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Abstract

Metric Multidimensional scaling (MDS) is a clas-
sical method for generating meaningful (non-
linear) low-dimensional embeddings of high-
dimensional data. MDS has a long history in the
statistics, machine learning, and graph drawing
communities. In particular, the Kamada-Kawai
force-directed graph drawing method is equiva-
lent to MDS and is one of the most popular ways
in practice to embed graphs into low dimensions.
Despite its ubiquity, our theoretical understanding
of MDS remains limited as its objective function
is highly non-convex. In this paper, we prove that
minimizing the Kamada-Kawai objective is NP-
hard and give a provable approximation algorithm
for optimizing it, which in particular is a PTAS on
low-diameter graphs. We supplement this result
with experiments suggesting possible connections
between our greedy approximation algorithm and
gradient-based methods.

1. Introduction

Given the distances between data points living in a high
dimensional space, how can we meaningfully visualize their
relationships? This is a fundamental task in exploratory
data analysis for which a variety of different approaches
have been proposed. Many of these approaches seek to
visualize high-dimensional data by embedding it into lower
dimensional, e.g. two or three-dimensional, space.

Metric multidimensional scaling (MDS or mMDS) (Kruskal,
1964a; 1978) is a classical approach to this problem which
attempts to find a low-dimensional embedding that accu-
rately represents the distances between points. Originally
motivated by applications in psychometrics, MDS has now
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been recognized as a fundamental tool for data analysis
across a broad range of disciplines. See the texts (Kruskal,
1978; Borg & Groenen, 2005) for more details, including a
discussion of applications to data from scientific, economic,
political, and other domains. Compared to other classical
visualization tools like PCA!, metric multidimensional scal-
ing has the advantage that it 1) is not restricted to linear
projections of the data, i.e. it is nonlinear, and 2) is appli-
cable to data from an arbitrary metric space, rather than
just Euclidean space. Because of this versatility, MDS has
also become one of the most popular algorithms in the field
of graph drawing, where the goal is to visualize relation-
ships between nodes (e.g. people in a social network). In
this context, MDS was independently proposed by Kamada
and Kawai (Kamada et al., 1989) as a force-directed graph
drawing method.

In this paper, we consider the algorithmic problem of com-
puting the optimal embedding under the MDS/Kamada-
Kawai objective. The Kamada-Kawai objective is to mini-
mize the following energy/stress functional £ : R™ — R

i<j

E(Xl, ..

which corresponds to the physical situation where
X1,...,Xn € R" are particles and for each i # j, particles
x; and x; are connected by an idealized spring with equi-
librium length d(i, j) following Hooke’s law with spring
constant kij = gyz. In applications to visualization, the
choice of dimension is often small, i.e. » = 1,2,3. We
also note that in (1) the terms in the sum are sometimes
re-weighted with vertex or edge weights, which we discuss
in more detail later.

In practice, the MDS/Kamada-Kawai objective (1) is op-
timized via a heuristic procedure like gradient descent
(Kruskal, 1964b; Zheng et al., 2018) or stress majoriza-
tion (De Leeuw et al., 1977; Gansner et al., 2004). Because
the objective is non-convex, these algorithms may not reach
the global minimum, but instead may terminate at approx-
imate critical points of the objective function. Heuristics
such as restarting an algorithm from different initializations

'In the literature, PCA is sometimes referred to as classical
multidimensional scaling, in contrast to metric multidimensional
scaling, which we study in this work.
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and using modified step size schedules have been proposed
to improve the quality of results. In practice, these heuris-
tic methods do seem to work well for the Kamada-Kawai
objective and are implemented in popular packages like
GRAPHVIZ (Ellson et al., 2001) and the SMACOF package
in R.

1.1. Our Results

In this work, we revisit this problem from an approximation
algorithms perspective. First, we resolve the computational
complexity of minimizing (1) by proving that finding
the global minimum is NP-hard, even for graph metrics
(where the metric is the shortest path distance on a graph).
Consider the decision version of stress minimization over
graph metrics, which we formally define below:

STRESS MINIMIZATION

Input: Graph G = ([n], E),r € N, L > 0.
Output: TRUE if there exists x = (xq,. ..
such that E(x) < L; FALSE otherwise.

%) € R™

Theorem 1. There exists a polynomial p(n) such that the
following gap version of STRESS MINIMIZATION in
dimension v = 1 is NP-hard: given an input graph G
with n vertices and L > 0, return TRUE if there exists
x such that E(x) < L and return FALSE if for every x,
E(x) > L+ 1/p(n). Furthermore, the problem is hard
even restricted to input graphs with diameter bounded by
an absolute constant.

