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Abstract. We show that jigsaw puzzles, edge-matching puzzles, and polyomino packing puzzles
are all NP-complete. Furthermore, we show direct equivalences between these three types of
puzzles: any puzzle of one type can be converted into an equivalent puzzle of any other type.

1. Introduction

Jigsaw puzzles [37,38] are perhaps the most popular form of puzzle. The original jigsaw
puzzles of the 1760s were cut from wood sheets using a hand woodworking tool called
a jig saw, which is where the puzzles get their name. The images on the puzzles were
European maps, and the jigsaw puzzles were used as educational toys, an idea still used
in some schools today. Handmade wooden jigsaw puzzles for adults took off around 1900.
Today, jigsaw puzzles are usually cut from cardboard with a die, a technology that became
practical in the 1930s. Nonetheless, true addicts can still find craftsmen who hand-make
wooden jigsaw puzzles. Most jigsaw puzzles have a guiding image and each side of a piece
has only one “mate”, although a few harder variations have blank pieces and/or pieces
with ambiguous mates.

Edge-matching puzzles [21] are another popular puzzle with a similar spirit to jigsaw
puzzles, first appearing in the 1890s. In an edge-matching puzzle, the goal is to arrange
a given collection of several identically shaped but differently patterned tiles (typically
squares) so that the patterns match up along the edges of adjacent tiles. Typical patterns
range from salamanders to frogs to insects, but in their simplest form each edge of a
tile is simply colored one of several colors, and adjacent tiles must be colored identically
along their common edge. In a harder abstract form of edge-matching puzzles, edges
also have a sign (+ or −) and adjacent tiles must have opposite sign (like magnetism).
This constraint represents two different parts to a pattern that must come together—
preventing, for example, two heads or two tails from matching. Fig. 1 shows a concrete
example of such a puzzle that we designed in honor of Jin Akiyama. Edge-matching
puzzles are challenging compared to standard jigsaw puzzles because there is no global
image to guide the puzzler, nor do two pieces “fitting together” guarantee that they should
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Fig. 1. A new (signed) edge-matching puzzle in honor of Jin Akiyama. The cartoon renditions
are from [1].

be together. Only completing the entire solution guarantees correctness of any local part
of the solution.

Polyform packing puzzles also have a jigsaw-like flavor. These puzzles were popularized
by the recent Eternity puzzle [31,29], whose solution won two mathematical puzzlers
£1,000,000. Polyform packing puzzles were introduced by Golomb around 1965 [20] when
he defined the first type of polyform, polyominoes. A polyomino arises from gluing unit
squares together edge-to-edge. In general, a polyform arises from edge-to-edge gluing of
several copies of a simple shape, such as a square, an equilateral triangle, or an equilateral
triangle cut in half (as in Eternity). In a polyform packing puzzle, the goal is to pack a
given collection of several polyforms into precisely a given shape—the target shape—such
as a larger rectangle, rhombus, or dodecagon (as in Eternity). Polyform packing puzzles
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are in some ways an ultimate form of jigsaw puzzle: not only is there no guiding image
and two pieces fitting together says nothing about whether they are together in the final
solution, but also two pieces can fit together in several different ways.

In this paper we study how efficiently a computer can solve all three of these types
of puzzles. We show that, computationally, these three types of puzzles are all effectively
the same: a puzzle of one type can be converted into an equivalent puzzle of each of
the other types, with a small blowup in puzzle size. The equivalence between the two
puzzles is strong: every solution in one puzzle corresponds to a solution in the other
puzzle, by a simple, efficient, and invertible conversion. We prove the equivalence by a
circular series of reductions illustrated in Fig. 2. Furthermore, we show that these types of
puzzles are computationally intractable—NP-complete—implying that, likely, no efficient
algorithm can solve these types of puzzles in general. These results confirm the challenge
that humans have had in solving these puzzles, and justify the exhaustive search that has
seemed necessary when solving these puzzles via computer. (For example, see [31] for how
the winners solved the Eternity puzzle.) Our proofs are fairly simple but appear not to
have been observed before.

unsigned edge-matching puzzles

polyomino packing puzzles signed edge-matching puzzles

jigsaw puzzles
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Fig. 2. Our series of reductions between puzzle types.

