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WHO NEEDS CROSSINGS?: NONCROSSING LINKAGES ARE
UNIVERSAL, AND DECIDING (GLOBAL) RIGIDITY IS HARD∗

Zachary Abel,† Erik D. Demaine,‡ Martin L. Demaine,‡ Sarah Eisenstat,‡ Jayson Lynch,‡

and Tao B. Schardl.‡

Abstract. We exactly settle the complexity of graph realization, graph rigidity, and graph
global rigidity as applied to three types of graphs: “globally noncrossing” graphs, which avoid
crossings in all of their configurations; matchstick graphs, with unit-length edges and where
only noncrossing configurations are considered; and unrestricted graphs (crossings allowed)
with unit edge lengths (or in the global rigidity case, edge lengths in {1, 2}). We show that
all nine of these questions are complete for the class ∃R, defined by the Existential Theory
of the Reals, or its complement ∀R; in particular, each problem is (co)NP-hard.

One of these nine results—that realization of unit-distance graphs is ∃R-complete—
was shown previously by Schaefer (2013), but the other eight are new. We strengthen several
prior results. Matchstick graph realization was known to be NP-hard (Eades & Wormald
1990, or Cabello et al. 2007), but its membership in NP remained open; we show it is
complete for the (possibly) larger class ∃R. Global rigidity of graphs with edge lengths in
{1, 2} was known to be coNP-hard (Saxe 1979); we show it is ∀R-complete.

The majority of the paper is devoted to proving an analog of Kempe’s Universal-
ity Theorem—informally, “there is a linkage to sign your name”—for globally noncrossing
linkages. In particular, we show that any polynomial curve φ(x, y) = 0 can be traced by a
noncrossing linkage, settling an open problem from 2004. More generally, we show that the
regions in the plane that may be traced by a noncrossing linkage are precisely the compact
semialgebraic regions (plus the trivial case of the entire plane). Thus, no drawing power
is lost by restricting to noncrossing linkages. We prove analogous results for matchstick
linkages and unit-distance linkages as well.

1 Introduction

The rise of the steam engine in the mid-1700s led to an active study of mechanical linkages,
typically made from rigid bars connected together at hinges. For example, steam engines
need to convert the linear motion of a piston into the circular motion of a wheel, a problem
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Graph type Realization Rigidity Global rigidity Universality
General ∃R-complete ∀R-complete ∀∀∀RRR-complete Compact

[22] [22] (CoNP-hard [21]) semialg. [15]
Globally noncrossing ∃∃∃RRR-complete ∀∀∀RRR-complete ∀∀∀RRR-complete Compact
(no configs. cross) semialg.
Matchstick graph ∃∃∃RRR-complete ∀∀∀RRR-complete ∀∀∀RRR-complete Bounded
(unit + noncrossing) (NP-hard [8]) semialg.
Unit edge lengths ∃R-complete ∀∀∀RRR-complete Open (do they Compact
(allowing crossings) [22] even exist?) semialg.
Edge lengths in {1, 2} ∃R-complete ∀∀∀RRR-complete ∀∀∀RRR-complete Compact
(allowing crossings) [22] (CoNP-hard [21]) semialg.

Table 1: Summary of our results (bold) compared with earlier results (cited). The rows give
the special types of graphs considered. The middle three columns give complexity results
for the three natural decision problems about graph embedding; all completeness results are
strong. The rightmost column gives the exact characterization of drawable sets.

solved approximately by Watt’s parallel motion linkage (1784) and exactly by Peaucellier’s
inversor (1864) [7, Section 3.1]. These and other linkages are featured in an 1877 book
called How to Draw a Straight Line [13] by Alfred Bray Kempe—a barrister and amateur
mathematician in London, perhaps most famous for his false “proof” of the Four-Color
Theorem [14] that nonetheless introduced key ideas used in the correct proofs of today
[3, 19].

Kempe’s Universality Theorem. Kempe investigated far beyond drawing a straight line by
turning a circular crank. In 1876, he claimed a universality result, now known as Kempe’s
Universality Theorem: every polynomial curve φ(x, y) = 0 can be traced by a vertex of
a 2D linkage [12]. Unfortunately, his “proof” was again flawed: the linkage he constructs
indeed traces the intended curve, but also traces finitely many unintended additional curves.
Fortunately, his idea was spot on.

Many researchers have since solidified and/or strengthened Kempe’s Universality
Theorem [10, 9, 15, 1, 22]. In particular, small modifications to Kempe’s gadgets lead to a
working proof [1, 7, Section 3.2]. Furthermore, the regions of the plane drawable by a 2D
linkage (other than the entire plane R2) are exactly compact semialgebraic regions1 [15, 1].
By carefully constructing these linkages to have rational coordinates, Abbott, Barton, and
Demaine [1] showed how to reduce the problem of testing isolatedness of a point in an
algebraic set2 to testing rigidity of a linkage. Isolatedness was proved coNP-hard [16] and
then ∀R-complete3 [22]; thus linkage rigidity is ∀R-complete.

1A compact planar region is semialgebraic if it can be obtained as the intersection and/or union of finitely
many basic sets defined by polynomial inequalities p(x, y) ≥ 0.

2A set S ⊆ Rd is algebraic if it can be written as the set of solutions to a polynomial equation
p(x1, . . . , xd) = 0. (Algebraic sets are closed under intersection and finite union.)

3The class ∀R = co-∃R consists of decision problems whose complement (inverting yes/no instances)
belong to ∃R. The class ∃R refers to the problems (Karp) reducible to the existential theory of the reals
(∃x1 : · · · ∃xn : π(x1, . . . , xn) for an arithmetic predicate π : Rn → {true, false}), which is somewhere between
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Our results: no crossings. See Table 1 for a summary of our results in comparison to past
results. Notably, all known linkage constructions for Kempe’s Universality Theorem (and
its various strengthenings) critically need to allow the bars to cross each other. In practice,
certain crossings can be made physically possible, by placing bars in multiple parallel planes
and constructing vertices as vertical pins. Without extreme care, however, bars can still be
blocked by other pins, and it seems difficult to guarantee crossing avoidance for complex
linkages. Beyond these practical issues, it is natural to wonder whether allowing bars to
cross is necessary to achieve linkage universality. Don Shimamoto first posed this problem
in April 2004, and it was highlighted as a key open problem in the first chapter of Geometric
Folding Algorithms [7].

We solve this open problem by strengthening most of the results mentioned above to
work for globally noncrossing graphs, that is, graphs plus edge-length constraints that alone
force all configurations to be (strictly) noncrossing.4 In particular, we prove the following
universality and complexity results.

1. The planar regions drawable by globally noncrossing linkages are exactly (R2 and)
the compact semialgebraic regions (Theorem 4.8), settling Shimamoto’s 2004 open
problem.

2. Testing whether a globally noncrossing graph with constant-sized integer edge lengths
has any valid configurations is ∃R-complete (Theorem 4.6).

3. Testing rigidity is strongly5 ∀R-complete even for globally noncrossing graphs with
constant-sized integer edge lengths that are drawn with integer vertex coordinates
(Theorem 4.7).

4. Testing global rigidity (uniqueness of a given embedding) is strongly ∀R-complete even
for globally noncrossing graphs with constant-sized integer edge lengths that are drawn
with integer vertex coordinates (Theorem 4.7).

Our techniques are quite general and give us results for two other restricted forms of graphs
as well. First, matchstick graphs are graphs with unit edge-length constraints, and where
only (strictly) noncrossing configurations are considered valid. We prove in Section 6 the
following universality and complexity results:

5. The planar regions drawable by matchstick graphs are exactly (R2 and) the bounded
semialgebraic regions (Theorem 7.25). Notably, unlike all other models considered,
matchstick graphs enable the representation of open boundaries in addition to closed
(compact) boundaries.

NP and PSPACE (by [6]). The classic example of an ∃R-complete problem is pseudoline stretchability [18].
The classes ∃R and ∀R are discussed more thoroughly in Section 3.2.

4Thus, the noncrossing constraint can be thought of as being “required” or not of a configuration; in
either case, the configurations (even those reachable by discontinuous motions) will be noncrossing.

5A problem is said to be strongly hard if it remains hard when all integers in the input are specified in
unary rather than binary. In other words, all integers are polynomially bounded in the size of the input
rather than exponentially bounded. All of our hardness results show strong hardness when applicable.
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6. Deciding whether an abstract graph can be draw as a matchstick graph is ∃R-complete
(Theorem 6.5). This result strengthens a 25-year-old NP-hardness result [8, 5], and
settles an open question of [22].

7. Testing rigidity or global rigidity of a matchstick graph is strongly ∀R-complete (The-
orems 6.6 and 6.7).

Second, we consider restrictions on edge lengths to be either all equal (unit) or all in {1, 2},
but at the price of allowing crossing configurations. Recognizing unit-distance graphs is
already known to be ∃R-complete [22]. We prove in Section 5 the following additional
universality and complexity results:

8. The planar regions drawable by unit-edge-length linkages are exactly the compact
semialgebraic regions (and R2) (Theorem 5.9), proving a conjecture of Schaefer [22].

9. Testing rigidity of unit-edge-length graphs is strongly ∀R-complete (Theorem 5.7),
proving a conjecture of Schaefer [22].

10. Testing global rigidity of graphs with edge lengths in {1, 2} is strongly ∀R-complete
(Theorem 5.8). This result strengthens a 35-year-old strong-coNP-hardness result for
the same scenario [21]. While it would be nice to strengthen this result to unit edge
lengths, we have been unable to find even a single globally rigid equilateral linkage
larger than a triangle.

We introduce several techniques to make noncrossing linkages manageable in this
setting. In Section 7.1 we define extended linkages to allow additional joint types, in par-
ticular, requiring angles between pairs of bars to stay within specified intervals. Section 7.2
then shows how to draw a polynomial curve and obtain Kempe’s Universality Theorem
with these powerful linkages while avoiding crossings, by following the spirit of Kempe’s
original construction but with specially designed modular gadgets to guarantee no crossings
between (or within) the gadgets. We simulate extended linkage with linkages that have
chosen subgraphs marked as rigid. In turn, in Sections 4–6, we simulate these “partially
rigidified” linkages with the three desired linkage types: globally noncrossing, unit-distance
or {1, 2}-distance, and matchstick.

2 Description of the Main Construction

The heart of this paper is a single, somewhat intricate linkage construction. In this section,
we describe and discuss the properties of this construction in detail, after building up the
necessary terminology.