As a gap problem, the output is allowed to be arbitrary if nei-
ther case holds; the hardness of the gap formulation shows
that there cannot exist a Fully-Polynomial Randomized Ap-
proximation Scheme (FPRAS) for this problem if P # NP,
i.e. the runtime cannot be polynomial in the desired ap-
proximation guarantee. Our reduction shows this problem
is hard even when the input graph has low diameter (even
bounded by an absolute constant): this is a natural setting to
consider since many real world graphs (for example, social
networks (Dodds et al., 2003)) and random graph models
(Watts & Strogatz, 1998) indeed have low diameter due to
the “small-world phenomena”. Other key aspects of this
hardness proof are: 1) we show the problem is hard even
when the input d is a graph metric, and 2) we show it is hard
even in its canonical unweighted formulation (1).

Given that computing the minimizer is NP-hard, a natural
question is whether there exist polynomial time approxima-
tion algorithms for minimizing (1). We show that if the input
graph has bounded diameter D = O(1), then there indeed
exists a Polynomial-Time Approximation Scheme (PTAS) to
minimize (1), i.e. for fixed ¢ > 0 and fixed D there exists an
algorithm to approximate the global minimum of a n vertex

diameter D graph up to multiplicative error (1 + ¢€) in time
f(e, D) - poly(n). More generally, we show:

Theorem 2 (Informal version of Theorem 4). Let R >
e > 0 be arbitrgnyz. Algorithm KKSCHEME runs in
time n?(R/e)° "R/ and outputs x, . . ., x, € R” with
Ix;i|| < R such that
E[E(x1,...,%,)] < B(x},...,x}) + en?
Sforany x3, ... x5 with ||x}|| < R for all i, where E is the
expectation over the randomness of the algorithm.

where KKSCHEME is a simple greedy algorithm described
in Section 4 below. The fact that this result is a PTAS for
bounded diameter graphs follows from combining it with
the two structural results regarding optimal Kamada-Kawai
embeddings, which are of independent interest. The first
(Lemma 4) shows that the optimal objective value for low
diameter graphs must be of order £2(n?) and the second
(Lemma 5) shows that the optimal KK embedding is “con-
tractive” in the sense that the diameter of the output is never
much larger than the diameter of the input.

Lemma 1 (Informal version of Lemma 4). For any target
dimension v > 1, all graphs of diameter D = O(n'/")
satisfy E(x) = Q(n?/D") for all x.

Lemma 2 (Informal version of Lemma 5). For any graph
of diameter D and any target dimension r > 1, any global
minimizer of E(x) satisfies

max [[x; — x;{| = O(Dloglog D),
%]
i.e. the diameter of the embedding is O(D loglog D).

1.2. Related Work

Other Approaches to Nonlinear Dimensionality Reduc-
tion and Visualization. Recently, there has been renewed
interest in force-directed graph layouts due to new appli-
cations in machine learning and data science. MDS itself
is a popular technique for dimension reduction. Newer
techniques, such as t-SNE (Maaten & Hinton, 2008) and
UMAP (Mclnnes et al., 2018), can be viewed as similar
type of force-directed weighted graph drawing with more
complex objectives than Kamada-Kawai (see the discussion
in (Mclnnes et al., 2018)); in comparison, some other di-
mensionality reduction methods, e.g. Laplacian eigenmaps
(Belkin & Niyogi, 2003), are based on spectral embeddings
of graphs.

In practice, methods like t-SNE and UMAP appear to work
quite well, even though they are based on optimizing non-
convex objectives with gradient descent, which in general
comes with no guarantee of success. Towards explaining
this phenomena, ¢-SNE has been mathematically analyzed
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in a fairly specific setting where the data is split into well-
separated clusters (e.g. generated by well-separated Gaus-
sian mixtures); in this case, the works (Arora et al., 2018;
Linderman & Steinerberger, 2019) prove that the visual-
ization recovers the corresponding cluster structure. A dif-
ficulty when proving more general guarantees is that the
t-SNE and UMAP objectives are fairly complex, and hence
not so easy to mathematically analyze.

Partially for this reason, in this work we focus on the simpler
metric MDS/Kamada-Kawai objective. Experimentally, it
has been observed that, using this objective, it is easy to find
high quality minima in many different situations (see e.g.
(Zheng et al., 2018)), but to our knowledge there has not
been a mathematical explanation of this phenomena.

