
Folding and Unfolding

Linkages, Paper, and Polyhedra

Erik D. Demaine

Department of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada, eddemaine@uwaterloo.ca

1 Introduction

Folding and unfolding problems have been implicit since Albrecht Dürer in the
early 1500’s [Dür77], but have not been studied extensively until recently. Over
the past few years, there has been a surge of interest in these problems in discrete
and computational geometry. This paper gives a brief survey of some of the recent
work in this area, subdivided into three sections based on the type of object being
folded: linkages, paper, or polyhedra. See also [O’R98] for a related survey from
this conference two years ago.

In general, we are interested in how objects (such as linkages, paper, and
polyhedra) can be moved or reconfigured (folded) subject to certain constraints
depending on the type of object and the problem of interest. Typically the pro-
cess of unfolding approaches a more basic shape, whereas folding complicates
the shape. We can also generally define the configuration space as the set of all
configurations or states of the object, with paths in the space corresponding to
motions (foldings) of the object.

2 Linkages

A linkage or framework consists of a collection of rigid line segments (bars)
joined at their endpoints (vertices) to form a particular graph. A linkage can
be folded by moving the vertices around in R

d in any way that preserves the
length of each bar. Such linkages have been studied extensively in the case that
bars are allowed to cross; see, for example, [KM95,LW95,Sal73,Whi92]. Recently
there has been much work on the case that the linkage must remain simple, never
crossing any two bars.1 This additional constraint is the type of linkage folding
considered in this section. Such linkage folding has applications in hydraulic tube
bending [O’R98] and motion planning of robot arms. There are also connections
to protein folding in molecular biology. See [CDR00,O’R98,Tou99a] for other
surveys on this area.

Perhaps the most fundamental question we can ask about folding linkages
is whether it is possible to fold between any two simple configurations of the

1 Typically, bars are allowed to touch, provided they do not properly intersect. How-
ever, requiring bars to touch only at common endpoints does not change the results.



same linkage (with matching graphs, combinatorial embeddings, and bar lengths)
while preserving the bar lengths and not crossing any bars during the folding.
Because folding motions can be reversed and concatenated, this fundamental
question is equivalent to whether every simple configuration can be folded into
some canonical configuration.

In this context, three general types of linkages are commonly studied, char-
acterized by the structure of their associated graphs: a polygonal arc or open
polygonal chain (a single path); a polygonal cycle, polygon, or closed polygonal

chain (a single cycle); and a polygonal tree (a single tree). The canonical config-
uration of an arc is the straight configuration, all vertex angles equal to 180◦. A
canonical configuration of a cycle is a convex configuration, planar and having all
interior vertex angles less than or equal to 180◦. It is relatively easy to show that
convex configurations are indeed “canonical” in the sense that any one can be
folded into any other; this result was first proved in the literature in [ADE+01].
Finally, a canonical configuration of a tree is a flat configuration: all vertices lie
on a horizontal line, and all bars point “rightward” from a common root. Again
it is easy to fold any flat configuration into any other.

The fundamental questions thus become whether every arc can be straight-
ened, every cycle can be convexified, and every tree can be flattened. The answers
to these questions depend on the dimension of the space. Over the past few years,
this collection of questions has been completely resolved. A summary is shown
in Table 1. In the remainder of this section, we describe the historical progress
of these results, and describe other results on linkage folding not captured by
this categorization.

Can all arcs Can all cycles Can all trees
Dimension be straightened? be convexified? be flattened?

2 Yes [CDR00] Yes [CDR00] No [BDD+01]

3 No [CJ98,BDD+99] No [CJ98,BDD+99] No

4 & above Yes [CO99] Yes [CO99] Yes

Table 1. Answers to main linkage-folding problems.

The questions of whether every polygonal arc can be straightened in the
plane and whether every polygon can be convexified in the plane have arisen
in many contexts over the last quarter-century. In particular, they were posed
independently by Stephen Schanuel and George Bergman in the early 1970’s, Ulf
Grenander in 1987, William Lenhart and Sue Whitesides in 1991, and Joseph
Mitchell in 1992. In the discrete and computational geometry community, the
arc-straightening problem has become known as the carpenter’s rule problem

because a carpenter’s rule folds like a polygonal arc.
Many people devoted time to these two problems over the past 10 years. It

was widely conjectured, particularly by those unfamiliar with the problem, that
the answers were yes. On the other hand, several people proposed examples of



Fig. 1. Two views of convexifying a “doubled tree.” The top snapshots are all scaled
the same, and the bottom snapshots are scaled differently to improve visibility. See
http://daisy.uwaterloo.ca/~eddemain/linkage/ for more animations.

polygonal arcs and cycles that might be “locked” (unstraightenable and uncon-
vexifiable), but eventually every proposed example was unlocked by hand. It was
not until early in the year 2000 that the problems were solved in the positive by
Connelly, Demaine, and Rote [CDR00]. See [CDR00] for a more detailed history.