2.1 Definitions: Linkages and Graphs

Unless otherwise specified, all graphs G = (V (G), E(G), ℓ) in this text are connected, edge-
weighted with positive edge lengths ℓ(e) > 0, and contain no self-loops. We first recall and
establish notation for our primary objects of study, linkages.
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Definition 2.1 (Linkages). An abstract linkage, or simply a linkage, is a triple L = (G,W,P )
consisting of a weighted graph G = (V (G), E(G), ℓ) together with a choice of pin locations
P (w) ∈ R2 for vertices w in a chosen subset W ⊂ V (G) of pinned vertices.

Definition 2.2 (Linkage Configurations). A configuration of a linkage L = (G,W,P ) is an
assignment of vertex locations C : V (G) → R2 respecting the edge-length and pin assign-
ments: |C(u) − C(v)| = ℓ(uv) for each edge uv, and C(w) = P (w) for each pinned vertex
w ∈ W . Two configurations are congruent if they differ only by a Euclidean transformation,
i.e., a translation, rotation, and possibly reflection.

The configuration space Conf(L) ⊆ (R2)|V (G)| is the set of all configurations; it is
a closed, algebraic subset of (R2)|V (G)|. (Be warned, however, that some modified types
of linkages to follow, notably NX-constrained linkages or extended linkages, will have only
semialgebraic configuration spaces.)

An abstract linkage is called configurable or realizable if its configuration space is
nonempty, and a configured linkage is a linkage together with a chosen initial configuration
C0 ∈ Conf(L). Configured linkage (L, C0) is rigid if there is no nontrivial continuous defor-
mation of L, i.e., C0 is isolated in Conf(L). Similarly, (L, C0) is globally rigid if C0 is the
only configuration in Conf(L).

Convention 2.3. As a convenient abuse of notation, we often write v instead of C(v) when
configuration C is understood from context.

We consider abstract graphs and configured graphs as abstract or configured linkages
without pins (P = ∅), with one key difference: rigidity and global rigidity for graphs are
more liberally defined to allow Euclidean motions.

Definition 2.4 (Graph Rigidity and Global Rigidity). A configured graph (G,C0) is rigid
if the only continuous deformations of (G,C0) are rigid Euclidean motions, i.e., if there is a
neighborhood of C0 in Conf(G) consisting only of configurations congruent to C0. Likewise,
(G,C0) is globally rigid if all configurations are congruent to C0.

As defined above, configurations may have coincident vertices, vertices in the middle
of edges, and/or properly crossing edges. The following notion forbids these undesirable
features:

Definition 2.5 (Noncrossing Configurations). A configuration C of a linkage L is non-
crossing if distinct edges intersect only at common endpoints: for any pair of incident edges
uv ̸= uv′ ∈ E(G) sharing a vertex u, the segments C(u)C(v) and C(u)C(v′) intersect only
at C(u) in R2, and for any pair uv, u′v′ of disjoint edges in G, segments C(u)C(v) and
C(u′)C(v′) are disjoint in R2.

Let NXConf(L) ⊆ Conf(L) denote the subset of noncrossing configurations. Then
we say L is globally noncrossing if all of its configurations are noncrossing, i.e., NXConf(L) =
Conf(L). If C is a noncrossing configuration, the minimum feature size of C is the shortest
distance from a segment C(u)C(v) to a point C(w) for uv ∈ E(G) and w ∈ V (G)\{u, v}. If
linkage L is globally noncrossing, its global minimum feature size is defined as the infimum
of the minimum feature size of its configurations. If Conf(L) is compact, this infimum is
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achieved and is strictly greater than 0. (As a special case, if L is not realizable, then it is
vacuously globally noncrossing and its global minimum feature size is +∞.)

Definition 2.6 (Combinatorial Embeddings, Corners). A combinatorial embedding σ of a
graph G consists of a cyclic ordering σv of v’s incident edges for each vertex v ∈ V (G). A
noncrossing configuration C of G agrees with σ if the counterclockwise cyclic ordering of
segments C(v)C(w) around C(v) matches σv for each vertex v.

Whenever edge vu is followed by vw in σv, the two-edge path Λ = uvw is a corner
of σ at v; in the special case where v is incident to exactly one edge vu, there is a single
corner, uvu, at v. If C is a noncrossing configuration of G agreeing with σ, the angles of
C at v are the angles ∠C(Λ) := ∠C(u)C(v)C(w) for each corner Λ = uvw. When there
is only one corner uvu at v, we define ∠C(u)C(v)C(u) to have measure 360◦. With this
convention, the angles of C at v add to 360◦ no matter the degree of v. (Recall that all
graphs are connected, so deg(v) ≥ 1.)

2.2 Constrained Linkages

We will make use of a number of special-purpose “constraints” or “annotations” that may
be attached to linkages to artificially modify their behavior, such as “rigid constraints” that
“rigidify” a subgraph into a chosen configuration while allowing the rest of the linkage to
move freely. These annotations do not affect the linkage itself; instead, they merely indicate
which configurations of the linkage they consider acceptable. The language of constraints
allows us to separate a desired effect from the implementation or construction that enforces
that effect. For example, Sections 4 through 6 develop three different techniques to force
subgraphs to remain rigid—three different “implementations” of the rigidifying constraint—
allowing a majority of the work, namely the Main Theorem (Theorem 2.14), to be reused
in all three contexts. We now define constraints in general, and the rigid constraint in
particular, more formally.

Definition 2.7. A constraint Con on an abstract linkage L is specified by a subset of
the configuration space, Con ⊆ Conf(L), and we say the configurations C ∈ Con sat-
isfy constraint Con. A constrained linkage L is an abstract linkage L0 together with a
finite set K of constraints on L0, and the constrained configuration space is defined as
Conf(L) := Conf(L0) ∩

⋂
Con∈K Con. In other words, constrained linkage L simply ignores

any configurations of L0 that don’t satisfy all of its constraints.

All terms discussed in Section 2.1—realizability, rigidity, global rigidity, etc.—apply
equally well to constrained linkages via their constrained configuration space.

Definition 2.8. A rigid constraint RigidConL(H,CH) on a linkage L = (G,W,P ) is speci-
fied by a connected subgraph H ⊆ G (whose edge lengths match those of G) together with a
configuration CH of H. A configuration C ∈ Conf(L) satisfies the rigid constraint when C
induces a configuration C|H on H that is congruent to the given CH , i.e., differs only by a
(possibly orientation-reversing) Euclidean transformation. When a constrained linkage M
possesses constraint RigidConM(H,CH), we say (H,CH) is a rigidified subgraph of M. A
constrained linkage all of whose constraints are rigid constraints is called a partially rigidified
linkage.
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Other constraint types—the noncrossing constraint, angle constraint, and sliceform
constraint—will be introduced as they are needed, in Sections 6 and 7.1.

2.3 Drawing with (Constrained) Linkages

Definition 2.9 (Linkage Trace and Drawing). For a (possibly constrained) linkage L and
a tuple X = (v1, . . . , vk) of distinct vertices of L, the trace of X is defined as the image
πX(Conf(L)) ⊂ (R2)k, where πX is the projection map sending a configuration C ∈ Conf(L)
to πX(C) := (C(v1), . . . , C(vk)). This trace is semialgebraic, and if Conf(L) is compact, the
trace is also compact. A linkage (L, X) is said to draw its trace, and a set R ⊆ (R2)k is
drawable (by a linkage) if it can be expressed as the trace of some k vertices of a linkage.

The term “draw” is somewhat misleading, because a linkage might not be able to
“draw” its entire trace through a single continuous motion. For example, some linkages have
a disconnected trace, such as the linkage T formed by an equilateral triangle abc pinned
at a and c, so that X = {b} draws two separate points corresponding to the two possible
triangle orientations. Even some linkages with connected traces cannot draw their trace with
a continuous motion: for example, if we modify T by adding a longer edge bd, then d draws
two intersecting circles, even though it can only draw one circle at a time in a continuous
motion (depending on the orientation of triangle abc).

Because of the complicated relationship between a linkage and its trace, some types
of drawings have been singled out as particularly nice:

Definition 2.10 (Liftable Drawing). Say (L, X) draws its trace liftably if the map πX has the
path lifting property: for any configuration C ∈ Conf(L) and path γ : [0, 1] → πX(Conf(L))
in the trace starting at γ(0) = πX(C), there is a path γ : [0, 1] → Conf(L) starting at
γ(0) = C and lifting γ, meaning γ = πX ◦ γ.

For example, node d of linkage T above does not draw its trace liftably, because d
cannot move from one circle to the other through a continuous motion of T . By contrast,
node c does draw liftably (vacuously, as there are no nontrivial paths in c’s trace), even
though c’s trace is disconnected.

Liftable drawing was introduced in [1] (under the name “continuous” drawing) for
its usefulness in studying linkage rigidity. Indeed, if (L, X) draws liftably and a point
p ∈ πX(Conf(L)) is not isolated in the trace, then any configuration C with πX(C) = p is
not rigid, because a nontrivial continuous path beginning at p can be lifted to a nontrivial
motion beginning at C.

Though we have changed the name from “continuous” to “liftable” for greater clar-
ity between continuous motions and liftable drawings, the two notions are closely related:
indeed, liftability implies that each connected component of the trace can be drawn with
a continuous motion. Note, however, that the implication does not go the other way. For
example, the central vertex v in Watt’s famous linkage traces a lemniscate, and can do so
with a continuous motion. However, a path through the trace that “turns a corner” at the
central intersection point cannot be lifted to a motion of the full linkage, so v does not draw
its lemniscate liftably.

http://jocg.org/


Journal of Computational Geometry jocg.org

The complementary notion is rigid drawing:

Definition 2.11 (Rigid Drawing). Say (L, X) draws its trace rigidly if the map πX has
finite fibers, i.e., for any p ∈ πX(Conf(L)), there are only finitely many configurations
C ∈ Conf(L) with πX(C) = p.

For example, node d of linkage T draws its trace rigidly, because there are at most
two configurations corresponding to each possible position of d. By contrast, node c does
not draw rigidly, because infinitely many configurations exist for each position of c.

Rigid drawing was also introduced in [1], for similar reasons: if (L, X) draws rigidly
and if p is isolated in πX(Conf(L)), then any configuration C with πX(C) = p is rigid,
because the discrete set π−1

X (p) contains no nonconstant continuous paths.

As in [1], we are especially interested in cases where (L, X) draws both liftably and
rigidly, as that creates a strong correlation between properties of the trace and the linkage’s
own rigidity or flexibility. We also introduce a stronger notion:

Definition 2.12 (Perfect Drawing). If the map πX is a homeomorphism between Conf(L)
and the trace, we say (L, X) draws its trace perfectly.

Perfect drawing easily implies liftable and rigid drawing, but it is even more restric-
tive. It is especially useful for parametrizing a linkage’s configuration space: if (L, X) draws
perfectly, each configuration of L is uniquely and continuously determined solely from the
locations of vertices in X.