Related work. There are several results related to ours. Perhaps the best-known result,
proved by Berger [5] and described by Martin Gardner [15], is that edge-matching puz-
zles are undecidable—no algorithm can solve them in general—when given an infinite
number of copies of each tile, and the goal is to fill the entire plane. Our puzzles have
only finitely many copies of each tile, which forces the problem to be decidable simply
by trying all possible tile placements. In the context of a finite (polynomial-size) rectan-
gular target shape, Berger’s result implies that the problem is NP-complete when given
arbitrarily many copies of each tile, or equivalently, if not all of the given tiles have to be
used in the puzzle. This result is also in unpublished 1977 work of Garey, Johnson, and
Papadimitriou [18, p. 257], and used in Levin’s theory of average-case completeness [25].
In contrast, the edge-matching puzzles we consider must use exactly the tiles given.

Polyomino packing puzzles are NP-complete when the target shape is complicated
(a polyomino with holes) and the pieces are all identical (either 2 × 2 squares, 1 × 3
rectangles, or 2×2 L shapes) [28]. In contrast, the polyomino packing puzzles we consider
have a simple target shape (a larger square) and the problem is all about using the
different tiles given. Polyomino packing puzzles are also known to be weakly NP-complete
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when the target shape is simple (a rectangle) and the pieces are 1 × k rectangles for
various exponentially large values of k [22]. In unpublished work, Baxter [4] proves that
polyomino packing puzzles are (strongly) NP-complete when the pieces are polyominoes
of polynomial area and the target shape is a rectangle.1 In contrast, the pieces in our
polyomino packing puzzles are small squares with small bumps; in particular, all pieces
have polylogarithmic area, an exponential improvement.

The shape-matching community has studied computational solutions to jigsaw puzzles
extensively [12,19,23,30,40]. This work generally assumes that, if two shapes locally fit
together well, they will be together in the final global solution. In contrast, we consider a
harder form of jigsaw puzzles where some pieces have ambiguous mates. This ambiguity
is necessary to make a computationally interesting puzzle: if it is locally possible to tell
whether two pieces fit together in the final solution, then the näıve solution of trying to
join together all pairs of pieces solves a puzzle in polynomial time.

Most packing puzzles demand exact packings, which use every given piece to fill exactly
the target shape, with no overlap or blank space.2 Of course, for this goal to be possible,
the total area of the given pieces must equal the area of the target shape. When the
packing may leave blank space in the target shape, orthogonally packing rectangles or
squares of various polynomial sizes into a given square is NP-complete [26,24]. (In fact,
we use this result in Section 3.) These results assume that the rectangles pack orthogonally,
but Erdős and Graham [11] have shown that this can be suboptimal, even with squares
all of the same size; see also [13]. If we additionally allow the target shape to consist of
multiple squares of specified size, and the goal is to minimize the number of such squares,
we obtain a 2D generalization of the classic bin-packing problem. Epstein and Stee [10]
have developed constant-factor approximation algorithms and inapproximability results
for this problem when the shapes to be packed are squares of various sizes.

Back to exact packings, several researchers have considered various forms of exact
packings of integer squares into a larger integer square. One of the earliest questions along
these lines is whether it is possible to pack the k smallest integer squares—1 × 1, 2 × 2,
. . . , k × k—exactly into a larger square. The area constraint is 12 + 22 + · · · + k2 = n2,
which has a unique integer solution of k = 24 and n = 70 [36]. However, there is no
matching square packing [6]; see [39]. Another problem, called Mrs. Perkins’s quilt by
Conway [8,33,16], asks for the fewest squares whose side lengths have no overall common
divisor larger than 1 that exactly pack a given n × n square, as a function of n. A final
problem, squaring the square [7,34,35,9,14], asks for distinct squares that exactly pack a
larger square. This problem has also been considered in the context of triangles [32].

