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Abstract: Kaboozle is a puzzle consisting of several square cards, each annotated with colored paths and dots drawn
on both sides and holes drilled. The goal is to join two colored dots with paths of the same color (and fill all holes) by
stacking the cards suitably. The freedoms here are to reflect, rotate, and order the cards arbitrarily, so it is not surprising
that the problem is NP-complete (as we show). More surprising is that any one of these freedoms—reflection, rotation,
and order—is alone enough to make the puzzle NP-complete. Furthermore, we show NP-completeness of a particularly
constrained form of Kaboozle related to 1D paper folding. Specifically, we suppose that the cards are glued together
into a strip, where each glued edge has a specified folding direction (mountain or valley). This variation removes the
ability to rotate and reflect cards, and restricts the order to be a valid folded state of a given 1D mountain-valley pattern.
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1. Introduction

Kaboozle: The Labyrinth Puzzle is a puzzle created and devel-
oped in 2007 by Albatross Games Ltd., London *1. This “multi-
layer labyrinth” consists of four square cards; see Fig. 1. (In fact,
each card is octagonal, but the pattern on it is a square.) Each card
has holes drilled at different locations, and various colored paths
and dots drawn on both sides. The goal is to arrange the cards—
by rotation, reflection, and stacking in an arbitrary order—to cre-
ate a continuous monochromatic path between the corner dots of
the same color that is visible on one side of the stack. That is,
in Kaboozle, we have many combinations of choices to solve the
puzzle. We can rotate and reflect each card, and change the order
of layers in any way. Many possible combinations of these ba-
sic operations make this simple puzzle with only four cards more
difficult than it appears at first glance. On the other hand, since
we have three different basic operations, it is hard to determine
what makes this puzzle difficult. The goal of this paper is to un-
derstand what makes this puzzle NP-complete, when generalized
to n cards instead of four.

Kaboozle is an example of a broader class of puzzles in which
patterned pieces with holes must be arranged to achieve some
goal, such as monochromatic sides. For example, Albatross
Games Ltd. places Kaboozle in a series of puzzles called Trans-

posers *2, which all have this style. See Ref. [5] for descriptions,
and Ref. [11] for the relevant patent. Our NP-hardness proofs for
Kaboozle immediately imply NP-completeness for this general
family of puzzles, though there are likely other special cases of
interest.

An earlier form of this type of puzzle is a silhouette puz-
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Fig. 1 The four Kaboozle cards and one of the ten solutions.

zle, where pieces are regions with holes (no pattern beyond
opaque/transparent) and the goal is to make a target shape. Per-
haps the first silhouette puzzle, and certainly the best known, is
the “Question du Lapin” or “Rabbit Silhouette Puzzle,” first pro-
duced in Paris around 1900 (see p.35 in Ref. [7]). Figure 2 shows
the puzzle: given the five cards on the left, stack them with the
right orientations to obtain one of two different rabbit silhouettes.
The puzzle can be played online *3.

The freedoms in a silhouette puzzle are reflection and rotation
of the cards; the card stacking order has no effect on the silhou-
ette. (In fact, both rabbits can be obtained without reflecting the
cards in Fig. 2, so that puzzle only needs rotation.) Are these
freedoms enough for NP-completeness? We show that indeed sil-

*1 http://www.transposer.co.uk/KABpage1.htm
*2 http://www.transposer.co.uk/
*3 http://www.puzzles.com/PuzzlePlayground/Silhouettes/Silhouettes.htm
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houette puzzles are NP-complete, even allowing just rotation or
just vertical reflection of the pieces. Furthermore, we show that
Kaboozle is NP-complete under the same restriction of just rota-
tion or just vertical reflection.

But is reflection or rotation necessary for Kaboozle to be NP-
complete? We show that Kaboozle is NP-complete even when
the cards can only be stacked in a desired order, without rotation
or reflection. We also show that Kaboozle is NP-complete when
restricted to a class of orderings that arise from paper folding, as
described below.