Finally, we will often wish to create a linkage that “behaves like” a related linkage,
which we formalize as follows:

Definition 2.13 (Linkage Simulation). When (L, X) draws precisely the full configuration
space Conf(M) of another linkage M, we say that (L, X) simulates M. It may liftably,
rigidly, or perfectly simulate M if it draws Conf(M) in the corresponding manner.

2.4 Specification of the Main Theorem

For a collection F = {f1, . . . , fs} of polynomials in R[x1, y1, . . . , xm, ym] = R[ # –xy], the alge-
braic set (or algebraic variety) defined by F is the set of common zeros,

Z(F ) := { # –xy ∈ R2m | f1( # –xy) = · · · = fs(
# –xy) = 0}.

The primary technical construction in this paper builds a globally noncrossing, partially
rigidified linkage L(F ) that draws the algebraic set Z(f1, . . . , fs) ⊆ R2m, or at least a large
enough piece thereof, up to a translation of R2m. This translation is necessary: without it,
some algebraic sets would require the drawing vertices in X to collocate in some configu-
rations, precluding the possibility of global noncrossing. For example, two distinct vertices
that draw the torus S1 × S1, where S1 = {(x, y) ∈ R2 | x2 + y2 = 1}, would be forced to
intersect some of the time (e.g., at (1, 0)). Allowing translation, this locus is easily drawable
by two unit-length edges, each pinned by one endpoint at (0, 0) and (3, 0), respectively.
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We are now prepared to precisely specify the properties of this construction, from
which the results listed in Table 1 follow as corollaries. We thoroughly detail these properties
here, so that the corollaries may be derived solely from Theorem 2.14’s statement without
referring to the specifics of its proof (with one small exception, discussed in Section 7.9).
This also allows for maximal reuse: the commonalities in our arguments for our three linkage
contexts—unconstrained globally noncrossing linkages in Section 4, unit-distance linkages
in Section 5, and matchstick linkages in Section 6—have been unified and generalized into
Theorem 2.14, so only features unique to each context need to be discussed in Sections 4–6.

The Main Theorem is divided into three parts because it must be used in subtly differ-
ent ways by the four types of results we seek. Hardness of realizability requires a polynomial-
time construction of an abstract linkage that draws Z(f1, . . . , fs) without knowing whether
the resulting configuration space is empty, whereas proving hardness of rigidity and global
rigidity requires the polynomial-time construction of a linkage together with a known config-
uration. We thus separate these into different Parts of Theorem 2.14 with slightly different
assumptions about the input polynomials fj (Part II for realizability, Part III for rigidity
and global rigidity). When proving universality, we must prove existence of a linkage to
draw any compact semialgebraic set, but the coefficients of the polynomials defining this
set may be irrational or non-algebraic, as might the edge lengths and coordinates of the
resulting linkage, so we isolate this in Part I, away from algorithmic and efficiency concerns.

If the input set of polynomials F has |F | = s real polynomials, each of total degree d
in the 2m variables (x1, y1, . . . , xm, ym), then the number of coefficients is s·

(
2m+d

d

)
(in dense

representation). The number of vertices and edges of the resulting linkage will be bounded
by a polynomial in the related quantities md, dd, and s. We do not attempt bounds that are
finer tuned depending on whether F is sparse or somehow otherwise simpler than parameters
m, d, s might indicate. Indeed, sparse polynomial input does not lead to noticeable efficiency
gains with our algorithm, due to a change of coordinates (detailed in Section 7.2) that can
turn sparse polynomials into dense ones.

Similarly, numerator bounds on edge lengths and coordinates are written in terms
of M , an upper bound on the absolute value of coefficients of the input polynomials. We
wish to emphasize that M bounds the number of unary digits of coefficients, not binary
digits. Nowhere in this paper do we measure the number of binary digits of an integer: the
magnitude, absolute value, or size of an integer always refers to its length in unary.

Theorem 2.14. Part I. Take as input a collection of polynomials F = {f1, . . . , fs}, each in
R[x1, y1, . . . , xm, ym] with total degree at most d. Then we may construct a partially rigidified
linkage L = L(F ) that draws, up to translation, a bounded portion of the algebraic set Z(F ):
specifically, there is a translation T on R2m and a subset X of m vertices of L such that

T (Z(F ) ∩ [−1, 1]2m) ⊆ πX(Conf(L)) ⊆ T (Z(F )).

Furthermore, there is a constant integer D depending only on s,m, d (but independent of the
coefficients in input F ) such that:

1. Vertex list X draws this trace liftably and rigidly.

2. The number of vertices and edges in L is O(poly(md, dd, s)).
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3. Each edge of L has length at least 1/D, and L is globally noncrossing with global
minimum feature size at least 1/D.

4. For each constraint RigidConL(H,CH) on L, H is a tree that connects to G \H only
at leaves of H, and configuration CH has all edges parallel to the x- or y-axes. Tree H
has at least three noncollinear vertices, and it does not flip: for each configuration C
of L, configuration CH and the induced configuration C|H have the same orientation.
Each edge of G is contained in at most one rigidified subtree (H,CH).

5. There is a combinatorial embedding σ of G such that every configuration C ∈ Conf(L)
is noncrossing and agrees with σ. Furthermore, for any vertex v of degree at least 2 that
is not internal to any rigidified tree, each corner Λ at v has angle ∠C(Λ) ∈ (60◦, 240◦).

6. Linkage L has precisely |P | = 3 pinned vertices, which belong to a single rigidified tree
(H,CH) and are not collinear in CH .

Part II. Suppose polynomials fj have integer coefficients, each bounded in absolute value
by M . Then we may bound the complexity of L as follows:

7. All edge lengths in L belong to 1
D · Z and have size O(poly(md, dd, s,M)). Edges not

contained in a rigidified subtree have lengths at most D.
8. Constrained linkage L, the set X of vertices, translation T , and combinatorial embed-

ding σ may be constructed from F deterministically in time O(poly(md, dd, s,M)).

Part III. Finally, if the polynomials fj each satisfy fj (⃗0) = 0, we may additionally compute
an initial configuration C0 satisfying:

9. All coordinates of C0 belong to 1
D · Z and have absolute value O(poly(md, dd, s,M)).

10. C0 is the only configuration of L that projects to T (⃗0) ∈ πX(Conf(L)).
11. For each rigidified subtree (H,CH), C0 induces a configuration of H in which all edges

are parallel to the x- or y-axes. (Edges not in any rigidified subtree need not be axis-
aligned.)

12. C0 may also be computed deterministically in time O(poly(md, dd, s,M)).

Convention 2.15 (Orientation). Property 4 above refers to the orientation of a configured
tree. In this paper, the word orientation always refers to handedness, not to the angle or
direction of an object. So a reflection reverses orientation; a rotation changes angle but
preserves orientation.

2.5 Roadmap

The rest of the paper is organized as follows: After gathering a few preliminary facts about
real (semi)algebraic sets and the class ∃R in Section 3, we use the Main Theorem (Theo-
rem 2.14) to prove that graph realizability, rigidity, and global rigidity are ∃R-complete or
∀R-complete, and that linkages are universal at drawing semialgebraic sets, in each of three
separate contexts: for globally noncrossing graphs/linkages in Section 4, for unit-distance
(or {1, 2}-distance) graphs/linkages in Section 5, and for matchstick graphs/linkages in Sec-
tion 6. After all of that, in Section 7, we finally provide the gory details of the Main
Construction itself.
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3 Preliminaries on Semialgebraic Sets and ∃R

3.1 Semialgebraic Sets as Projections of Algebraic Sets

Here we prove some elementary facts about representing certain semialgebraic sets as pro-
jections of (semi)algebraic sets having specific forms, which will be used in proofs of linkage
universality (not in complexity results). For a general introduction to real semialgebraic
geometry, see [4].

A basic semialgebraic set in Rk is a set of the form {x⃗ ∈ Rk | f1(x⃗) = · · · = fs(x⃗) =
0, g1(x⃗) > 0, . . . , gr(x⃗) > 0} for polynomials fi and gj . Any semialgebraic set can be written
as a finite union of basic semialgebraic sets [4, Prop. 2.1.8]; in fact, this is one of several
equivalent ways to define semialgebraic sets.

Lemma 3.1. Any bounded semialgebraic set R ⊂ Rk can be expressed as the projection of
some bounded basic semialgebraic set onto the first k coordinates.

Proof. We may assume R is nonempty. Any semialgebraic set can be written as a finite
union of basic semialgebraic sets [4, Prop. 2.1.8], so write R =

⋃t
j=1Rj , where each Rj is

a nonempty basic semialgebraic set. Let x⃗, x⃗1, . . . , x⃗t each denote a variable point in Rk,
and define R′ ⊂ (Rk)t+1 as the basic semialgebraic set defined by the conditions x⃗j ∈ Rj for
1 ≤ j ≤ t, as well as

f(x⃗, x⃗1, . . . , x⃗t) :=

t∏
j=1

|x⃗− x⃗j |2 = 0.

This last equation exactly stipulates that x⃗ = x⃗j for some 1 ≤ j ≤ t, so π(R′) =
⋃t

j=1Rj =
R, where π denotes the projection onto the coordinates of x⃗. Set R′ is bounded because
each Rj is bounded.

Lemma 3.2. Any bounded semialgebraic set R ⊂ Rk can be expressed as the projection of
a bounded set of the form {x⃗ ∈ Rm | f1(x⃗) = · · · = fs(x⃗) = 0, g1(x⃗) ̸= 0, . . . , gr(x⃗) ̸= 0}, for
polynomials fi and gj.

Proof. By Lemma 3.1, we may assume R is a basic semialgebraic set, R = {x⃗ ∈ Rk | p1(x⃗) =
· · · = ps(x⃗), q1(x⃗) > 0, . . . , qr(x⃗) > 0}. Because R is bounded, by scaling the polynomials if
necessary, we may assume |pi(x⃗)| ≤ 1 and |qj(x⃗)| ≤ 1 for all x⃗ ∈ R. Now introduce new real
variables a⃗ = (a1, . . . , ar) and define

R′ = {(x⃗, a⃗) ∈ Rk+r | p1(x⃗) = · · · = ps(x⃗) = 0,

q1(x⃗) = a21, a1 ̸= 0, . . . , qr(x⃗) = a2r , ar ̸= 0}.

This set is contained in R× [−1, 1]r and is therefore bounded, and R is the projection of R′

onto the coordinates of x⃗.