Other related work. In the multidimensional scaling lit-
erature, there has been some study of the local conver-
gence of algorithms like stress majorization, see for example
(De Leeuw, 1988), which shows that stress majorization will
converge quickly if in a sufficiently small neighborhood of
a local minimum. This work seems to propose the first
provable guarantees for global optimization. The closest
previous hardness result is the work of (Cayton & Dasgupta,
2006) where they showed that a similar problem is hard. In
their problem: 1) the terms in (1) are weighted by d(i, j)
and absolute value loss replaces the squared loss and 2) the
input is an arbitrary pseudometric where nodes in the input
are allowed to be at distance zero from each other. The
second assumption makes the diameter (ratio of max to min
distance in the input) infinite, and this is a major obstruc-
tion to modifying their approach to show Theorem 1. See
Remark 1 for further discussion. A much earlier hardness
result is the work of (Saxe, 1979), in the easier (for prov-
ing hardness) case where distortion is only measured with
respect to edges of the graph.

In the approximation algorithms literature, there has been a
great deal of interest in optimizing the worst-case distortion
of metric embeddings into various spaces, see e.g. (Badoiu
et al., 2005) for approximation algorithms for embeddings
into one dimension, and (Deza & Laurent, 2009; Naor, 2012)
for more general surveys of low distortion metric embed-
dings. Though conceptually related, the techniques used in
this literature are not generally targeted for minimizing a
measure of average pairwise distortion like (1).

In the graph drawing literature, there are a number of com-
peting methods for drawing a graph, with the best approach
depending on application (Battista et al., 1998). Tutte’s
spring embedding theorem is often considered the seminal
work in the force-directed layout community, and provides a
method for producing a planar drawing of a three-connected
planar graph (Tutte, 1963). Though the problem under con-
sideration in this work does indeed belong to the class of

force-directed layouts, we stress the layouts under consider-
ation do not minimize edge crossings in any sense.

Notation. In the remainder of the paper, we will generally
assume the input is given as an unweighted graph to simplify
notation; however, for the upper bounds (e.g. Theorem 2)
we do handle the general case of arbitrary metrics with
distances in [1, D] — note that the lower bound of 1 is
without loss of generality after re-scaling. In the lower
bound (i.e. Theorem 1), we prove the (stronger) result that
the problem is hard when restricted to graph metrics, instead
of just for arbitrary metrics. We use standard asymptotic

notation: f(n) = O(g(n)) means that lim sup,,_, % <

00, f(n) = Q(g(n)) means that liminf, % > 0,
and f(n) = ©(g(n)) means that f(n) = Q(g(n)) and
f(n) = O(g(n)). The notation [n] denotes {1,...,n}.

Unless otherwise noted, || - || denotes the Euclidean norm.

We also recall that a metricd : V x V — R>gonaset V' is
formally defined to be any function satisfying 1) d(v, w) =
0iff v = w, 2) d(v,w) = d(w,v) for all v,w € V and
3) d(v,w) < d(v,u) + d(u,w) for any u,v,w € V. A
pseudometric relaxes 1) to the requirement that d(v,v) = 0
for all v.

2. Structural Results for Optimal
Embeddings

In this section, we present two results regarding optimal
layouts of a given graph. In particular, we provide a lower
bound for the energy of a graph layout and an upper bound
for the diameter of an optimal layout. The techniques used
primarily involve estimating different components of the
objective function F(x1,...,X,) given by (1) (written as
E(x) in this section for convenience). For this reason, we
introduce the notation

B j(x) = (W - 1) fori,j € [n],
Es(x):= Y Ei;(x) forSC nl,

i,jES
1<j

ZZE”(X) for S,T C [n], SNT = 0.

i€S jeT

Esz (X) :

We also make use of this notation in Appendices A and B.

First, we recall the following standard e-net estimate.
Lemma 3 (Corollary 4.2.13 of (Vershynin, 2018)). Let
Br = {x : ||z|]]| £ R} C R" be the origin-centered ra-
dius R ball in r dimensions. For any ¢ € (0, R) there exists
a subset S C Br with |S¢| < (3R/¢)" such that

a, i —y|l <
[max min [z —yll <,
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i.e. S¢ is an e-net of Bp.

Using this result, we prove the following lower bound for
the objective value of any layout of a diameter D graph in
R".

