ǫ
8m2

√
q/3 ≥ ǫ and with probability 2/3, the correct value is outside the range (c−ǫ, c+ǫ). An output

cannot be correct for values on both sides of the range, so the probability of failure given this execution is
at least 1/3.

Therefore, if B is chosen randomly, the probability of failure of any execution is at least 1/3 and therefore,
there exists a B for which the probability of failure is at least 1/3, contradicting the assumption that ALG is
a correct algorithm. Therefore, the expected number of samples ALG makes is at least nm/18 = Ω(n4/3). 2

Together, the two lemmas imply that the algorithm presented is optimally adaptive.
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Theorem 4 Given an ǫ > 0 and an integer k such that 0 < k < ǫ−1/2, there is a family of problem instances
such that ROPT = O(k) on every member on the family, but any algorithm requires Ω(k4/3 + k log(1/ǫ))
samples in expectation on some member of that family.

Proof: If k1/3 ≥ log(1/ǫ), use the family constructed in Lemma 6. Otherwise, use the family constructed
in Lemma 4, noting that log(ǫ−1/k2) ≤ log(ǫ−1/ log6(1/ǫ)) = Θ(log(1/ǫ)). 2

The nonadaptive method in [1] is to divide [0, 1] into n equal subintervals and randomly sample in each.
They prove that if the input function is Lipschitz with constant 1, this results in an error of at most O(n−3/2).
We now prove a simple corollary to Lemma 6 to show that this method is optimal in the worst case.

Corollary 2 Any algorithm requires Ω(ǫ−2/3) samples on some problem instance.

Proof: Consider f(x) = 0. Then AL(x1, x2) = (x2 − x1)
2/2. So if AL(x1, x2) = 3ǫ, we must have

x2 − x1 =
√

6ǫ. Therefore, the set constructed in Lemma 1 has Θ(ǫ−1/2) points and by Lemma 1,
ROPT(f, ǫ) = Θ(ǫ−1/2). By Lemma 6, there is a family of problem instances such that any algorithm
requires Ω((ǫ−1/2)4/3) = Ω(ǫ−2/3) samples on some problem instance. 2

8 Conclusion

We gave optimally adaptive deterministic and randomized algorithms for lipschitz-integration. To
simplify the analysis, we have been lax with constant factors in the randomized algorithm and the related
proofs. Thus, it is possible to improve both the algorithm’s performance and its analysis by constant factors.

A more interesting open problem is to design adaptive algorithms for definite integration over two or
higher-dimensional domains or to prove that good adaptive algorithms do not exist. Although simple Monte
Carlo methods readily extend to higher dimensions, designing and analyzing adaptive algorithms seems
difficult.
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Appendix

Derivation Using Stirling Approximation in Proof of Lemma 6: Stirling’s approximation can be
written as a double inequality, due to Robbins [11]:

√
2πnn+1/2e−n+1/(12n+1) < n! <

√
2πnn+1/2e−n+1/(12n).

Therefore,

(
q

q/2

)/

2q =
q!

(q/2)!22q
<

√
2πqq+1/2e−q+1/(12q)

(√
2π(q/2)q/2+1/2e−q/2+1/(6q+1)

)2
2q

=

=
qq+1/2e−q+1/(12q)

√
2π(q/2)q+1e−q+2/(6q+1)2q

=

=
qq+1/2e1/(12q)

√

π/2qq+1e2/(6q+1)
=

√
2

πq
e1/(12q)−2/(6q+1) <

√
2

πq
.

2
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