A basic closed semialgebraic set has the form {x⃗ ∈ Rk | f1(x⃗) ≥ 0, . . . , fs(x⃗) ≥ 0}; if
this set is also bounded, we call it a basic compact semialgebraic set.
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Lemma 3.3. Any compact semialgebraic set R ⊂ Rk can be expressed as the projection of
some compact algebraic set onto the first k coordinates.

Proof. Compact semialgebraic set R can be written as a finite union of basic compact semi-
algebraic sets [4, Thm. 2.7.2], and the same proof used in Lemma 3.1 shows that R can
be written as a coordinate projection of a basic compact semialgebraic set. (The condition
f = 0 can be expressed as f ≥ 0 and −f ≥ 0.) So it suffices to show that a compact basic
semialgebraic set is a coordinate projection of a compact algebraic set.

Assume R is a compact basic semialgebraic set,

R = {x⃗ ∈ Rn | f1(x⃗) ≥ 0, . . . , fs(x⃗) ≥ 0}.

Choose new variables y⃗ ∈ Rs, and define R′ = {(x⃗, y⃗) | fi(x⃗) = y2i for 1 ≤ i ≤ s}. If π is the
projection onto coordinates of x⃗, then one may check that π(R′) = R. Region R′ is bounded
because R itself is bounded, so this completes the proof.

Semialgebraic sets are closed under projection [4, Thm. 2.2.1] (a form of the Tarski–
Seidenberg principle), as are compact semialgebraic sets. The lemmas above imply that
algebraic sets and basic semialgebraic sets are not closed under projection.

3.2 Existential Theory of the Reals

The class ∃R is the complexity class consisting of all problems polynomially (Karp) reducible
to the Existential Theory of the Reals (ETR), which is the language consisting of true
formulas of the form (∃x1, . . . , xn ∈ R)φ(x1, . . . , xn), where φ is a quantifier-free predicate
over real variables x1, . . . , xn using arithmetic symbols +, −, ×, 0, and 1, logical predicates
<, ≤, and =, and boolean operators ∧, ∨ and ¬. It is known that NP ⊆ ∃R ⊆ PSPACE,
though neither inclusion is known to be strict. The first inclusion is simple, as SAT may
be encoded with polynomial constraints, so any problem complete for ∃R is automatically
NP-hard. The second inclusion is a nontrivial theorem of Canny [6] and is the tightest
known upper bound on the hardness of ∃R.

We now prove the ∃R hardness of two problems used in the forthcoming reduc-
tions. The problem H2N (probably short for Hilbert’s homogeneous Nullstellensatz [22])
asks whether homogeneous polynomials f1, . . . , fs ∈ Z[x1, . . . , xk] have a nonzero common
root in Rk. It was introduced in [16] and was shown to be ∃R-complete in [22], even when
all polynomials have degree 4. We wish to reduce from a stronger version of this problem
where, additionally, all coefficients are in {0,±1,±2}. To prove hardness of this problem,
only a slight modification of Schaefer’s original argument is necessary. Our starting point is
a strengthening of the well-known CommonZero problem:

Lemma 3.4. The CommonZero problem—determining whether integer-coefficient polyno-
mials f1, . . . , fs ∈ Z[x1, . . . , xn] have a common solution in Rn—is ∃R-complete, even when
the polynomials must have total degree at most 2 and coefficients in {−1, 0, 1}.
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Proof. The problem is a subproblem of ETR, so it is certainly in ∃R. For hardness, we
reduce from the PointConfiguration problem: given a choice of orientation (clockwise, coun-
terclockwise, or collinear) for each triple 1 ≤ i < j < k ≤ n, determine whether there exists
a configuration of points p1, . . . , pn in the plane so that each triangle pipjpk has the spec-
ified configuration. This is equivalent (in fact, projectively dual) to the more well-known
Stretchability problem, shown to be ∃R-complete by Mnëv [18]; see also [23].

If we write pi = (pi,1, pi,2) in coordinates, then the triangle’s signed area is given by

2 · area(pipjpk) = det(pi, pj , pk) := det

pi,1 pi,2 1
pj,1 pj,2 1
pk,1 pk,2 1

 , (1)

which is a homogeneous, degree 2 polynomial in the coordinate variables with coefficients ±1.
For the triples with collinear configuration, we simply include the polynomial det(pi, pj , pk) =
0. For those with counterclockwise orientation, include the polynomials det(pi, pj , pk) =
a2i,j,k and ai,j,kbi,j,k = 1, for new variables ai,j,k and bi,j,k. Similarly, for clockwise triples,
include det(pi, pj , pk) = −a2i,j,k and ai,j,kbi,j,k = 1. It is clear that the point configuration
is realizable if and only if the resulting system of polynomials with coefficients in {−1, 0, 1}
and degree at most 2 has a real solution.

Theorem 3.5. The problem H2N remains ∃R-complete even when the input polynomials
have degree 4 and all coefficients lie in {0,±1,±2}.

Proof. The proof by Schaefer [22, Lem. 3.9, Cor. 3.10] for the hardness of H2N with degree 4
starts with a collection of polynomials of degree at most 2 and transforms them into a collec-
tion of homogeneous degree 4 polynomials that have a nontrivial solution if and only if the
original collection has any solution. These transformations, when applied without modifica-
tion to polynomials with coefficients in {0,±1}, return a collection of homogeneous, degree
4 polynomials whose coefficients lie in {0,±1,±2}. So this result follows from Schaefer’s
proof paired with Lemma 3.4.

We can also provide another strengthening of the CommonZero problem:

Theorem 3.6. The CommonZero problem is ∃R-complete, even when the given polynomials
f1, . . . , fs ∈ Z[x1, . . . , xm] have total degree at most 4, all coefficients are in {0,±1,±2}, and
all common zeros, if any, are promised to lie in [−1, 1]m.

Proof. We reduce from H2N, as strengthened in Theorem 3.5: we are given an instance
F = {f1, . . . , fs} of H2N with degree 4 polynomials whose coefficients lie in {0,±1,±2}.
Return the instance F ′ = F ∪{g} of CommonZero, where g(x1, . . . , xm) = x21+ · · ·+x2m− 1.
Polynomial g guarantees that Z(F ′) ⊂ B(⃗0, 1) ⊂ [−1, 1]m, and all coefficients in F ′ are still
in {0,±1,±2}, so F ′ has the required form.

If Z(F ) contains only 0⃗, then Z(F ′) is empty. On the other hand, if a⃗ ∈ Z(F ) \ {⃗0},
then a⃗/|⃗a| ∈ Z(F ′), so the reduction is correct.
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4 Globally Noncrossing Graphs and Linkages

Using the statement of the Main Theorem (Theorem 2.14) and the hardness results from
Section 3.2, we show here that deciding realizability, rigidity, or global rigidity of a globally
noncrossing graph/linkage is ∃R-complete or ∀R-complete, and that globally noncrossing
linkages can draw any compact semialgebraic set in the plane.

4.1 Rigidifying Polygons

To simulate a rigidified tree, we will construct a globally rigid graph in the shape of a slight
thickening of the tree. To that end, we provide here a general method that constructs a
globally rigid triangulation, with Steiner points, of any simple polygon.

Lemma 4.1. Any simple quadrilateral A = A1A2A3A4 has a globally rigid triangulation
with four triangles and one Steiner point as in Figure 1a.

Proof. If any of the four angles of A is 180◦ or greater, relabel so that this angle is at A3.
This means any point in the interior of A within some distance d > 0 from A1 is visible to
all four of A’s vertices inside the quadrilateral.

Let P be the point on side A1A2 at distance d/2 from A1, so that the three angles
∠A2PA3, ∠A3PA4 and ∠A4PA1 lie strictly between 0◦ and 180◦. By continuity, there is a
point Q near P in the interior of A such that ∠A1QA2 is close to 180◦ and the three angles
∠A2QA3, ∠A3QA4 and ∠A4QA1 lie strictly between 180◦ − ∠A1QA2 and 180◦. We may
also assume Q is close to A1 and is therefore visible to all four vertices of A.

We claim that the triangulation T using Steiner point Q is globally rigid. If not,
then by Kawasaki’s criterion [11] for flat-foldable single vertex crease patterns, it must be
the case that some subset of the four angles at Q sum to 180◦. But Q was chosen to ensure
that this condition is false, since adding ∠A1QA2 to any of the other three angles results in
more than 180◦.

Lemma 4.2. If A is a simple n-sided polygon, and points P1, . . . , Pm interior to A are
specified, we may construct a triangulation of A with 2n + 6m − 5 Steiner points that is
globally rigid as a configured graph and has a Steiner point at each of P1, . . . , Pm.

Proof. Let T1 be a triangulation of A with Steiner points at P1, . . . , Pm; there are n+2m−2
triangles and n+3m− 3 interior edges in this decomposition. Subdivide each triangle at its
centroid to obtain triangulation T2, and delete the original n + 3m − 3 interior edges from
T2 to obtain a subdivision T3 of polygon A into triangles and quadrilaterals, as illustrated
in Figure 1b (for the special case m = 0). Finally, apply Lemma 4.1 to each quadrilateral
in T3 to obtain the final triangulation T . The three triangles or quadrilaterals meeting at
each centroid are individually globally rigid, so the union of these three pieces is globally
rigid again by Kawasaki’s criterion: three creases around a vertex, no two collinear, are
insufficient for a nontrivial single-vertex flat folding. Applying this reasoning around each
centroid shows that the entire triangulation T is globally rigid, as desired.
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A1 A2

A3

A4

Q

P

(a) All points in the gray region are visible to
the four vertices of quadrilateral A. Any point
Q close enough to P renders this 4-triangle tri-
angulation of A globally rigid.

(b) Rigidifying each quadrilateral in this decom-
position using Lemma 4.1 rigidifies the entire
graph, as shown in Lemma 4.2.

Figure 1: Rigidifying a simple quadrilateral (left) and a general simple polygon (right) by a
triangulation with Steiner points, as in Lemmas 4.1 and 4.2.

This Lemma will be used when simulating rigidified subtrees in Section 4.3.

4.2 Rigidifying Polyominoes

When the partially rigidified tree (H,CH) that we wish to simulate has integer coordinates,
we will use a more refined grid which uses only rational coordinates and small rational edge
lengths. To accomplish this, we show in this section that any polyomino, after scaling up by
a factor of 1440, can be rigidified with only integer coordinates and constant-sized integer
edge lengths. (A polyomino is a polygon with connected interior formed as the union of a
finite set of squares in the standard unit-square tiling of R2.) We begin by rigidifying a
single square:

Lemma 4.3. The configured graph Gcell shown in Figure 2a, which has the shape of a
1440× 1440 square with small indents on the edges, is globally rigid. The vertex coordinates
and edge lengths are all integers.