Our folding variation of Kaboozle is inspired by a 1907
patent [4] commercialized as the (politically incorrect) “Pick the
Pickaninnies” puzzle [8]. This puzzle consists of a single piece,
shown on the left of Fig. 3, with holes, images (stars), and crease
lines. The goal is to fold along the crease lines to make an ar-
ray of stars, as shown on the right. This type of puzzle severely
limits the valid stacking orders of the parts, while also effectively
forbidding rotation and reflection of the parts.

We consider a simple general puzzle along these lines, by re-
stricting a generalized Kaboozle puzzle. Namely, we glue all the
cards in the Kaboozle puzzle into a strip, and specify the fold-
ing direction (mountain or valley) on each glued edge (crease).
Now the only freedom is to fold the 1D strip of paper down to
a unit size, respecting the folding directions. This freedom is a
weak form of the ordering of the cards; rotation and reflection are
effectively forbidden.

This idea also comes from problems in computational origami.
In polynomial time, we can determine whether a mountain-valley
pattern on a 1D strip of paper can be folded flat, when the dis-
tances between creases are not all the same [1]. A recent no-
tion is the folding complexity, the minimum number of simple
folds required to construct a unit-spaced mountain-valley pattern
(string) [2]. For example, n pleats alternating mountain and val-
ley can be folded in a polylogarithmic number of simple folds and
unfolds. On the contrary, the number of different ways to fold a

Fig. 2 The classic silhouette puzzle “Question du Lapin.”

Fig. 3 Puzzle commercialized as “Pick the Pickaninnies.” Figure from Ref. [4].

uniform mountain-valley pattern of length n down to unit length
is not well-investigated. The number of foldings of a paper strip
of length n to unit length has been computed by enumeration, and
it seems to be exponentially large; the curve fits to Θ(3.3n) (see
the sequence number A000136 in The On-Line Encyclopedia of
Integer Sequences [6]). However, as far as the authors know, the
details are not investigated, and it was not known whether this
function is polynomial or exponential. Recently, the last author
showed theoretical lower and upper bounds of this function: it
is Ω(3.07n) and O(4n) [9]. These results imply that a given ran-
dom mountain-valley pattern of length n has Θ(1.65n) foldings
on average, which is bounded between Ω(1.53n) and O(2n). Re-
lated work of folding of a paper strip of length n can be found in
Ref. [10].

Intuitively, the folding version of the Kaboozle puzzle seems
easy. Perhaps we could apply the standard dynamic program-
ming technique from one side of the strip? But this intuition is
not correct. Essentially, the problem requires folding a 1D strip
of paper, but the strip has labels which place constraints on the
folding. Despite the situation being quite restrictive, we prove
the problem is still NP-complete.

Therefore we conclude that the generalized Kaboozle problem
is NP-complete even if we allow only one of ordering, rotation,
or reflection of the cards, and in the ordering case, even if the
ordering comes from a 1D strip folding.

2. Preliminaries

We generalize the number of the Kaboozle cards to n+1. Each
card is square, with some fragments of a path drawn on both
sides, and some holes drilled into it. From the viewpoint of the
complexity, we assume that each card can be encoded in constant
space. For example, the coordinates of holes and fragments of
a path are integers, and the height of a card is also a sufficiently
large integer. To simplify, we also assume that the width of a card
is a unit length. Hence these sizes have no effect on the complex-
ity of the problems. We will use just one color of the path we
have to join. The (potential) endpoints of a path are distinguish-
able from the other fragments. To simplify, we assume that the
cards are numbered 0, 1, 2, . . . , n. These n + 1 cards should be
used in the puzzle. You cannot leave any cards unused.

A strip of the cards can be constructed as follows: for each
0 ≤ i ≤ n − 1, the right side of the card i is glued to the left side
of the card i + 1, and that side is called the (i + 1)st crease. Each
crease has a label “M” or “V” which means that the strip must
be mountain folded or valley folded at the crease. (We define one
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Fig. 4 Example of the reduction for F(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4).

side of the strip as the top side, and creases are mountain or valley
folded with respect to this side.) We assume that the label of the
first crease is “M” without loss of generality, or otherwise spec-
ified. For a strip of the cards, a folded state is a flat folding of
unit length (where the unit is the width of a card) such that each
crease is consistent with its label. (We note that a folded state
always exists for any string of labels [9].)