Lemma 4. Let G = ([n], E) have diameter

(n/2)""

D <
- 10

Then any layout x € R"™™ has energy

Ex) 2 S0y

Proof. Let G = ([n], E) have diameter D < (n/2)'/" /10,
and suppose that there exists a layout x C R" of GG in
dimension r with energy E(x) = cn? for some ¢ < 1/810.
If no such layout exists, then we are done. We aim to lower
bound the possible values of ¢. For each vertex i € [n], we
consider the quantity F; y;(x). The sum

Z E;vi(x) = 2cn?,

1€[n]

and so there exists some i’ € [n] such that Ej y\;/(x) <
2cn. By Markov’s inequality,

[{j € [n]| Ev ;j(x) > 10c}| < n/5,

and so at least 4n /5 vertices (including ') in [n] satisfy

lIxir — x| 2
- 1] <10
< d(i’, ) =0

and also
. ].0
lIxir — x5 <d(i’,5)(1 +V10c) < 5 D

The remainder of the proof consists of taking the d-
dimensional ball with center x;» and radius 10D /9 (which
contains > 4n/5 vertices), partitioning it into smaller sub-
regions, and then lower bounding the energy resulting from
the interactions between vertices within each sub-region.

By applying Lemma 3 with R := 10D/9 and € := 1/3,
we may partition the r dimensional ball with center x;
and radius 10D/9 into (10D)" disjoint regions, each of
diameter at most 2/3. For each of these regions, we denote
by S; C [n], j € [(10D)"], the subset of vertices whose
corresponding point lies in the corresponding region. As
each region is of diameter at most 2/3 and the graph distance
between any two distinct vertices is at least one, either

551 _ 15510551 = 1)
2

B, > (151 /3 -1 = B,

or |S;] = 0. Empty intervals provide no benefit and can be
safely ignored. The optimization problem

14 4

min ka(mkfl) s.t. ka =m, myp > 1, k €[/,
k=1 k=1

has a non-empty feasible region for m > ¢, and the solution
is given by m(m/¢ — 1) (achieved when my, = m/{ for all
k). In our situation, m := 4n/5 and ¢ := (10D)", and, by
assumption, m > ¢. This leads to the lower bound

4
4n 4n
2= E(x)> Eo(x)> — | ———— —1
B Bl 2 gy Bt

which implies that

6 5(10D)" 1
c> 1-— >
~ 450(10D)" 4n — 75(10D)"

for D < (n/2)'/7/10. This completes the proof. O

The above estimate has the correct dependence for r = 1.
For instance, consider the lexicographical product of a path
Pp and a clique K,,/p: i.e. a graph with D cliques in a
line, and complete bipartite graphs between neighboring
cliques. This graph has diameter D, and the layout in which
the “vertices” (each corresponding to a copy of K, ,p) of
Pp lie exactly at the integer values [D] has objective value
5(n/D — 1). This estimate is almost certainly not tight
for dimensions r > 1, as there is no higher dimensional
analogue of the path (i.e., a graph with O(D") vertices and
diameter D that embeds isometrically in R").

Next, we provide an upper bound for the diameter of any
optimal layout of a diameter D graph. For the sake of space,
the proof of this result is reserved for Appendix A.

Lemma 5 (Proved in Appendix A). Let G = ([n], E) have
diameter D. Then, for any optimal layout x € R™™, i.e., x
such that E(x) < E(y) forally € R™,

Ix; — xjl|2 < Dloglog D
foralli,j € [n].

While the above estimate is sufficient for our purposes, we
conjecture that this is not tight, and that the diameter of an
optimal layout of a diameter D graph is always at most 2D.

3. Algorithmic Lower Bounds

In this section, we discuss algorithmic lower bounds for
multidimensional scaling. In particular, we provide a sketch
of the reduction used in the proof of Theorem 1. The formal
proof itself is quite involved, and is therefore reserved for
Appendix B.
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To show that minimizing (1) is NP-hard in dimension
r = 1, we use a reduction from a version of Max All-Equal
3SAT. The Max All-Equal 3SAT decision problem asks
whether, given variables 1, ..., ty, clauses C1,...,C), C
{t1,...,te,t1,...,te} each consisting of at most three lit-
erals (variables or their negation), and some value L, there
exists an assignment of variables such that at least L clauses
have all literals equal. The Max All-Equal 3SAT decision
problem is known to be APX-hard, as it does not satisfy the
conditions of the Max CSP classification theorem for a poly-
nomial time optimizable Max CSP (Khanna et al., 2001).
More precisely, this is because of the following properties:
1) setting all variables true or all variables false does not
satisfy all clauses, and 2) all clauses cannot be written in dis-
junctive normal form as two terms, one with all unnegated
variables and one with all negated variables.