Proof. To specify Gcell graph in more detail, the labeled vertices have coordinates

A = (0, 0), B = (720, 0), C = (720, 720), D = (0, 720), E = (360, 224),

F = (615, 360), G = (360, 496), H = (105, 360), I = (360, 825).

In particular, pentagon HFCID and quadrilateral ABFH have a vertical line of symmetry,
and AEB and DGC are reflections of each other through HF . The edge lengths are

AB = 720, AE = 424, AH = 375, EF = 289, GI = 329, HF = 510.
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A B

CD

E

FG
H

I

(a) A globally rigid graph Gcell with integer co-
ordinates and integer edge lengths in the shape
of a 1440× 1440 square with indents.

A

B

C

D

(b) Multiple copies of Gcell can be joined into a
globally rigid polyomino.

Figure 2: Any polyomino made of 1440 × 1440 squares can be turned into a globally rigid
graph with integer coordinates and integer edge lengths.

The rest of the coordinates may be computed by the 90◦-degree rotational symmetry around
C, and all distinct edge lengths are listed above. Note that A,E, F are not quite collinear,
and similarly for H,G,C.

To show that Gcell is globally rigid, we again make repeated use of Kawasaki’s cri-
terion. First, the five triangles forming pentagon HFCID (with Steiner point G) form a
globally rigid subgraph: indeed it may be checked that ∠HGF+∠FGC = 180◦+arcsin 60

901 >
180◦ and ∠HGF + ∠CGI = 180◦ + arcsin 525

15317 > 180◦, so any subset of the five angles at
G that includes ∠HGF cannot add to exactly 180◦. The four triangles forming quadrilat-
eral ABFH form a globally rigid subgraph as well, because the crease pattern around E is
congruent to a subset of the crease pattern around G. The rotationally symmetric copies of
pentagon HFCID and ABFG are likewise globally rigid. Finally, the quadrilateral and two
pentagons meeting at F are globally rigid together because degree-3 crease patterns have
no nontrivial flat foldings, and applying this reasoning four times around the square shows
that all of Gcell is globally rigid.

Lemma 4.4. Any polyomino P made of 1440 × 1440 squares can be triangulated (allow-
ing Steiner points and edge subdivision) into a globally rigid triangulation that has integer
coordinates and constant-sized integer edge lengths.

Proof. Place a copy of Gcell in each cell of polyomino P , swapping orientation for every
other cell so that adjacent cells have aligned indents. A short edge of length 210 within
the indents—such as edge AB in Figure 2b—renders each pair of adjacent cells globally
rigid. Because P is a polyomino which is connected via its edges, the whole assembly is thus
globally rigid. Finally, indents along P ’s boundary can be covered with edges of length 360,
as in Figure 2b.

We show in the next section how to use this method to simulate integer-length
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rigidified subtrees.

4.3 Simulation with Globally Noncrossing Linkages

Construction 4.5. Use notation as in Theorem 2.14: we are given a collection of polynomi-
als F = {f1, . . . , fs} in 2m variables, each of total degree at most d, from which Theorem 2.14
constructs a partially rigidified linkage L = L(F ).

Under Part I of Theorem 2.14 (i.e., with no additional assumptions about F ), we
may construct a globally noncrossing linkage M = M(F ) without constraints that perfectly
simulates the constrained linkage L.

If the Part II assumption holds, meaning the fj have integer coefficients with absolute
value at most M , then M may be constructed from L in time O(poly(md, dd, s,M)), and
furthermore, each edge length of M is rational, with size at most D and denominator dividing
28800D.

Finally, if the Part III assumption also holds, i.e., each fj satisfies fj (⃗0) = 0 re-
sulting in a configuration C0 of L, then the corresponding configuration of M has rational
coordinates of magnitude O(poly(md, dd, s,M)) with denominators dividing 28800D.

g

(a) Thickening a partially rigidified subtree
(H,CH) by radius g, with wedges at each leaf.

A

B

C
D

13u

11u

u

(b) Rigidifying the thickened tree using a poly-
omino and 5-12-13 triangles at the leaves.

Figure 3: Thickening a rigidified subtree (H,CH) into a globally rigid polygon.

Proof. Consider one of the rigid constraints RigidCon(H,CH) on L, and draw a polygon
P that thickens (H,CH) by distance g := 1/(4D) in each direction, with angled wedges
smaller than 60◦ at each leaf vertex, as shown in Figure 3a. Now apply the construction of
Lemma 4.2 to this polygon P to obtain a globally rigid triangulation T that has a Steiner
point at each interior vertex of CH , and replace subgraph H of L with this triangulation
T . Because tree (H,CH) has at least three noncollinear vertices (Property 4), globally rigid
triangulation T perfectly simulates the constraint RigidCon(H,CH): configurations of T are
in bijection with configurations of rigidified tree (H,CH) when considered in isolation. (The
Steiner points chosen for T are there to satisfy the definition of simulate: T needs a vertex
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corresponding to each vertex of H.) Let M be the linkage that results after performing this
replacement for each rigid constraint on L. One rigidified tree was originally pinned in L
(by Property 6); keep these three pins in the corresponding locations in the triangulation T
built from this tree. Because each tree is perfectly simulated, M perfectly simulates L.

To see that M is globally noncrossing, note that Property 5 of Theorem 2.14 guaran-
tees that the 60◦ wedges at leaf nodes do not intersect locally around their shared vertices,
and because g is less than half the minimum feature size of any configuration of L (by
Property 3), the thickened trees do not intersect elsewhere.

If Part II holds, we construct globally rigid graph T from each rigidified tree (H,CH)
more carefully, by building a rigidified polyomino with Lemma 4.4, as follows. Each edge
length in L is an integer multiple of g, by Property 7. Thicken each rigidified tree (H,CH) by
distance g into a polygon P as above, where at each leaf of (H,CH), P forms a wedge with
angle 2 arcsin 5

13 < 60◦. Now we can fill polygon P with a polyomino made from cells of side-
length u = g/5, where the wedge at each leaf is attached with three edges of length 13u, 11u,
and 13u respectively, as shown in Figure 2b. By rigidifying the polyomino with Lemma 4.4,
the resulting graph T is a globally rigid thickening of tree (H,CH) that has edge lengths
in 1

tZ ∩ (0, 12 ] and rational coordinates in 1
tZ of magnitude at most O(poly(md, dd, s,M)),

where t := 1440 · 5 · 4D = 28800D. All edges of L not contained in a rigidified tree, which
appear unmodified in M, already have length at most D by Property 7, proving the Part II
claim.

Finally, for Part III, first consider the nodes of L that are not interior to a rigidified
subtree, i.e., are either a leaf of one or more rigidified trees or are not incidient to any such
tree (by Property 4). These nodes of L have corresponding nodes in M configured in the
same locations, so these nodes of M are configured to have rational coordinates in 1

DZ by
Property 9. Pairing this fact with Property 11 implies that all remaining nodes of M, which
are interior to rigidified thickened trees built from polyominoes, are indeed configured to
have rational coordinates in 1

tZ, proving the claim.

4.4 Hardness and Universality of Globally Noncrossing Linkages

We may finally prove the desired hardness and universality results about globally noncrossing
graphs and linkages.

Theorem 4.6 (Hardness of Globally Noncrossing Realizability). Deciding whether a given
abstract weighted graph G is realizable, even when G is promised to be globally noncrossing
and to have constant-sized integer edge lengths, is ∃R-complete.

Proof. Membership in ∃R is evident. For hardness, we reduce from CommonZero as strength-
ened in Theorem 3.6. Given an instance F = {f1, . . . , fs}, which we may assume have d = 4
and M = 2, apply Construction 4.5 (Part II) to obtain a globally noncrossing linkage M
whose edge lengths are rational with size at most D and denominators dividing t := 28800D.
Let G be the weighted graph that results by unpinning M’s three pins; the output of this
reduction is the scaled graph t · G, whose edge lengths are integers bounded by t ·D = O(1).
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It remains to show why t · G is realizable precisely when Z(F ) is nonempty. The
linkage M from Construction 4.5 liftably and rigidly draws a translation of Z(F ) (because
Z(F ) ⊆ [−1, 1]2m), so F has a common root if and only if Conf(M) is nonempty, i.e., if and
only if M is realizable. By Property 6, M’s pins serve only to prevent rigid transformations
and do not affect realizability, so M is realizable precisely when G is realizable. Finally,
scaling by t does not affect realizability, proving the result.

Theorem 4.7 (Hardness of Noncrossing Rigidity and Global Rigidity). Deciding whether a
given configured weighted graph (G, C0) is rigid, when G is promised to be globally noncross-
ing (so in particular, C0 is noncrossing) and C0 has integer coordinates and constant-sized
integer edge lengths, is ∀R-complete. It remains ∀R-complete if “rigid” is replaced by “globally
rigid”.

Proof. Schaefer [22] has shown that the general linkage rigidity problem is ∀R complete and
therefore belongs to ∀R. Linkage global rigidity likewise belongs to ∀R: it may be expressed
in the form for all valid configurations C, |C(u) − C(v)| = |C0(u) − C0(v)| for all pairs of
(not necessarily adjacent) vertices u and v.

For hardness, we reduce from H2N as strengthened in Theorem 3.5, so suppose we
are given a family of homogeneous polynomials F = {f1, . . . , fs} of degree d = 4 in variables
{x1, y1, . . . , xm, ym} with constant-sized integer coefficients. We may use Construction 4.5
(Part III) to build a globally noncrossing configured linkage (M, C0) that liftably and rigidly
draws a trace πX(Conf(M)) satisfying T (Z(F ) ∩ [−1, 1]2m) ⊆ πX(Conf(M)) ⊆ T (Z(F ))
for some translation T . The result of this reduction will be the configured graph G formed
by scaling (M, C0) by 28800D and removing the three pins. Configured graph G indeed has
polynomially-bounded integer coordinates and constant integer lengths.

To verify the validity of this reduction, suppose first that Z(F ) contains some nonzero
point a⃗. Then Z(F ) contains the entire path p 7→ p · a⃗ starting at 0⃗, so 0⃗ is not isolated
in Z(F ), i.e., T (⃗0) is not isolated in πX(Conf(M)). Because M draws liftably, (M, C0)
is not rigid (as a linkage), and therefore G is not rigid (as a graph). On the other hand,
if Z(F ) = {⃗0} then πX(Conf(M)) contains only the single point πX(C0) = T (⃗0), and by
Property 10 of Theorem 2.14 (uniqueness), it follows that Conf(M) = {C0}, i.e., M is both
rigid and globally rigid as a linkage. By Property 6, all configurations of G are Euclidean
transformations of configurations of 28800D · M, and so G is rigid and globally rigid as a
graph.