Akiyama et al. [2,3] considered the related dissection problem of dividing a square into
pieces that can be re-assembled into two, three, . . . , or k squares. They show that such
a dissection is possible with as few as 2k + O(1) pieces, and that this is the best bound
possible among the family of “purely recursive dissections”.

Simple upper bounds on complexity. All of the problems we consider are in the complexity
class NP, because it is easy to verify the validity of a packing or tiling in polynomial time.
Thus, to prove NP-completeness of a problem, it suffices to prove NP-hardness, i.e., to
prove that the problem is at least as hard as all problems in NP.

1 In fact, it was Baxter’s message that inspired us to write this paper.
2 In computer science, exact packings are often called tilings. We avoid this terminology to prevent

confusion with terms such as “polyomino tiling” which usually refers to tiling the entire plane.
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Another basic result is that the puzzles we consider need sufficiently many different
piece types to be hard. If a jigsaw puzzle, edge-matching puzzle, or polyform packing
puzzle has only a constant number c of different piece types, then the problem becomes
sparse: the number of different puzzles with n pieces is bounded by a polynomial nc.
Mahaney [27] proved that, if a sparse problem is NP-complete, then P = NP, which
is unlikely. (Of course, we could consider compressing such sparse puzzles to encode in
binary the number of copies of each piece—but such compressed problems seem difficult
to study, or at least of a different nature.)

Most likely, we need polynomially many piece types before the puzzles can be NP-
complete. Our jigsaw and edge-matching puzzles are essentially tight against this bound,
up to the constant degree of the polynomial. For polyomino packing puzzles, this assump-
tion implies that the area of some of the pieces must be Ω(log n), while our construction
uses pieces of area O(log2 n), leaving an interesting gap for future study.

2. Rectangle Packing Puzzles

We start by considering the computational complexity of a simple form of polyomino
packing puzzle, in which every piece is a 1 × x rectangle for some integer x. Kempe [22]
proved that such puzzles are weakly NP-complete: for his hardness result to apply, the
sizes of the rectangles (the values of x) must be exponential in the number of pieces.
We prove that rectangle packing puzzles are strongly NP-complete to solve, even when
rectangle sizes are polynomial in the number of pieces:

Theorem 1. It is (strongly) NP-complete to decide whether n given rectangular pieces—
sized 1 × x1, 1 × x2, . . . , 1 × xn where the xi’s are positive integers bounded above by a
polynomial in n—can be exactly packed into a specified rectangular box of area x1 + x2 +
· · ·xn.

Although the proof of this theorem is simple, and only slightly harder than Kempe’s
proof [22], it provides the core idea followed in all of our (more complicated) hardness
proofs.

The NP-hardness proof is a reduction from 3-partition. In other words, we show that
solving rectangle packing puzzles is at least as hard as the (NP-complete) problem 3-
partition by showing how to convert any instance of the 3-partition problem into an
equivalent rectangle packing puzzle.

In the 3-partition problem [17], [18, pp. 96–105, 224], we are given a set of 3m positive
integers A = {a1, a2, . . . , a3m}, where the ai’s are bounded above by a polynomial in m,
and the goal is to partition the set A into m triples such that every triple has the same
sum. Specifically, each triple must sum to Σ = 1

m
(a1 + a2 + · · · + a3m). Furthermore, we

may assume that each ai is strictly between Σ/4 and Σ/2, so that any set of ai’s summing
to Σ must have size exactly 3. Some sets A have a 3-partition (a partition into triples of
equal sum), while other sets A have no 3-partition; it is distinguishing between these two
cases that is NP-hard.

We show how to efficiently convert a set A into a rectangle packing puzzle such that
the puzzle is solvable precisely if the set A has a 3-partition. Refer to Fig. 3. The bulk
of the conversion is a simple addition: for each integer ai in A, there is one 1 × (ai + m)
rectangular piece. The rectangular box has size m× (Σ + 3m).
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Fig. 3. Rectangle packing puzzle representing 3-partition.