We require a much more restrictive version of this problem.
In particular, we require a version in which all clauses have
exactly three literals, no literal appears in a clause more
than once, the number of copies of a clause is equal to the
number of copies of its complement (defined as the negation
of all its elements), and each literal appears in exactly k
clauses. This more restricted version is shown to still be
APX-hard in Appendix B.

Suppose we have an instance of the aforementioned ver-
sion of Max All-Equal 3SAT with variables ¢, ..., ¢, and
clauses C1,...,Copn,. Let £ = {t1,...,t¢,t1,...,1¢} be
the set of literals and C = {C4,...,Cy,} be the mul-
tiset of clauses. Consider the graph G = (V| E), with
V =Vo U Vi U Vs, where

Vo = {v':i € [N,]},
Vi={t:teLic [N},
Vo={C":C€C,ic[N]},

and E = V) \ (E; UFE},), where

Ey={({t"#):teLi,jec[N]}},
By ={(t',07): t € C,C €C, i€ [Ny],j € [N]},

U denotes disjoint union, parameters N, > Ny > N, >
m,and V) .= {U CcV : |U| =2}

For simplicity, in the following description we assume that
cliques (other than Vj) in the original graph generally embed
together as one collection of nearby points, so we can treat
them as single objects in the embedding. In Appendix B,
this intuition is rigorously justified.

The clique on vertices Vj serves as an “anchor” that forces
all other vertices to be almost exactly at the correct distance
from its center. Without loss of generality, assume this
anchor clique is centered at 0. In this graph, the cliques
corresponding to literals and clauses, given by {ti}ie[ N

and {C"},¢ [Nc] respectively, are all at distance one from the
anchor clique. Literal cliques are at distance one from each
other, except negations of each other, which are at distance
two. Clause cliques are distance two from the literal cliques
corresponding to literals in the clause and distance one from
literal cliques corresponding to literals not in the clause.
Clause cliques are all distance one from each other. The
main idea of the reduction is that the location of the center
of the anchor clique at 0 forces each literal to roughly be at
either —1 or 41, and the distance between negations forces
negations to be on opposite sides, i.e., Xy ~ —xz . Clause
cliques are also roughly at either —1 or +1 and the distance
to literals forces clauses to be opposite the side with the
majority of its literals, i.e., clause C' = {t1,t2, 3} lies at
Xoi & —x{Xu + Xy + Xy > 0}, where X is the indicator
variable. The optimal embedding of G, i.e. the location
of variable cliques at either +1 or —1, corresponds to an
optimal assignment for the Max All-Equal 3SAT instance.

Remark 1 (Comparison to (Cayton & Dasgupta, 2006)). As
mentioned in the Introduction, the reduction here is signifi-
cantly more involved than the hardness proof for a related
problem in (Cayton & Dasgupta, 2006). At a high level, the
key difference is that in (Cayton & Dasgupta, 2006) they
were able to use a large number of distance-zero vertices
to create a simple structure around the origin. This is no
longer possible in our setting (in particular, with bounded
diameter graph metrics), which results in graph layouts with
much less structure. For this reason, we require a graph
that exhibits as much structure as possible. To this end, a
reduction from Max All-Equal 3SAT using both literals and
clauses in the graph is a much more suitable technique than
a reduction from NAE 3SAT using only literals. In fact, it
is not at all obvious that the same approach in (Cayton &
Dasgupta, 2006), applied to unweighted graphs, would lead
to a computationally hard instance.

4. Approximation Algorithm

In this section, we formally describe an approximation algo-
rithm using tools from the Dense CSP literature, and prove
theoretical guarantees for the algorithm.

4.1. Preliminaries: Greedy Algorithms for Max-CSP

A long line of work studies the feasibility of solving the
Max-CSP problem under various related pseudorandom-
ness and density assumptions. In our case, an algorithm
with mild dependence on the alphabet size is extremely
important. A very simple greedy approach, proposed and
analyzed by Mathieu and Schudy (Mathieu & Schudy, 2008;
Schudy, 2012) (see also (Yaroslavtsev, 2014)), satisfies this
requirement.