Theorem 4.8 (Universality of Globally Noncrossing Linkages). The proper subsets R ⊊ R2

that may be drawn by a globally noncrossing linkage are precisely the compact semialgebraic
sets.

Proof. Given any unconstrained linkage L and vertex v, the trace of v is either all of R2 (if L
has no pins) or is the projection of compact algebraic set Conf(L) and is therefore compact
and semialgebraic. (Recall that L is assumed to be connected.)

Conversely, by Lemma 3.3, any compact semialgebraic region R ⊂ R2 may be written
as the projection of some basic compact set R′ = Z(f1, . . . , fs) ⊂ R2m onto the first two
variables, so it suffices (by ignoring all drawing vertices except the first) to show that some
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translation of R′ may be drawn by a globally noncrossing linkage. By scaling as necessary,
we may further assume that the compact set R′ lies in the box [−1, 1]2m. But this now
follows directly from Construction 4.5, Part I.

5 Unit-Distance and {1, 2}-Distance Graphs and Linkages

Definition 5.1 (Unit Distance Graphs/Linkages). Define an abstract unit-distance graph (or
linkage) as an abstract weighted graph (or abstract linkage) where all edges have weight 1;
a configured unit-distance graph (or linkage) additionally comes with such a configuration.

With our terminology, an abstract unit distance graph/linkage does not necessarily
have any valid configurations, in contrast to the more common usage of the term “unit-
distance graph”. To mitigate confusion with our overloading of this term, we will always
refer to a unit-distance graph/linkage as “abstract” or “configured”.

In this section we prove the strong ∃R-completeness or ∀R-completeness of realiz-
ability, rigidity, and global rigidity for unit-distance (or in the case of global rigidity, {1, 2}-
distance) graphs that allow crossings. We also show universality: any compact semialgebraic
set in R2 can be drawn by a unit-distance linkage. (Unit-distance graphs that do not allow
crossings, i.e., matchstick graphs, are the topic of Section 6.)

There are two noteworthy obstacles in these arguments that were not present in the
previous section. First, the universality proof involves a new complication, namely, non-
algebraic numbers. To illustrate, the circle C = {(x, y) | x2 + y2 = e2} (where e is Euler’s
constant) can be drawn easily by a linkage (using a single edge of length e), but simulating
such an edge with a unit-distance graph is impossible because e is transcendental. As a
workaround, we instead rely on pins to introduce non-algebraic values. Indeed, we may
slightly generalize curve C by introducing new variables (a, b) and considering the modified
curve

C ′ = {((x, y), (a, b)) ∈ R4 | x2 + y2 = a2}.
As C ′ is now defined by polynomials with integer coefficients, the Main Theorem (Part
II) applies, and the resulting linkage may be simulated by a unit distance linkage using
techniques to be presented below. Finally, with one pin, we may fix the values a = e and
b = 0, which recovers the desired circle C. Suitably generalized, this argument can be made
to work for arbitrary compact semialgebraic sets; see Theorem 5.9 for details.

For the second obstacle, we were not able to prove ∀R-completeness of detecting
global rigidity of unit-distance graphs. Indeed, we are not aware of the existence of any
globally rigid unit-distance graphs larger than a triangle!

Open Question. Are there any globally rigid unit-distance graphs with more than 3 edges?

If such a graph is found, it is likely that the methods of this paper can turn it into a proof
of hardness.

As a consolation prize, we demonstrate ∀R-completeness of global rigidity for graphs
with edge lengths in {1, 2}, an appropriate strengthening of Saxe’s result [21] that global
rigidity is coNP-hard for graphs with edge lengths in {1, 2}.
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5.1 Simulation with Unit- and {1, 2}-Distance Linkages

Here we show how to simulate Theorem 2.14 using {1, 2}-distance linkages.

Lemma 5.2 (Reinforced Segment). A single edge of integer length n is perfectly simulated
by a reinforced bar graph formed by adjoining n−1 degenerate {1, 1, 2}-sided triangles along
unit edges.

Proof. This is a simple extension of a tool used in [21, Cor. 4.3].

To rigidify orthogonal trees with {1, 2}-graphs, it suffices to rigidify entire lattice grids:

Lemma 5.3 (Reinforced Grid). Let (G,C) be the configured graph whose vertices lie at all
integer points in [0, n]× [0, n] and whose unit-length edges connect vertically and horizontally
adjacent vertices in this grid. Then the rigidified graph G := ((G,C),RigidConG(G,C)),
where configuration C is rigidified in its entirety, can be perfectly simulated by an uncon-
strained {1, 2}-distance graph, called a reinforced grid.

Proof. We may assume n ≥ 4; otherwise, we apply the construction for n = 4 and restrict
attention to the smaller subgrid. For each 0 ≤ j, k ≤ n, let vj,k be the vertex of G with
C(vj,k) = (j, k). By Lemma 5.2, we may add length-2 edges vj,kvj+2,k and vj,kvj,k+2 to
force each row and column of vertices in G to remain straight. Now add one more rigidified
bar of length 5 connecting v4,0 and v0,3, which constrains row k = 0 and row j = 0 to
remain at 90◦ from each other. In fact, this resulting graph G′ is the desired graph. Indeed,
suppose we have a configuration of G′; by a Euclidean motion, we may assume v0,0, vn,0,
and v0,n are configured at (0, 0), (n, 0), and (0, n) respectively. Because |vn,0 − vn,n| = n
and |v0,n − vn,n| = n in any configuration, vn,n must rest at (n, n) or (0, 0). In the latter
case, vn,1 rests at (n− 1, 0), which is not distance n away from v0,1 at (0, 1), contradicting
Lemma 5.2. So vn,n must indeed lie at (n, n), and the rest of the vertices’ locations are then
fixed.

Construction 5.4. Use notation as in Theorem 2.14: we are given a collection of polynomi-
als F = {f1, . . . , fs} in 2m variables, each of total degree at most d, from which Theorem 2.14
constructs a partially rigidified linkage L = L(F ). We make no claims under Part I alone.

If the Part II assumption holds, meaning the fj have integer coefficients with absolute
value at most M , we may construct, in O(poly(md, dd, s,M)) time, an abstract linkage
M = M(F ) with edge lengths in {1, 2} that perfectly simulates the scaled linkage D · L(F ).
In particular, there is a translation T on R2m and a subset X of m vertices such that

T (D · (Z(F ) ∩ [−1, 1]2m)) ⊆ πX(Conf(M)) ⊆ T (D · Z(F )).

If the Part III assumption also holds, i.e., each fj satisfies fj (⃗0) = 0 which gives
rise to a configuration C0 of L, then the configuration of M corresponding to C0 ∈ Conf(L)
has rational coordinates whose numerators have magnitude O(poly(md, dd, s,M)) and whose
denominators are at most D2.
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Proof. By Property 9, all edge lengths of D · L are integers. By Properties 2, 4 and 7,
each rigidified subtree (H,CH) in D · L has integer coordinates whose sizes are bounded by
O(poly(md, dd, s,M)).

Each edge of D ·L not belonging to any rigidified tree gets replaced with a reinforced
segment of appropriate length as in Lemma 5.2. For each rigidified tree (H,CH) of D·L, build
a reinforced grid of unit squares as in Lemma 5.3 large enough to include the coordinates
of the vertices of (H,CH), and replace the tree by this grid; neighboring edges or trees are
attached at the corresponding grid point. The three pins of D · L are likewise transferred
to their corresponding grid points. Call the resulting linkage M = M(F ). Each reinforced
segment of M perfectly simulates its edge by Lemma 5.2. Likewise, because each rigidified
tree in D · L has at least three noncollinear vertices (Property 4 of the Main Theorem)
each reinforced grid perfectly simulates its rigidified tree by Lemma 5.3. So M perfectly
simulates L.

If Part III holds, then scaled configuration D · C0 of D · L has integer coordinates
bounded by O(poly(md, dd, s,M)) in magnitude. By Property 11 and Lemma 5.3 (Rein-
forced Grid), all nodes of M in reinforced grids are configured with coordinates in 1

5 · Z. It
remains to look at the coordinates of the remaining nodes: those on reinforced segments.
Consider an edge e of D · L not contained in a rigidified tree. Edge e has integer length
q ≤ D2, and its endpoints are initially configured at integer coordinates (a1, b1) and (a2, b2)
(by Property 9). Then the reinforced bar corresponding to e in M has nodes configured at
(a1, b1) +

h
q (a2 − a1, b2 − b1) for integers 0 ≤ h ≤ q, and these coordinates are rationals of

the required form.

We rely on the full strength of perfect simulation in the proof of global rigidity below,
but for the other hardness results, liftable and rigid simulation is sufficient. The latter may
be achieved with only unit-length edges:

Lemma 5.5. A single edge of length 2 can be liftably and rigidly simulated by a unit-distance
graph with 19 edges, formed by joining two copies of Moser’s Spindle along a common equilat-
eral triangle. If the edge has its endpoints configured at (0, 0) and (2, 0), then the configured
unit-distance graph simulating this edge has coordinates of the form a+ b

√
3+ c

√
11+ d

√
33

for rational numbers a, b, c, d.

Proof. The first claim follows from [22, Lemma 3.4], while the second may be verified by
direct computation.

5.2 Hardness and Universality of Unit-Distance and {1, 2}-Distance Graphs

Theorem 5.6 (Hardness of Unit-Distance Realization). Deciding whether a given abstract
unit-distance graph is realizable is ∃R-complete.

Note. This was shown by Schaefer [22] with a simpler, specialized construction, but we
include it here for completeness.

http://jocg.org/


Journal of Computational Geometry jocg.org

Proof. Membership in ∃R is evident. Hardness follows by reduction from CommonZero
exactly as in the proof of Theorem 4.6, using Construction 5.4 in place of Construction 4.5.

Theorem 5.7 (Hardness of Unit-Distance Rigidity). The problem of determining whether a
configured unit-distance graph with coordinates in Q[

√
3,
√
11] is rigid is ∀R-complete, even

when all coordinates have the form (a+b
√
3+c

√
11+d

√
33)/n for integers a, b, c, d, n where

b, c, d, and n have size O(1) (but a need not have constant size).

Proof. As in Theorem 4.7, this problem lies in ∃R. Hardness follows by reduction from the
complement of H2N: given an instance F = {f1, . . . , fs} of this problem (which we may
assume consists of polynomials of degree 4 with constant-sized coefficients by Theorem 3.5),
use Construction 5.4 and Lemma 5.5 to build a configured unit-distance linkage M that
liftably and rigidly draws a translation of D · (Z(F ) ∩ [−1, 1]2m). Then this linkage is rigid
if and only if 0⃗ is the only common zero of F , i.e., F is a “no” instance of H2N. As in the
proof of Theorem 4.7, removing the three pins of M results in a unit-distance graph that is
rigid if and only if F is a “no” instance of H2N.