Any 3-partition of A determines one way to pack the rectangles: put the three rect-
angular pieces corresponding to a triple of integers into one row of the rectangular box.
Because each triple of ai’s sums to Σ, the three rectangular pieces in each row fill exactly
the Σ +3m of horizontal space in the box. There are exactly m triples, so this assignment
fills all m rows of the box.

Why is this the only way to pack the rectangles? More precisely, why does every packing
determine a 3-partition of A? First, because the area of the rectangular pieces equals the
area of the rectangular box, the pieces must be placed on the integer grid of the box, and
in particular can be rotated only by multiples of 90◦. (This fact follows by induction: every
convex corner of what remains of the box must be filled by a corner of a piece.) Second,
because each piece is at least m + 1 units long, yet the box is only m units tall, every
piece must be placed horizontally (unrotated). Third, because each ai is strictly between
1
4
Σ and 1

2
Σ, each piece length ai + m is in particular strictly between 1

4
(Σ + 3m) and

1
2
(Σ+3m), so any filled row of the box must consist of exactly three pieces. Therefore, any

packing of all rectangular pieces into the box determines a 3-partition of A, concluding
the proof of NP-hardness of rectangle packing puzzles.

3. Square Packing Puzzles

Among the simplest of polyomino shapes are 1×x rectangles and x×x rectangles (squares).
To complement the result of the previous section, we next prove NP-hardness for square
packing puzzles:

Theorem 2. It is (strongly) NP-complete to decide whether n given square pieces—sized
x1 × x1, x2 × x2, . . . , xn × xn where the xi’s are positive integers bounded above by a
polynomial in n—can be exactly packed into the square box of area x2

1 + x2
2 + · · ·x2

n.

The proof of this theorem does not follow the same structural outline as any of the
other proofs; in particular, our reduction is not from 3-partition. Thus, this result is a
bit of a diversion from the main line. It is, however, a short diversion, because the proof
follows almost immediately from a known result.

Motivated by applications in job scheduling on partitionable mesh supercomputers,
Leung et al. [24] proved that it is strongly NP-complete to orthogonally pack given squares
into a given square. (Previously, Li and Cheng [26] proved the same result when the target
shape is allowed to be any given rectangle.) The main difference between their problem and
ours is that their packings are not exact: the area of the target shape can be larger than
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the total area of the pieces. Fortunately, they also force the packing to be orthogonal—
pieces cannot be rotated—and all of their packings lie on the integer grid of the target
square. These properties make it possible to reduce from their problem to ours, proving
that our problem is at least as hard and thus NP-hard.

Suppose we are given an instance of integral orthogonal square (nonexact) packing of
squares sized a1 × a1, a2 × a2, . . . , an × an into a b× b square. We construct an instance
of an (exact) square packing puzzle simply by adding b2 − a2

1 − a2
2 − · · · − a2

n copies of the
1 × 1 square to the existing collection of m pieces. The total area of the resulting piece
set equals the area of the square box. As argued in Section 2, this property forces pieces
to remain orthogonal and on the integer grid of the box. Furthermore, the additional
squares do not prevent any previous integral orthogonal packings of the other pieces,
because they can be placed in the gaps of any such packing. Therefore, the new piece set
has an integral orthogonal packing precisely if the original piece set has an exact packing,
proving NP-hardness of square packing puzzles.

4. Unsigned Edge-Matching Puzzles

Neither result from the previous two sections is particularly satisfying as establishing
hardness of polyomino packing puzzles, because both results require pieces with area
polynomial in the number of pieces. In Section 7, we will show that polyomino packing
remains NP-complete even with pieces of polylogarithmic area. We obtain this result
by simulating edge-matching puzzles, so we first turn to the hardness of such puzzles.
Specifically, in this section we prove that it is NP-complete to solve an unsigned edge-
matching puzzle:

Theorem 3. It is NP-complete to decide whether n given unit-square tiles, each with a
specified color on each edge, can be placed into a

√
n×

√
n square box such that all adjacent

tiles have matching colors along their common edge. The problem remains NP-complete
if the puzzle has 4

√
n colors each occurring exactly once (which must thus be against the

box boundary in any solution).