Theorem 3 ((Mathieu & Schudy, 2008; Schudy, 2012)).
Suppose that Y is a finite alphabet, n > 1 is a posi-
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Algorithm 1 Greedy Algorithm for Dense CSPs (Mathieu
& Schudy, 2008; Schudy, 2012)

1: function GreedyCSP(X, n, to, { fi; })
2:  Shuffle the order of variables x1, . .., x,, by arandom

permutation.
3:  for all assignments z1, ...,z € X' do
4: for (tp +1) <i<ndo
5: Choose z; € ¥ to maximize
> fiilag, @)
J<i
6: end for
7: Record z and objective value }_, ,; fij (i, z;).
8: end for
9:  Return the assignment z found with maximum objec-
tive value.

10: end function

tive integer, and for every i,j € (g) we have a function
fij + ¥ x X — [-M,M]. Then for any ¢ > 0, Al-
gorithm GREEDYCSP with tg = O(1/€?) runs in time
n2|E|O(1/62) and returns 1, . . ., Ty € X such that

EZfij(Iiazj) > qu(xf,o:j) — eMn?

i#j i#j

forany x7, ..., x} € X, where E denotes the expectation
over the randomness of the algorithm.

In comparison, we note that computing the maximizer using
brute force would run in time |3|™, i.e. exponentially slower
in terms of n. This guarantee is stated in expectation but,
if desired, can be converted to a high probability guarantee
by using Markov’s inequality and repeating the algorithm
multiple times (as in Remark 2). We use GREEDYCSP
to solve a minimization problem instead of maximization,
which corresponds to negating all of the functions f;;.

4.2. Discretization Argument

Lemma 6. For ¢, R > 0, the function x + (x/c — 1)? is
2 max(1, R/c)-Lipschitz on the interval [0, R).

c

Proof. Because the derivative of the function is Z(z/c — 1)

and |2(z/c—1)| < 2max(1,R/c) on [0, R], the result
follows from the mean value theorem. O
Lemma 7. For¢c,R > 0and y € R" with |ly|| < R, the
function x — (||z—y| /c—1)? is 2 max(1,2R/c)-Lipschitz
on Bp = {z : ||z|| < R}.

Proof. Because the function ||z — y|| is 1-Lipschitz and
lz =yl < |lz|l + ||ly|| < 2R by the triangle inequality, the

result follows from Lemma 6 and the fact that a composition
of Lipschitz functions is Lipschitz. O

Lemma 8. Letxy,...,%x, € R" be arbitrary vectors such
that |x;|| < R for all i and € > 0 be arbitrary. Define S, to
be an e-net of Bg as in Lemma 3, so |S¢| < (3R/e)". For
any input metric over [n] with min; jep,,; d(i, j) = 1, there
exists X}, ...,x, € S such that

E(x),...,x)) < B(x1,...,X,) + 4eRn?

where E is (1) defined with respect to an arbitrary graph
with n vertices.

Proof. By Lemma 7 the energy E (X1, .. .,X,) is the sum
of () < n?/2 many terms, which, for each i and j, are
individually 4 R-Lipschitz in x; and x;. Therefore, defining
X} to be the closest point in S, for all ¢ gives the desired
result. O

4.3. Approximation Algorithm

Algorithm 2 Approximation Algorithm KKSCHEME

1: function KKSCHEME(eq, €2, R):

2:  Buildan¢;-net S;, of Bg = {z : ||z|| < R} C R"
as in Lemma 3.

3:  Apply the GREEDYCSP algorithm of Theo-
rem 3 with € = ey to approximately minimize
E(x1,...,Xp) overxi,...,x, € S_.

4:  Return x1,...,X,.

5: end function

Theorem 4 (Formal Statement of Theorem 2). Let R >
€ > 0 be arbitrary. For any input metric over [n| with
min; ;e d(4,7) = 1, Algorithm KKSCHEME with €; =
O(¢/R) and €3 = O(e/R?) runs in time nz(R/e)O(TR4/Ez)
and outputs Xy, . . . , X, € R" with ||x;|| < R such that
E[E(x1,...,%,)] < E(x],...

Sorany x3, ... x5 with ||x}|| < R for all i, where E is the
expectation over the randomness of the algorithm.

,X5) + en?