The main problem in this paper is the following.
Input: A strip of n + 1 Kaboozle cards, each with a label of

length n.
Question: Determine whether the strip has a folded state that is

consistent with the labels, and exactly one connected path is
drawn on a surface of the folded state.

We begin with an observation for folding a unit pattern.
Observation 1 A strip of n + 1 cards with n creases has a

unique folded state if and only if the crease pattern is a pleat, i.e.,
“MVMV· · ·MV” or “MVMV· · ·MVM.”
Proof. A pleat folding has no other folded state which can be
shown by a simple induction on n since the card n can be stacked
uniquely. Suppose that a mountain-valley pattern has a unique
folded state. Without loss of generality, we assume that the first
crease is a mountain. If the second crease is also a mountain, we
have two folded states of the cards 0, 1, and 2: the paper layers
stack from bottom as 2, 1, 3 or 2, 3, 1. Hence the second crease
must be a valley. We can repeat the argument for each crease, and
obtain the pleat pattern.

Using the pleats, we introduce a useful folding pattern
for NP-completeness, namely, the shuffle pattern of length i:
“(MV)i−1MM(VM)i−1” *4. By Observation 1, the left and right
pleats are folded uniquely and independently. However, these
pleats can be combined in any order to fold to unit length. Thus
we have

(
2i
i

)
distinct foldings of the shuffle pattern of length i. We

note that the center card of the shuffle pattern of length i, the card
i + 1 in our notation, always appears on one side of any folded
state. We call this side the top of the shuffle pattern, and card i+1
the top card (although it may come to the “bottom” in a natural
folding).

3. NP-completeness of Generalized Kaboozle

It is easy to see that all the problems in this paper are in NP.

*4 Here we use the standard notation xk for string repetition. For example,
“(MV)3MM(VM)3”=“MVMVMVMMVMVMVM.”

Hence we concentrate on the proofs of NP-hardness. Our reduc-
tion uses the following 1-in-3 SAT problem.
Input: A conjunctive normal form (CNF) Boolean formula

F(x1, . . . , xn) = c1 ∧ c2 ∧ · · · ∧ cm, where each clause ci =

(�i1 ∨ �i2 ∨ �i3) has three literals �ij ∈ {x1, . . . , xn, x̄1, . . . , x̄n}.
Question: Determine whether F has a truth assignment such

that each clause contains exactly one true literal.
This problem is a well-known NP-complete variant of 3-
satisfiability (the problem [LO4] in Ref. [3]).

For a given CNF formula F(x1, . . . , xn) with n variables and
m clauses, we use 4n + 1 Kaboozle cards as follows. Fig-
ure 4 shows an example of the reduction for F(x1, x2, x3) =
(x1 ∨ x2 ∨ x3)∧ (x̄1 ∨ x2 ∨ x4)∧ (x̄2 ∨ x3 ∨ x̄4). Each gray area is a
hole in the card, each black line is a fragment of the unique path,
and the black circles are the endpoints of the unique path.
Top card: One top card is placed at the top of the shuffle pattern,
and it represents m clauses. On the top card, two endpoints of the
unique path are drawn, and each clause is represented by a hole
in the card. Each hole has two dimples corresponding to the bor-
ders of the path and that will be extended to one of three possible
directions by the literal cards described below.
Literal card: We use 2n literal cards. Here, the index i with
1 ≤ i ≤ n is used to represent the ith variable, and the index j

with 1 ≤ j ≤ m is used to represent the jth clause. Each card
represents either xi or x̄i. We make m gadgets on the card for the
variable xi as follows.

If neither xi nor x̄i appear in clause c j, the card xi has a hole at
that place. Hence this card has no influence at that place of the
clause c j.

If xi appears in clause c j, the card xi has a part of the path at
that place. According to the position (first, second, or third lit-
eral) in the clause, the path is depicted at top, center, or bottom,
respectively, as shown in Fig. 4.

If x̄i appears in clause c j, the card xi has a cover area of the
path at that place. This white area covers the corresponding path
drawn on the literal card x̄i, as shown in Fig. 4.