The proof of NP-hardness essentially mimics the reduction from 3-partition to rectangle
packing puzzles from Section 2. As in that proof, we show that solving unsigned edge-
matching puzzles are at least as hard as 3-partition by showing how to convert any instance
of the 3-partition problem into an equivalent unsigned edge-matching puzzle.

The puzzle has one main structural element, the frame, that divides the (2+max{m, Σ})
× (2 + max{m, Σ}) square box into a rectangular hole of size m × Σ. See Fig. 4. Each
exterior edge of this frame uses a unique color, which has no matching tile, forcing these
tiles to be on the exterior of the square box. The shared edge between every two adja-
cent tiles also uses a unique color, forcing these two tiles to be adjacent, because this
color appears only twice and because all exterior edges have been accounted for. These
constraints rigidly determine the frame; all that remains is to fill the inside of the frame.
The horizontal interior edges of the frame are all a common color, %. The vertical interior
edges of the frame are all a different common color, $.

The puzzle has ai tiles to represent each number ai in S. See Fig. 5. All of these tiles
are colored % on their top and bottom edges. One of the tiles is colored $ on its left edge,
and another tile is colored $ on its right edge. All other left and right edges are colored a
single color that is unique to this ai. Thus, all but two of the tiles are identical. Because



8 Erik D. Demaine, Martin L. Demaine

U T S R Q P O
N

M

L

K

J

I

H
GFEDCBA

#

@

Z

Y

X

W

V
s
s

t t
p
p

rr

%u
u

$
v
v

$
w
w

$
x
x

$
y
y

z z
%

1 1
%

2 2
%

3 3
%

4 4
%

5 5
6
6

$
7
7

$
8
8

$
9
9

$
a
a

b
c
c

dd
e
e

b
%

f f
%

ii
%

ll
%

qq
m
m

oo n n
j
j

k k
g
g

h h

Σ = 1
m(a1 + a2 + · · · + a3m)

m

2 + max{m, Σ}

2
+

m
ax
{m

,Σ
}

Fig. 4. Example of the frame construction. Colors are denoted by symbols; shading just distin-
guishes different classes of colors.

% %%%%
$$

% % % %%
i i i i i i i i

ai

Fig. 5. Example of representing a number ai by a 1× ai rectangle of tiles.

of the color unique to ai, the only way that these tiles can fit together is into a 1 × ai

rectangle, colored % on the long sides and $ on the short sides. The coloring of the interior
frame edges forces these rectangles to be horizontal.

Therefore, the unsigned edge-matching puzzle becomes a problem of packing horizontal
1×ai rectangles into an n×Σ rectangle. As argued in Section 2, this problem is equivalent
to the original 3-partition problem, concluding the proof of NP-hardness of unsigned edge-
matching puzzles.

This NP-hardness reduction has some differences with the reduction for rectangle pack-
ing puzzles from Section 2. The main difference is the added frame, which allows us to
force the box to be a square, a desired property for elegance of the theorem statement.
The frame also provided an alternative way to force the rectangles to remain horizontal,
so we did not have to add m to the length of each rectangle. Although we could have
done without the outermost layer of the frame in this hardness proof, opting for just a
uniquely constructable (max{m, Σ}−min{m, Σ})×max{m, Σ} rectangle, we will find the
unique colors on the boundary of the construction useful for jigsaw puzzles and polyomino
packing in Sections 6 and 7.
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5. Signed Edge-Matching Puzzles

Many edge-matching puzzles fall into a different category from the problem analyzed in
the previous section. Specifically, in signed edge-matching puzzles, tile edges have a sign
of + or − in addition to a color. Two adjacent such tiles match if their common edges have
the same color and opposite sign. This behavior matches magnetism, for example. This
behavior is also quite natural in many real puzzles because they represent the color by an
image of an insect, amphibian, etc. cut across two tiles, and unless the image happens to
be cut along a line of symmetry, the two sides are different (e.g., the head and the tail)
and thus must come together in opposite pairs to form a complete image as the puzzle
requires.