Proof. By combining Lemma 8 with Theorem 3 (used as a
minimization instead of maximization algorithm), the output
X1, ...,X, of KKSCHEME satisfies

E(x1,...,%,) < B(x},...,x5) + 461 Rn® + eaR*n?

and runs in time n220(1/&)rlosBR/c)  Taking ey =
O(e/R?) and ¢; = O(¢€/R) gives the desired result. O

Remark 2. The runtime can be improved to n? +
(R/€)OWR*/€*) ysing a slightly more complex greedy CSP
algorithm (Mathieu & Schudy, 2008). Also, by the usual
argument, a high probability guarantee can be derived by
repeating the algorithm O(log(2/4)) times, where 6 > 0 is
the desired failure probability.
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4.4. Extension to Vertex-Weighted Setting

In this section, we generalize the approximation algorithm
to handle vertex weights. This generalization is useful if ver-
tices have associated importance weights, e.g. each vertex
represents a different number of people, and larger/more im-
portant vertices should be embedded more accurately. Given
a probability measure p over [n], the weighted Kamada-
Kawai objective is

) =% (i) (”"d(j) - 1) |
! D)

Note that when i is the uniform measure on [n], this reduces
to (1).

Theorem 5. Let R > € > 0 be arbitrary. Algo-
rithm KKSCHEME with ¢, = O(¢/R) and ¢ = O(¢/R?)
runs in time nO(TE" log(R/€)/€*) L, Xn €
R” with ||x;|| < R such that

Eu(Xl, N

and outputs X1, . .

E[E(x1,...,%,)] < B(x},...,x}) + en?
Sforany x3, ... x5 with ||x}|| < R for all i, where E is the

expectation over the randomness of the algorithm.

Proof. The proof is the same as Theorem 4, except that
we require a different dense CSP algorithm. More pre-
cisely, we can directly verify that the discretization Lemma,
Lemma 8, holds with the same guarantee for the weighted
Kamada-Kawai objective. This reduces the problem to ap-
proximating a dense CSP with vertex weights, for which we
use Theorem 6. O

The following Theorem formally describes the guarantee
we use for approximately optimizing dense CSPs with ver-
tex/variable weights. This result can be proved by slightly
modifying the algorithm and analysis in (Yoshida & Zhou,
2014). For completeness, we provide a proof in Appendix C.

Theorem 6 (Proved in Appendix C). Suppose that ¥ is a
finite alphabet, n > 1 is a positive integer, and for every
i,j € () we have a function fi; : ¥ x ¥ — [—M, M].
Then for any € > 0, there exists an algorithm which runs in
time n°U08 1=1/<) and returns Z1,...,Tn € X such that

E B jopfij(@i, 25)] 2 Ei jop fij (27, xj) —eM
for any x7,...,x; € X, where the outer E denotes the
expectation over the randomness of the algorithm.

5. Experiments

We implemented the GREEDYCSP-based algorithm de-
scribed above as well as a standard gradient descent ap-
proach to minimizing the Kamada-Kawai objective. In this

section we compare the behavior of these algorithms in a
few interesting instances.

In addition to gradient descent, a couple of other local search
heuristics are popular for minimizing the Kamada-Kawai
objective: 1) the original algorithm proposed by Kamada
and Kawai (Kamada et al., 1989), which updates single
points at a time using a Newton-Raphson scheme, and 2)
a variational approach known as majorization, which op-
timizes a sequence of upper bounds on the KK objective
(De Leeuw et al., 1977; Gansner et al., 2004), where each
step reduces to solving a Laplacian system. The recent work
of (Zheng et al., 2018) compared these local search heuris-
tics and argued that (stochastic) gradient descent, proposed
in the early work of (Kruskal, 1964a), is one of the best
performing methods in practice. For this reason, we focus
on comparing with gradient descent.

Some Graph Drawing Examples. In Figure 1 we show
the result of embedding a random Watts-Strogatz “small
world” graph (Watts & Strogatz, 1998), a model of random
graph intended to reflect some properties of real world net-
works. In Figure 2 we show an embedding of the “3elt”
graph from (Diekmann & Preis); in this case, it’s interest-
ing that all of the methods optimizing (1) seem to find the
same solution, except Greedy suffers a small loss due to
discretization. This suggests that this solution may be the
global optimum.

Note that in all figures, the MDS/Kamada-Kawai objective
value achieved (normalized by 1/ n2, where n is the number
of vertices) is included in the subtitle of each plot. For
comparison, in the bottom right of each Figure we display
the standard spectral embedding given by embedding each
vertex according to the entries of the bottom two nontrivial
eigenvectors of the graph Laplacian.