Each literal card x̄i is symmetric to the literal card xi, and hence
omitted.
Blank card: We use 2n blank cards depicted in Fig. 4. They will
be used to join literal cards and the top card. They have no influ-
ence on the appearance of the literal cards.
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Fig. 5 For F(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4), a wrong ordering of the cards
that corresponds to a wrong assignment x1 = 0, x2 = 1, x3 = 0, and x4 = 1. For this assignment,
the first clause c1 contains one true literal, the second clause c2 contains three true literals, and the
third clause c3 contains no true literal.

Fig. 6 The cards joined in a strip.

We first show that generalized Kaboozle is NP-complete, with-
out requiring a strip folding.

Theorem 2 Generalized Kaboozle is NP-complete, even if
we forbid reflection and rotation.
That is, it is NP-complete if we only consider the ordering of the
cards.
Proof. We use the top card and 2n literal cards. Make the cards
asymmetric, e.g., by shifting the gadgets on each card a little, to
forbid reflecting or rotating the cards (if that is allowed). Clearly,
the reduction can be done in a polynomial time.

Because of the pictures of the endpoints of the unique path, the
top card must be on top. It is not difficult to see that card xi has no
influence on cards x j and x̄ j if i � j. Hence it is sufficient to con-
sider the ordering between each pair xi and x̄i for i = 1, 2, . . . , n.

Suppose F(x1, . . . , xn) has a solution, that is, each clause c j

contains exactly one true literal � j
i . Then the corresponding lit-

eral card activates one of three fragments of the path incident to
the hole representing c j in the top card. To activate the fragment,

the literal card � j
i appears before the literal card �̄ j

i in stacking or-
der. In this case, the literal card � j

i activates the fragments in the
clauses c j that contain the literal � j

i , and the card also covers the

literal card �̄ j
i which deactivates the fragments on the literal card

�̄
j
i .

When a clause c j contains two or three true literals, the path is
ruined by two or three fragments. On the other hand, if c j con-
tains no true literal, the path is disconnected.

For example, consider the (wrong) assignment x1 = 0, x2 = 1,
x3 = 0, and x4 = 1 for F(x1, x2, x3, x4) from Fig. 4, as shown in
Fig. 5. According to the assignment, we put the card x̄1 over the
card x1, the card x2 over the card x̄2, and so on. Then, the card
x̄1 covers the parts of the path on the card x1, the card x2 covers
the parts of the path on the card x̄2, and so on. Any two cards
corresponding to different variables can be stacked in any order.
For example, we can arrange “top”, x̄1, x1, x2, x̄2; “top”, x̄1, x2,
x̄2, x1; or “top”, x̄1, x2, x1, x̄2; and so on. For this assignment, the
clause c1 = (x1∨ x2∨ x3) satisfies the condition of the 1-in-3 SAT

because only x2 is true. Hence the hole corresponding to c1 in
the top card is filled and the path is joined properly. On the other
hand, all literals are true in the clause c2, and no literal is true in
the clause c3. Hence the hole corresponding to c2 produces loops
and the path is disconnected at the hole corresponding to c3.

Therefore, the two endpoints of the path on the top card are
joined by one simple path if and only if each c j contains exactly
one true literal.

We now turn to the main theorem.
Theorem 3 Generalized Kaboozle is NP-complete even in a

strip with a fixed mountain-valley pattern.
That is, it is NP-complete if all cards are joined and hence re-
flection and rotation are inhibited and the ordering is strongly re-
stricted.
Proof. We use the top card, 2n literal cards, and 2n blank cards.
We join these cards into a strip as “xn-b-xn−1-b-· · ·-b-x2-b-x1-b-
top-b-x̄1-b-x̄2-b-· · ·-b-x̄n−1-b-x̄n,” where “b” means a blank card.
Figure 6 shows the example from Fig. 4. We glue the blank cards
upside down, which will be reflected by folding to unit length.
The mountain-valley pattern is the shuffle pattern of length n;
that is, the creases on both sides of the top card are mountain,
and from there, the other creases are defined to form two pleats
of length n.