More generally, the result in [CDR00] shows that a collection of nonintersect-
ing polygonal arcs and cycles in the plane may be simultaneously folded so that
the outermost arcs are straightened and the outermost cycles are convexified.
The “outermost” proviso is necessary because arcs and cycles cannot always be
straightened and convexified when they are contained in other cycles. The key
idea for the solution, introduced by Günter Rote, is to look for expansive motions
in which no vertex-to-vertex distance decreases. Expansive motions automati-
cally preserve simplicity, so the difficult noncrossing aspect of the problem can
be ignored by guaranteeing expansiveness. This idea allowed applying theorems
in rigidity theory and tensegrity theory to show that, infinitesimally, arcs and
cycles can be folded expansively. These infinitesimal motions are combined by
flowing along a vector field implicitly defined by an optimization problem. As
a result, the motion is piecewise-differentiable, and the configuration space of
arcs and cycles is contractible. In addition, any symmetries present in the initial
configuration of the linkage are preserved throughout the motion. Similar tech-
niques show that the area of each cycle increases by this motion and furthermore
by any expansive motion [CDR00].

Ileana Streinu [Str00] has demonstrated another motion for straightening
arcs and convexifying polygons that is piecewise-algebraic, made up of O(n2)
mechanisms each with one degree of freedom. As a result, the motion is possible
to compute in principle. On the other hand, an approximation to the motion
in [CDR00] is easy to implement, and has resulted in animations such as the one
in Fig. 1.



The pursuit of the arc-and-cycle problems in 2D inspired research on several
related problems. For example, it was shown that starshaped polygons [ELR+98]
and monotone polygons [BDL+99] can be convexified by particularly simple
motions. Biedl et al. [BDD+01] showed that a positive answer to the arc-and-
cycle problem could not be generalized to flattening trees. Recently, Connelly,
Demaine, and Rote have shown that even a tree with one degree-3 vertex and the
remaining vertices degree-2 can be locked (manuscript in preparation, October
2000), so the result in [CDR00] is tight.

Linkage folding in 3D was initiated earlier, by Paul Erdős in 1935 [Erd35].
He asked whether a particular “flipping” algorithm for folding a planar poly-
gon through three dimensions (preserving edge lengths and simplicity) would
convexify the polygon in a finite number of steps. With a slight modification,
this question was answered positively by Nagy [Nag39]. This problem and re-
sult have been rediscovered several times; see [Tou99b,Grü95] for the history.
Unfortunately, Erdős’s algorithm (or more precisely, Nagy’s modification) can
require arbitrarily many moves, even for a quadrangle [Grü95,Tou99b,BDD+99].
Recently, algorithms that convexify planar polygons through 3D in a linear num-
ber of “simple moves” have been developed [BDD+99,AGP99]. More generally,
if a polygonal arc or cycle in 3D has a simple orthogonal projection, then it
can be straightened or convexified [CKM+01]; interestingly, this result is based
on the 2D result [CDR00]. But if we start with a general polygonal arc or an
unknotted polygon in 3D, it is not always possible to straighten or convexify
it [CJ98,Tou01,BDD+99]; see Fig. 2 for an example of a locked arc in 3D. Other
problems related to Erdős flips include flipturns, described elsewhere in this
proceedings [ACD+00,ABC+00,Grü95], and deflations [FHM+01,Grü95].

Fig. 2. A locked polygonal arc in 3D with 5 bars [CJ98,BDD+99].

Finally, analogous to the nonexistence of knots in dimensions higher than 3,
polygonal arcs can be straightened and polygonal cycles can be convexified in 4D
and higher dimensions [CO99]. Intuitively, this result holds because the number
of degrees of freedom of any vertex is much higher than the dimensionality of
the obstacles imposed by any bar. It would be interesting to explore scaling the
dimension of the object to be folded together with the dimension of the space in
which it is folded. For example, how can solid polygons connected at their edges
be folded in dimensions higher than 2?