Experiment with restarts. The algorithm we propose in
Theorem 4 is randomized, which leaves open the possibility
that better results are obtained by running the algorithm
multiple times and taking the best result. In Figure 3, we
show the result of embedding a well-known social network
graph, the Davis Southern Women Network (Davis et al.,
2009), by running all methods 10 times and taking the result
with best objective value. This graph has a total of 32
nodes and records the attendance of 18 Southern women
at 14 social events during the 1930s. To compare with
the minimum, the average objective value achieved in the
run is 0.0588, 0.0498, and 0.0515 for Greedy, Greedy and
Grad, and Grad respectively so all methods did improved
slightly by running multiple times. Finally, we note that
running gradient descent with 30 restarts (as opposed to 10)
improved its best score to 0.0478, essentially the same as
the Greedy and Grad result.
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Greedy: 0.0446

Greedy and Grad: 0.0346

Figure 1. Embeddings of Watts Strogatz graph on 50 nodes with
graph parameters K = 4 and § = 0.3 and tp = 3 for
GREEDYCSP.

Greedy: 0.0201 Greedy and Grad: 0.0190
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Figure 2. 3elt graph from AG Monien collection (Diekmann &
Preis); GREEDYCSP run with parameter tg = 2.

Greedy: 0.0545

Greedy and Grad: 0.0477

Laplacian embedding

Figure 3. Embedding of Davis Southern Women Network graph.
The top left figure was generated using GREEDYCSP with ¢y = 3.

Runtime | Greedy | Grad | Laplacian
Davis 5.65s 4s 4 ms
Watts-Strogatz | 453 s 4s 20 ms

Table 1. Runtimes for methods with parameters used in figures.

Community Detection Experiment. A lot of the recent
interest in force-directed graph drawing algorithms has been
in their ability to discover interesting latent structure in data
and with a view towards applications like non-linear dimen-
sionality reduction. As a test of this concept on synthetic
data, we tested the algorithms on a celebrated model of
latent community structure in graphs, the stochastic block
model. The results are shown in Figure 4, along with the
results of a standard spectral embedding using the bottom
two nontrivial eigenvectors of the Laplacian. We did not
draw the edges in this case as they make the Figure diffi-
cult to read; more importantly, the location of points in the
embedding show that nontrivial community structure was
recovered; for example, the green and blue communities are
roughly linearly separable in all of the embeddings. Note
that the spectral embedding approach admits strong provable
guarantees for community recovery (see the survey (Abbe,
2017)), and so the interesting thing to observe here is that
the force-directed drawing methods also recover nontrivial
information about the latent structure.

Implementation details. All experiments were per-
formed on a standard Kaggle GPU Kernel with a V80 GPU.
Gradient descent was run with learning rate 0.005 for 4000
steps on all instances. We seeded the RNG with zero before
each simulation for reproducibility. For the greedy method,
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Greedy: 0.0841 Greedy and Grad: 0.0747
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Figure 4. Embeddings of a 3-community Stochastic Block Model
0.09 0.03 0.02

0.03 0.15 0.04| and
0.02 0.04 0.1
community sizes 35, 35,50. Colors correspond to latent com-
munity assignments. The top left is constructed using the
GREEDYCSP algorithm with £y = 3. For this experiment only,
we used the degree-normalized Laplacian since it is generally
preferred in the context of the SBM.

(SBM) with connection probabilities

we eliminated the rotation and translation degrees of free-
dom when implementing the initial brute force step; the
parameter IR was set to 2.5 for the Davis experiment, and
set to 4 for all others — informally, the tuning rule for this
parameter is to increase its value until the plot does not hit
the boundary of the region. We compare runtimes in Table 5;
the runtime for Greedy in Watts-Strogatz is much larger due
to the larger value of n and of R used; the latter roughly
corresponds to the larger diameter of the underlying graph
(cf. Lemma 4).

6. Conclusions

Our theory and experimental results suggest the follow-
ing natural question: does gradient descent, with enough
random restarts, have a similar provable guarantee to Theo-
rem 3? As noted in our experiments and in the experiments
of (Zheng et al., 2018), gradient-based optimization often
seems to find high quality (albeit not global) minima of the
Kamada-Kawai objective, even though the loss is highly
non-convex. In fact, combining our analysis with a different
theorem from (Schudy, 2012) proves that running a vari-
ant of GREEDYCSP without the initial brute force step (i.e.
with ¢y = 0), achieves an additive O(en?) approximation
2

if we repeat the algorithm 22" many times. A similar

guarantee for gradient descent, a different sort of greedy
procedure, sounds plausible.
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