We must also show that the coordinates of M have the required form. Construc-
tion 5.4 guarantees that Lemma 5.5 is applied only to length-2 edges whose endpoints have
rational coordinates with denominators bounded by D2. For each such edge, say with end-
points at p = (p1, p2) ∈ Q2 and q = (q1, q2) ∈ Q2, the gadget drawn to connect p and q may
be computed by starting with the gadget of Lemma 5.5 (which connects (0, 0) to (2, 0)),
applying the rotation matrix

1

2

(
q1 − p1 −(q2 − p2)
q2 − p2 q1 − p1

)
,

and then translating by (p1, p2). The entries of the rotation matrix are rationals with
denominators at most 2D2 and magnitudes at most 1 (because |q− p| = 2), while p1 and p2
have denominators bounded by D2, so the result follows.

Theorem 5.8 (Hardness of {1, 2}-Distance Global Rigidity). The problem of deciding
whether a given configured {1, 2}-distance graph with coordinates in Q is globally rigid is
∀R-complete, even when all coordinates have denominators of size O(1).

Proof. Membership in ∀R follows as in Theorem 4.7. Hardness follows by reduction from
the complement of H2N just as in the proof of Theorem 4.7, using Construction 5.4 instead
of Construction 4.5. As in the proof of Theorem 4.7, this makes essential use of the fact
that M from Construction 5.4 simulates the linkage L from the Main Theorem perfectly,
not just liftably and rigidly.

As discussed at the start of Section 5, Construction 5.4 requires the input polynomials
to have integer coefficients, but some compact semialgebraic sets cannot be expressed in this
way. We now formalize the workaround described there to prove universality of unit-distance
linkages.
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Theorem 5.9 (Universality of Unit-Distance Linkages). Any compact semialgebraic set
R ⊂ R2 may be drawn by a unit-distance linkage.

Proof. As in the proof of Theorem 4.8 we may write R as the projection onto coordinates
x1, y1 of some compact basic algebraic set

R′ = Z(f1, . . . , fs), fj ∈ R[x1, y1, . . . , xm, ym],

and it suffices to show that some translation of R′ may be drawn with a unit-distance linkage.
In fact, it suffices to show that the scaled set 1

n · R′ may be drawn (up to translation) by
a unit-distance linkage L, for some n ∈ N: indeed, if a unit-distance linkage L draws a
translation of 1

n · R′, then n · L draws a translation of R′ and has integer edge lengths, so
by Lemmas 5.2 and 5.5 it may be simulated by a unit-distance linkage, as required. By
this reasoning, we may replace the compact set R′ by some small-enough 1

n ·R′ and thereby
assume that R′ lies in the box [−1, 1]2m.

Write the scaled set 1
D · R′ as Z(g1, . . . , gs), where gj(

# –xy) = fj(D · # –xy). We wish to
apply Construction 5.4 to polynomials g1, . . . , gs so the resulting linkage draws precisely R′

(up to translation), but these coefficients may not be integers (or even algebraic numbers, as
described above), so we will temporarily replace these coefficients with variables, as follows.
By scaling the coefficients of each gj (which does not affect Z(g1, . . . , gs)), we may assume
that the coefficients are in [−1, 1]. For each nonzero monomial cj,J # –xyJ in each gj (where J
is a vector of exponents), create new variables aj,J and bj,J , gather all of these new variables
into a vector

#–

ab with length 2r, and define the new polynomials

hj(
# –xy,

#–

ab) :=
∑

J such that cj,J ̸=0

aj,J
# –xyJ ,

for 1 ≤ j ≤ s. Polynomials hj now have integer coefficients: in fact, all coefficients equal 1.
It remains to implement the equations hj(

# –xy,
#–

ab) = 0 and (aj,J , bj,J) = (cj,J , 0), for each
1 ≤ j ≤ s and cj,J ̸= 0, which exactly recover the solutions # –xy ∈ Z(g1, . . . , gs).

Applying Construction 5.4 and Lemma 5.5 to the polynomials hj , we may construct
some unit-distance linkage L, a set of drawing vertices

X = {vj | 1 ≤ j ≤ s} ∪ {vj,J | 1 ≤ j ≤ s and cj,J ̸= 0}

corresponding to variables (xj , yj) and (aj,J , bj,J) respectively, and some translation T on
R2m+2r such that X draws a set between T (D · (Z(h1, . . . , hs) ∩ [−1, 1]2m+2r)) and T (D ·
Z(h1, . . . , hs)). Finally, we pin all the vertices vj,J in the plane to force variables (aj,J , bj,J) to
take the values (cj,J , 0): specifically, if Tj,J denotes the translation T restricted to coordinates
(aj,J , bj,J), we pin vj,J to the point Tj,J(cj,J , 0). The trace of vertices v1, . . . , vs in this pinned
linkage is a translation of D · Z(g1, . . . , gs) = R′, as required.

6 Matchstick Graphs and Linkages

In Section 4 we discussed globally noncrossing linkages, which have no crossing configura-
tions because they are required to be carefully designed to enforce this stringent property.
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By contrast, in this section we look at NX-constrained linkages (short for non-crossing-
constrained), which have no crossing configurations for a very different reason: we simply
declare that crossing configurations should be ignored. Any linkage can be made into an
NX-constrained linkage by simply attaching a constraint (cf. Definition 2.7), specifically an
NX-constraint, that redefines the set of valid configurations as follows:

Definition 6.1 (NX-Constrained Linkages and Matchstick Linkages). If L is a linkage, we
define the NX-constraint on L, denoted NXL, as the set of configurations of L that do not
cross. In other words, if L′ := (L,NXL) is an NX-constrained linkage, then its configuration
space is defined by Conf(L′) := NXConf(L).

If L is an unconstrained linkage all of whose edges have length 1, then the NX-
constrained linkage L′ := (L,NXL) is called a matchstick linkage.

In this section we prove analogous hardness results about matchstick linkages and
graphs: matchstick graph realization is ∃R-complete, and matchstick graph rigidity and
global rigidity are ∀R-complete. An analogous “universality” result—that matchstick link-
ages can draw all compact semialgebraic sets—can also be proved with arguments similar to
the prior universality results. However, such a theorem would be incomplete, because match-
stick linkages (more generally, NX-constrained linkages) can draw more than just compact
semialgebraic sets! As a simple example, the NX-constrained two-bar linkage A of Figure 4
draws the half-open annulus {(x, y) ∈ R2 | 1 < x2 + y2 ≤ 9}, because configurations of (the
unconstrained linkage underlying) A with v on circle x2 + y2 = 1 are crossing and are thus
considered invalid by the constraint. In general, the traces of NX-constrained linkages are
bounded and semialgebraic sets (assuming at least one pin). NX-constrained linkages—in
fact, matchstick linkages—can indeed draw all such sets, but our proof of this stronger result
(Theorem 7.25) subtly breaks the abstraction barrier set up by the Main Theorem, so we
postpone this proof until Section 7.9.

v

Figure 4: The trace of an NX-constrained linkage need not be closed.

6.1 Simulation with Matchstick Linkages

For an integer a ≥ 5, we will simulate length-a edges by edge polyiamonds as shown in
Figure 5. Note that any polyiamond, considered as a matchstick graph, is globally rigid. As
proven in the following lemma, two simple but effective wing edges suffice to fix the relative
orientation and position of two adjacent edge polyiamonds (Figure 5). We may more easily
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describe the relative positions of edge polyiamonds P and Q by temporarily pinning P in
place:

Lemma 6.2 (Wing Edges). Consider the matchstick linkage L drawn in Figure 5, with two
edge polyiamonds P and Q sharing a vertex, three pins in P , and two extra wing edges
attached at vertices a and b as shown. Then in every configuration of this linkage, Q has
the same orientation as P , and its central axis is rotated from P ’s axis by an angle 60◦ <
θ < 240◦. Every such θ corresponds to a unique configuration of L.

Proof. Polyiamond Q must be drawn with the same orientation as P , or else the wing edges
will create crossings. Likewise, a, o, b, and c must form a rhombus to prevent these four
edges from intersecting each other. So Q’s and c’s location are determined by the single
angle θ, and it may be seen that no crossings occur precisely when 60◦ < θ < 240◦.

P

Q

o a

cb

Figure 5: Left: Edge polyiamonds used to simulate edges of integer length. Right: Edge
polyiamonds braced at 90◦ based on a 5-12-13 right triangle.

Lemma 6.3 (Orthogonal Braces). By modifying the edge polyiamonds and adding a hy-
potenuse polyiamond as shown in Figure 5, the resulting matchstick linkage M is globally
rigid, and its unique configuration has θ = 90◦.

Proof. The previous lemma and the 5-12-13 right triangle force Q to be drawn at a +90◦ an-
gle from P and with the same orientation. The hypotenuse polyiamond then has only one
crossing-free position.

Construction 6.4. Use notation as in Theorem 2.14: we are given a collection of polynomi-
als F = {f1, . . . , fs} in 2m variables, each of total degree at most d, from which Theorem 2.14
constructs a partially rigidified linkage L = L(F ).

If the hypotheses of Part II hold, so polynomials fj have integer coordinates with
absolute values at most M , we may construct, in O(poly(md, dd, s,M)) time, an abstract
matchstick linkage M that perfectly simulates the scaled linkage D · L.

If the Part III assumption also holds, i.e., each fj satisfies fj (⃗0) = 0 giving rise
to configuration C0 of L, then the corresponding configuration of M has coordinates of the
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form (a + b
√
3)/c, where a is an integer of magnitude O(poly(md, dd, s,M)), and b and c

are integers with magnitude at most O(1).

Proof. We may assume that in each rigidified subtree (H,CH) of L, no internal node has
degree exactly 2 with edges at 180◦ from each other in CH , because such a node can be
erased by merging its two edges together. For the remainder of this proof, replace L with
40D · L: each rigidified tree has integer coordinates, each edge has integer length at least
40, and each configuration has feature size at least 40, by Theorem 2.14.

We create a matchstick linkage M simulating L using Lemmas 6.2 and 6.3, as follows.
First, M has a vertex corresponding to each vertex of L. Each edge of L is replaced by an
edge polyiamond of the appropriate length connecting the corresponding vertices.