3 Paper

Paper folding (origami) has lead to several interesting mathematical and com-
putational questions over the past fifteen years or so. A piece of paper, normally
a (solid) polygon such as a square or rectangle, can be folded by any continu-
ous motion that preserves the distances on the surface and does not properly
self-intersect. Informally, paper cannot tear, stretch, or cross itself, but may oth-
erwise bend freely. Formally, a folding is a continuum of isometric embeddings
of the piece of paper in R

3. However, the use of the term “embedding” is weak:
paper is permitted to touch itself provided it does not properly cross itself. In
particular, a flat folding folds the piece of paper back into the plane, and so
the paper must necessarily touch itself. We frequently identify the continuous
motion of a folding with the final folded state of the paper; in the case of a flat
folding, the flat folded state is called a flat origami.

Some of the pioneering work in origami mathematics [Hul94,Jus94,Kaw89]
studies the crease pattern that results from unfolding a flat origami, that is, the
graph of edges on the paper that fold to edges of a flat origami. Stated in reverse,
what crease patterns have flat foldings? Necessary and sufficient conditions are
known [Hul94,Jus94,Kaw89], but there is little hope for a polynomial charac-
terization: Bern and Hayes [BH96] have shown that this decision problem is
NP-hard. The key difficulty is the non-self-intersection property, more precisely,
in finding an overlap order of faces that avoids self-intersection in the folded
state. If such nonlocal interactions are ignored, the existence of a flat origami
can be tested in linear time [BH96].

A more recent trend, as in [BH96], is to explore computational origami, the
algorithmic aspects of paper folding. This aspect was pioneered by Lang [Lan96],
who has shown how to design a wide class of origami “bases” from which real
origami models are folded. In the past two years, computational geometry tech-
niques have been applied to computational origami; we briefly survey these re-
sults in the remainder of this section. See also [DD01].

One result involves the fold-and-cut problem: given a sheet of paper, fold it
flat, make one complete straight cut, and unfold the pieces. What shapes can be
achieved? Surprisingly, we can arrange the folds and the cut in order to make any
desired plane graph (planar graph embedded with straight edges). See Fig. 3 for
some examples. Two solutions to this problem have been developed. Demaine,
Demaine, and Lubiw [DDL98] presented a solution based on the straight skeleton
at this conference two years ago. Bern, Demaine, Eppstein, and Hayes [BDEH98]
developed a different solution based on disk packing.

Another surprising “universality” result in paper folding is about folding sil-
houettes and wrapping polyhedra. Given a polygon in the plane, possibly with
holes, can we fold a sufficiently large piece of paper into that silhouette? This
question is implicit throughout origami design, and was first formally stated
in [BH96]. If the paper has a different color on each side, and the polygon is
partitioned into differently colored regions (as in Fig. 4), can we fold the paper
into that shape with the appropriate colors showing at the appropriate regions?
More generally, if the desired shape is not a flat silhouette but a general con-



Fig. 3. Crease patterns for folding a rectangle of paper flat so that one complete straight
cut makes a butterfly (left) or a swan (right). Valley creases are drawn with dotted
lines, and mountain creases are drawn dash-dotted.

nected union of polygons in 3-space (a “polyhedron”), can such a package always
be tightly wrapped by a sufficiently large piece of paper, possibly matching a
2-color pattern? Demaine, Demaine, and Mitchell [DDM00] have shown that the
answers to all of these questions are yes, and describe three algorithms for solv-
ing these problems. Several problems concerning the efficiency of the foldings
remain open.

Fig. 4. A flat folding of a square of paper, black on one side and white on the other
side, designed by John Montroll [Mon91, pp. 94–103].

Returning to the problem of recognizing flat-foldable crease patterns, an in-
teresting special case is map folding. More precisely, a map is a rectangle with
horizontal and vertical creases, each marked either mountain or valley. While
map folding is normally only studied from the combinatorial perspective [Gar83,
Lun71], Jack Edmonds (personal communication, August 1997) posed two at-
tractive decision questions: (1) does a given map have a flat folded state, and (2)
can a given map be folded flat by a sequence of simple folds (each folding along
one line)? The complexity of the first problem remains open; an NP-hardness
result would be an interesting strengthening of [BH96]. Recently, Arkin, Bender,
Demaine, Demaine, Mitchell, Sethia, and Skiena [ABD+00] resolved the com-
plexity of the second problem. The exact results depend on the model of simple



folds: if the paper can be folded one layer at a time, then foldability can be
decided in linear time; if all layers must be folded at once (a more restrictive
model), then foldability can be decided in near-linear time, e.g., O(n log n). Sur-
prisingly, however, map folding is on the border of computational intractability:
the same question with folds allowed at 45 degrees, or with a nonrectangular
piece of paper, is (weakly) NP-complete [ABD+00].

4 Polyhedra

Unlike the other problems, there are several different models of folding that arise
in the context of polyhedra.