Now, the left pleat of the top card makes the sequence of xis,
and the right pleat makes the sequence of x̄is. For each pair of
xi and x̄i, we can choose the ordering between the corresponding
cards with an appropriate shuffling. This means that we can as-
sign true or false to this variable. Moreover, thanks to the blank
cards between the literal cards, we can arrange the ordering of the
cards xi and x̄i independently for each i. Hence, by Theorem 2
and the property of the shuffle pattern, the constructed Kaboozle
strip with a fixed mountain-valley pattern has a solution if and
only if the 1-in-3 SAT has a solution.

Carefully checking folded states of a strip of cards, we can ob-
serve that the orientation of each card is fixed regardless of the
folding pattern. For example, all literal cards in the strip in the
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Fig. 7 Gadgets for rotation and reflection.

Fig. 8 A silhouette puzzle for a rectangle.

proof of the main theorem are facing up like the top card in any
folded state. This orientation is in fact determined by the parity of
the position of the card in the strip. That is, the mountain-valley
pattern does not matter for the orientation. Using this fact, we can
also let the mountain-valley pattern be free. That is, in the strip
form, the folding direction is not essential to the difficulty of the
puzzle.

Corollary 4 Generalized Kaboozle is NP-complete in the
strip form if we do not specify the mountain-valley pattern.
Proof. We use the same strip in the proof of Theorem 3. Even if
the mountain-valley pattern is not specified, the top card should
be on top; otherwise, the endpoints of the path disappear. Hence
both creases bordering the top card are mountains. If the 1-in-3
SAT instance has a solution, the constructed Kaboozle puzzle has
a solution by the folding in the proof of Theorem 3. On the other
hand, if the Kaboozle puzzle has a solution, we can extract the
ordering between xi and x̄i for each i with 1 ≤ i ≤ n from the
folded state. From these orderings, we can construct the solution
to the 1-in-3 SAT instance.

By combining gadgets, we can show that generalized Kaboozle
is also NP-complete if we allow only either rotation or reflection.
Note that we can rotate a card 180◦ by the combination of a hor-
izontal reflection and a vertical reflection. To forbid this kind of
cheating with cards, we restrict the reflection to be vertical.

Theorem 5 Generalized Kaboozle is NP-complete even if
the card ordering is fixed (or free), and (1) only 180◦ rotation
of the cards is allowed, or (2) only vertical reflection of the cards
is allowed.
Proof. As in the proof of Theorem 2, we prepare the top card and
2n literal cards. Now, the top card is enlarged to twice the size of
the original cards; see Fig. 7 (1).
Rotation: For each variable xi, two literal cards xi and x̄i are
glued so that a 180◦ rotation exchanges them; see Fig. 7 (2).
Vertical reflection: For each variable xi, two literal cards xi

and x̄i are glued so that a vertical reflection exchanges them; see

Fig. 7 (3).
It is easy to see that the ordering of the cards has no influence,

except the top card which should be the top, and the resultant Ka-
boozle has a solution if and only if the 1-in-3 SAT instance has a
satisfying truth assignment.

In combination with Theorem 2, we can conclude that one
of three basic operations (reflection, rotation, and ordering) is
enough to make the generalized Kaboozle NP-complete.

As mentioned in the Introduction, the ordering of the cards has
no effect in a silhouette puzzle. Along similar lines, we can show
that silhouette puzzles are NP-complete even if we allow to use
one of two operations.

Theorem 6 Silhouette puzzles are NP-complete even if (1)
only 180◦ rotations of the cards are allowed, or (2) only vertical
reflections of the cards are allowed.
Proof. We reduce the regular (not 1-in-3) SAT, mimicking the
gadgets in Fig. 7. The top card has one hole per clause, all in
the top half of the card (Fig. 8 (1)). As shown in Fig. 8 (2) and
Fig. 8 (3), each literal card reverses the top and bottom halves for
the true and false literals. The top and bottom sides are rotations
or vertical reflections of each other according to the variation. If
the literal is true in a clause, the corresponding solid patch totally
covers the hole of the clause in the top card. Therefore, the sil-
houette of the stacked cards is a rectangle (without holes) if and
only if the formula is satisfiable.
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