We show that signed edge-matching puzzles can represent unsigned puzzles:

Theorem 4. Every unsigned edge-matching puzzle with c colors and t tile types has an
equivalent signed edge-matching puzzle with 2c + t colors and 4t tile types.

Fig. 6 illustrates the conversion. We replace each tile in the unsigned edge-matching
puzzle with four signed tiles that uniquely combine into a 2× 2 square or supertile. Four
colors unique to this unsigned tile type force the unique combination into this signed
supertile. Each edge of the supertile has a double label consisting of the same color, nega-
tive and then positive in clockwise order around the supertile. Hence, any two compatible
unsigned tiles produce two compatible signed supertiles, so any solution to the unsigned
puzzle corresponds to a solution to the signed puzzle. Conversely, because any solution
to the signed puzzle must form the supertiles, the solution must align supertiles on the
even integer grid of the box, leading to a solution to the unsigned puzzle. Therefore, the
unsigned and signed edge-matching puzzles are equivalent.

A
BD

C

D

d

a

y

C

X

z
Y

A

B

b
W

c

x

w
Z

Fig. 6. Representing an unsigned tile by four signed tiles. Letters denote colors, with case
denoting sign. The colors w–z are unique to this tile type.

This conversion also serves as a reduction, so an immediate consequence by Theorem 3
is NP-hardness of signed edge-matching puzzles:

Corollary 1. It is NP-complete to decide whether n given unit-square tiles, each with a
specified color and sign on each edge, can be placed into a

√
n×

√
n square box such that

all adjacent tiles have matching colors and opposite signs along their common edge.

This result can also be proved directly using a variation of the reduction for unsigned
edge-matching puzzles from Section 4, avoiding the constant-factor losses in the number
of colors, tile types, and box size. Namely, we assign positive signs to north and east edges
of tiles, and we assign negative signs to south and west edges of tiles. Here we exploit
that tiles never need to rotate relative to our figures in order to solve these edge-matching
puzzles.
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6. Jigsaw Puzzles

There are many different kinds of jigsaw puzzles. In this section, we consider one of the
simplest kinds: each piece is a square augmented on each edge with a tab, with a pocket,
or not at all. Tabs and pockets can have arbitrary shapes (of sufficiently small size to not
cause overlap), and only matching tabs and pockets fit together. Unaugmented edges can
fit against each other or against the boundary of a rectangular box.

Theorem 5. Every signed edge-matching puzzle with an x × y box, xy tiles, t tile types,
c colors, and 2(x + y) colors each occurring exactly once (which must thus be against the
box boundary in any solution) has an equivalent jigsaw puzzle with the same x × y box,
xy pieces, at most t piece types, and c− 2(x + y) pocket shapes.

Conversely, every jigsaw puzzle with an x×y box, xy pieces, t piece types, and c pocket
shapes has an equivalent signed edge-matching puzzle with the same x × y box, xy tiles,
at most t + 2(x + y) tile types, c + 2(x + y) colors, and 2(x + y) uniquely occurring colors.

The heart of the equivalence is straightforward: color corresponds to tab/pocket shape,
positive sign corresponds to a tab, and negative sign corresponds to a pocket. See Fig. 7
(left and middle). The only difficulty is properly dealing with the boundary. The signed
edge-matching puzzles considered by the theorem, use 2(x + y) uniquely occurring colors
to force which edges form the box boundary. Jigsaw puzzles use 2(x + y) flat edges to
force which edges form the box boundary. Therefore we simply define a correspondence
between these features, and we have the desired equivalence.