A classic open problem is whether (the surface of) every convex polyhe-
dron can be cut along some of its edges and unfolded into the plane without
overlap [She75,O’R98]. Such unfoldings go back to Dürer [Dür77], and have im-
portant practical applications in manufacturing, such as sheet-metal bending. It
is widely conjectured that the answer to this question is yes, but all attempts
at a solution have so far failed. Experiments by Schevon [Sch89,O’R98] suggest
that a random unfolding of a random polytope overlaps with probability 1, but
this does not preclude the existence of at least one nonoverlapping unfolding for
all polyhedra.

Instead of answering this difficult question directly, we can examine to what
extent it can be generalized. In particular, define a polyhedron to be topologi-
cally convex if its 1-skeleton (graph) is the 1-skeleton of a convex polyhedron.
Does every topologically convex polyhedron have such an edge unfolding? Bern,
Demaine, Eppstein, Kuo, Mantler, and Snoeyink [BDE+01] have shown that
the answer is no: there is a polyhedron homeomorphic to a sphere and with
every face a triangle that has no (one-piece, nonoverlapping) edge unfolding. It
is shown in Fig. 5. The complexity of deciding whether a given topologically
convex polyhedron can be edge-unfolded remains open.

Another intriguing open problem in this area is whether every polyhedron
homeomorphic to a sphere has some one-piece unfolding, not necessarily using
cuts along edges. It is known that every convex polyhedron has an unfolding
in this model, allowing cuts across the faces of the polytope [AO92,MMP87].
But many nonconvex polyhedra also have such unfoldings. For example, Fig. 5
illustrates one for the polyhedron described above. Biedl, Demaine, Demaine,
Lubiw, Overmars, O’Rourke, Robbins, and Whitesides [BDD+98] have shown
how to unfold many orthogonal polyhedra, even with holes and knotted topol-
ogy, although it remains open whether all orthogonal polyhedra can be unfolded.
The only known scenario that prevents unfolding altogether [BDE+01] is a poly-
hedron with a single vertex of negative curvature (more than 360◦ of material),
but this requires the polyhedron to have boundary, edges incident to only one
face.

In addition to unfolding polyhedra into simple planar polygons, we can
consider the reverse problem of folding polygons into polyhedra. Lubiw and
O’Rourke [LO96] have shown how to test in polynomial time whether a polygon



Fig. 5. (Left) Simplicial polyhedron with no edge unfolding. (Right) An unfolding when
cuts are allowed across faces.

has an edge-to-edge gluing that can be folded into a convex polyhedron, and
how to list all such edge-to-edge gluings in exponential time. The exponential
time is necessary because some examples have that many gluings, as described
elsewhere in this proceedings [DDLO00a,DDLO00b]. This work shows several
other enumerative and structural results about foldings and unfoldings. We are
also working on efficient algorithms for detecting the existence of and enumerat-
ing non-edge-to-edge gluings, generalizing [LO96]. An intriguing open problem
remains relatively unexplored: a theorem of Aleksandrov implies that any gluing
found can be folded into a unique convex polyhedron, but how efficiently can
this polyhedron be constructed?

A different kind of polyhedron folding comes from extending the fold-and-cut
problem from the previous section to one higher dimension. Given any polyhedral
complex, can R

3 be folded (through R
4) “flat” into R

3 so that the surface of the
polyhedral complex maps to a common plane, and nothing else maps to that
plane? While the applicability of four dimensions is difficult to imagine, the
problem’s restriction to the surface of the complex is quite practical, e.g. in
packing: flatten the surface of a polyhedron into a flat folded state, without
cutting or stretching the paper. Demaine, Demaine, and Lubiw [DDL00] have
shown that convex polyhedra and orthogonal polyhedra can be flattened, among
other classes. An example is shown in Fig. 6. We conjecture further that every
polyhedral complex can be flattened.

5 Conclusion

The area of folding and unfolding offers many beautiful mathematical and com-
putational problems. Much progress has been made recently in the many prob-
lems outlined above, and many more important problems remain open. For ex-



Fig. 6. Flattening a tetrahedron, from left to right. Note that the faces are not flat in
the middle picture.

ample, most aspects of unfolding polyhedra remain unsolved, including the orig-
inal problem in the area, edge-unfolding convex polyhedra. A variety of results
suggest that paper folding possesses a vast power, but what is known is certainly
not the whole story of what is possible. And while the described class of linkage
problems has been resolved, there are several other aspects that remain unstud-
ied. For example, protein folding is a domain of great practical importance in
biology that should be the source of many interesting geometric problems, with
connections to linkages. But even more exciting are the avenues of folding and
unfolding that have not yet been explored or even conceived.
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