A

C
bd

uniq
B

c
A

Fig. 7. Representing a signed edge-matching tile by a jigsaw piece or by a polyomino piece.
Letters denote colors, with case denoting sign.

An immediate consequence of this equivalence and Corollary 1 is NP-hardness of jigsaw
puzzles:

Corollary 2. It is NP-complete to decide whether n given jigsaw pieces fit together to
form a

√
n×

√
n square box.

7. Polyomino Packing Puzzles

The penultimate in our series of reductions converts jigsaw puzzles of the type considered
in the previous section into equivalent polyomino packing puzzles. This result is interesting
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because it establishes a close relationship between the two types of puzzles, but also
because it proves a stronger form of NP-completeness of polyomino packing puzzles. We
already saw in Sections 2 and 3 that such puzzles are NP-complete, but these results
required pieces with area polynomial in the number of pieces. This section establishes
NP-completeness even when the pieces have polylogarithmic area.

Theorem 6. Every jigsaw puzzle with an x× y box, xy pieces, t piece types, and c pocket
shapes has an equivalent polyomino packing puzzle with an xs× ys box, xy pieces, t piece
types, and every piece fits within an (s + 1)× (s + 1) rectangle, where s = 4 + dlg(c + 1)e.

The conversion simulates the shape of a tab or pocket by a binary string of unit-square
tabs or pockets along the middle of an edge of an s × s square. See Fig. 7 (middle and
right). We encode jigsaw tabs as positive integers in binary in clockwise direction, and we
encode jigsaw pockets as positive integers in binary in counterclockwise direction. Thus,
two polyomino pieces fit together seamlessly precisely if the corresponding jigsaw pieces
matched. To prevent pockets from conflicting with each other, we keep every 2× 2 corner
of the s×s square intact. Flat jigsaw edges convert to flat edges of the s×s square in the
polyomino. This description concludes the conversion of jigsaw puzzles into polyomino
packing puzzles.

Combining this conversion with Corollary 2, we obtain NP-hardness of the desired
subfamily of polyomino packing puzzles:

Corollary 3. It is NP-complete to decide whether n given polyomino pieces, each fitting
within an Θ(log n) × Θ(log n) rectangle, can be exactly packed into a specified square box
whose area equals the total area of the pieces.

8. Closing the Loop of Reductions

Our last reduction is not for proving NP-hardness, but rather to establish a bidirectional
equivalence among the puzzles we consider in this paper: edge matching, signed edge
matching, jigsaw, and polyomino packing. We have already shown reductions in this order
(where the case of signed edge matching and jigsaw puzzles is already bidirectional). Thus
it remains to close the loop by converting polyomino packing puzzles into edge-matching
puzzles:

Theorem 7. Every polyomino packing puzzle with a box of any simple orthogonal polygon
that fits inside an x × y rectangle, and with t piece types each of area at most A, has an
equivalent unsigned edge-matching puzzle with an (x+2)× (y+2) box, (x+2)(y+2) tiles,
and O(tA) colors and tile types, with 2(x + y + 4) uniquely occurring colors.

We have actually already seen a special case of this reduction, in Section 4, where we
effectively simulated 1 × n rectangle packing puzzles by edge-matching puzzles. We use
the frame construction from Fig. 4, modified to force the outline of the specified simple
orthogonal polygon as the box. We also unify the two interior edge colors $ and % into a
single color %. Then we create a square tile for every square in a polyomino, as shown in
Fig. 8. The edges along the perimeter of a polyomino have color %. Every edge interior to
a polyomino receives a unique color (occurring in a pair). Because the frame construction
occupies the entire box boundary of the edge-matching puzzle, adjacent tiles belonging to
a common polyomino must be placed together, rigidifying the polyomino pieces. Therefore
this edge-matching puzzle has a solution precisely if the polyomino packing puzzle has a
solution, concluding the reduction.
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Fig. 8. Representing a polyomino of area A by A edge-matching tiles.
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