At any vertex v internal to some (necessarily unique, by Property 4) rigidified tree
(H,CH), brace any right angles at v in (H,CH) as in Lemma 6.3, by modifying the corre-
sponding edge polyiamonds and adding wings and a hypotenuse. Any 180◦ or 270◦ angles
at v in (H,CH) can be left alone. At any vertex v of L that is not internal to any rigidified
tree (and has degree at least 2), simply attach wings to the incident edge polyiamonds as
in Lemma 6.2 according to the cyclic order σv at v. Finally, L has exactly three pins in one
of the rigidified trees (H,CH); in M, we instead place three non-collinear pins in the edge
polyiamond corresponding to one of H’s edges.

We must show that M perfectly simulates L. First, we claim no edge polyiamond
may reverse its orientation: they all have the same orientation as in Figure 5 in every
configuration of M. This is certainly true for the pinned edge polyiamond. Lemma 6.2 shows
that edge polyiamonds connected by wing edges must maintain their relative orientations.
At each vertex v of L, all of the edge polyiamonds of M incident to v are connected to each
other by wing edges: if v is internal to a rigidified tree then at most one of its corners is
missing wing edges (by the assumption above), and otherwise all of v’s corners have wing
edges. So by connectivity, all edge polyiamonds maintain the same orientation, as claimed.
This shows that each configuration C of L induces at most one configuration of M: the
edge polyiamond built for edge uv must be rotated and translated (not reflected) to connect
points C(u) and C(v) in the plane.

Similarly, each vertex interior to a rigidified tree (H,CH) has hypotenuse polyia-
monds on all or all but one of its corners, which enforce the constraint RigidCon(H,CH) by
Lemma 6.3. So each configuration of M comes from a configuration of L, i.e., M draws a
subset of Conf(L).

It remains to show that each configuration C of L induces a valid (i.e., noncrossing)
configuration of M. For each rigidified tree (H,CH), the edge and hypotenuse polyiamonds
simulating (H,CH) in M may be configured to match C without intersecting each other
because the induced configuration C|H has the same orientation as CH , by Property 4 of
the Main Theorem. For each vertex v of L not interior to a rigidified tree, the angles of
v’s corners in configuration C lie strictly between 60◦ and 240◦ by Property 5 of the Main
Theorem, so locally, wing edges around v do not create crossings by Lemma 6.2. Globally,
configuration C of L has feature size at least 40, while the linkage M extends less than
20 units away from the vertices and edges it simulates, so C indeed induces a (noncrossing)
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configuration of M, as desired.

Finally, if Part III applies, let C ′
0 be the configuration of M induced by initial

configuration C0 (after scaling C0 by 40D as above), and note that (the scaled) C0 has
integer coordinates and integer edge lengths, both of polynomial magnitude. We must show
that the coordinates of C ′

0 have the required form (a + b
√
3)/c for integers a, b, c bounded

as claimed. For any edge e of C0 with integer endpoints (a1, b1) and (a2, b2) and integer
length q, the vertices along the central axis of the corresponding edge polyiamond have
rational coordinates of the form p = (a1, b1) +

h
q (a2 − a1, b2 − b1) for integers 0 ≤ h ≤ q.

If e is part of a rigidified tree then this edge is axis-aligned (by Property 11) and so p has
integer coordinates; otherwise, e has length q ≤ 40D2 by Property 7, so the denominators
of p have magnitude q = O(1). The rest of the vertices in the polyiamond are offset from
these coordinates by the unit vector w⃗ = (a2 − a1, b2 − b1)/q rotated by some multiple
of 60◦; for the same reasons, denominators in w’s entries have constant size, so the same
holds for the vertices in the edge polyiamond. The same computations holds for hypotenuse
polyiamonds. The only vertices not yet accounted for are the wing vertices, and these have
the form A+B−O where A, B, and O are rational-coordinate points along edge-polyiamond
axes as described above.

Note. A single edge on its own is not perfectly simulated by an edge polyiamond, because
the latter may reflect across its central axis. In the proof above, we were careful to argue
that all edge polyiamonds maintain a fixed orientation (due to pins and wing edges) so that
this ambiguity is impossible.

6.2 Hardness of Matchstick Linkages

Theorem 6.5 (Hardness of Matchstick Graph Realizability). Deciding whether a given
abstract matchstick graph is realizable is ∀R-complete.

Theorem 6.6 (Hardness of Matchstick Graph Rigidity). Deciding whether a given con-
figured matchstick graph with coordinates in Q[

√
3] is rigid is ∀R-complete, even when all

coordinates have the form (a+ b
√
3)/c for integers a, b, c where b and c have size O(1).

Theorem 6.7 (Hardness of Matchstick Graph Global Rigidity). Deciding whether a given
configured matchstick graph with coordinates in Q[

√
3] is globally rigid is ∀R-complete, even

when all coordinates have the form (a + b
√
3)/c for integers a, b, c where b and c have size

O(1).

These hardness proofs are perfectly analogous to those in Section 5, using Construc-
tion 6.4 instead of Construction 5.4 and Lemma 5.5, so we omit their proofs.

As described at the beginning of this section, universality of drawing with matchstick
linkages is more subtle than prior universality results, because matchstick linkages can draw
traces that are bounded semialgebraic sets which need not be closed. We will prove that
matchstick linkages can indeed draw all such sets, but our argument utilizes details from the
proof of the Main Theorem. The universality statement and proof may therefore be found
at Theorem 7.25, at the end of Section 7.
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7 Extended Linkages and the Main Construction

In this section we finally prove the Main Theorem. We first define extended linkages, a special
type of constrained linkage designed specifically for this proof, in Section 7.1. Section 7.2
then presents a detailed outline of our proof strategy, and Section 7.3 details our choices of
parameters. The remainder of this section then covers the proof in full.

7.1 Defining Extended Linkages

We define and use extended linkages, which are constrained linkages whose constraints are
tailored for the specifics of our construction. (More general constraints are possible but not
explored in this paper.)

The first of these constraints, the angle constraint, specifies a preferred arrangement
of edges around each vertex, and specifies that the angle at each corner may not change very
much. Recall that a combinatorial embedding consists of a cyclic counterclockwise ordering
σv of the edges incident to each vertex v (Definition 2.6).

Definition 7.1 (Angle Constraint). For a linkage L and a combinatorial embedding σ
of L, an angle constraint, AngleConL(σ,A,∆), is specified by an assignment of an angle
0 ≤ A(Λ) ≤ 2π and an angle tolerance ∆(Λ) ≥ 0 to each corner Λ of σ, with the condition
that A assigns a total of 2π to the corners around each vertex.

A configuration C ∈ Conf(L) satisfies the angle constraint AngleConL(A,∆) if, for
each corner Λ, angle ∠C(Λ) lies in the closed interval

[A(Λ)−∆(Λ), A(Λ) + ∆(Λ)].

In particular, any corner with ∆(Λ) = 0 is rigid: its angle in C must be exactly A(Λ). We
call such corners frozen.

Note that edges incident to a vertex v might not be configured in the cyclic order that
σ prefers, if tolerances ∆(Λ) are large enough to allow otherwise. But even if each vertex
locally agrees with σ’s cyclic ordering in some configuration C, we need C to be noncrossing
before we can say that it agrees with σ as in Definition 2.6. In an angle constraint, σ has
only one role: to identify which pairs of edges should be considered corners.

The other constraint allows for sliceforms:

Definition 7.2 (Sliceform Constraint). For a constrained abstract linkage L and a com-
binatorial embedding σ, a Sliceform Constraint, SliceConL(σ, S), is specified by a subset
S ⊂ V (G) of (some or all of the) vertices of degree 4. A configuration C ∈ Conf(L) satisfies
the sliceform constraint SliceConL(σ, S) if, for each sliceform vertex v ∈ S with neighboring
vertices w, x, y, z in cyclic order according to σ, points C(w), C(v), C(y) are collinear in this
order, and C(x), C(v), C(z) are collinear in this order.

Sliceforms permit a limited form of “nonplanar” interaction while still being sim-
ulatable without crossings (cf. Lemma 7.22 on page 62), so they are our primary tool in
circumventing the difficulties of planarity.
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An extended linkage is simply a linkage with each type of constraint listed above,
with a few convenient restrictions:

Definition 7.3 (Extended Linkage). An (ε, δ)-extended linkage where 0 < δ < ε < π/4 is
defined as a constrained linkage L whose constraints K have the form

K = {AngleConL(σ,A,∆),SliceConL(σ, S)}

with the same combinatorial embedding σ, where at each corner Λ of L, A(Λ) is chosen from
{90◦, 180◦, 270◦, 360◦}, and ∆(Λ) lies in {0, δ, ε}. We will call L simply an extended linkage
when ε and δ are the global constants given later by Equations 6–7.

Convention 7.4 (Drawing Extended Linkages). In drawings of extended linkages, all cor-
ners Λ are drawn at their “base” angle, A(Λ). Corners marked with a solid gray sector are
frozen (∆(Λ) = 0), and the rest have ∆(Λ) = ε unless otherwise specified. Vertices sur-
rounded by small squares are pinned, and those marked with an “x” are sliceform vertices.
See Figure 11 for examples.

It will often be useful to describe extended linkages not by the positions of their
vertices, as with the projection πX (cf. Definition 2.9 of trace), but by the angles of a chosen
set of corners. We therefore define a function Offset that measures how these angles differ
from their “neutral” values given by A in the angle constraint AngleCon(σ,A,∆):

Definition 7.5 (The Offset Function). If L is an extended linkage and Y = (Λ1, . . . ,Λk) is
a tuple of (some or all of) the corners of L, define the function OffsetY : Conf(L) → R|X| by

OffsetY (C) = (∠C(Λ1)−A(Λ1), . . . ,∠C(Λk)−A(Λk)).

We conclude this section with some useful facts about extended linkages.

Lemma 7.6. If L is any (ε, δ)-extended linkage, then each vertex of L has degree at most
4. If a configuration C ∈ Conf(L) has no crossings, then C agrees with combinatorial
embedding σ.

Proof. The A(Λ) values around each vertex must sum to 2π, and each A(Λ) is at least π/2,
so each vertex has degree at most 4, verifying the first claim.

For the second claim, pick a vertex v, which we may assume has degree at least 2,
for otherwise there is nothing to prove at v. Let Λ1, . . . ,Λdeg(v) be the corners around v,
and let C be any configuration of L. Because each corner begins where the previous corner
ends, the angles ∠C(Λj) around C(v) will always add to an integer multiple of 2π; the edges
surrounding v are configured in the cyclic order specified by σ precisely when each ∠C(Λj)
is positive and they all add to exactly 2π.

For each Λj (1 ≤ j ≤ deg(v)), we have 0 < ∠C(Λj) < A(Λj) + π/4 by our assump-
tions on A and ∆. Thus,

0 <

deg(v)∑
j=1

∠C(Λj) < deg(v) · π
4
+

deg(v)∑
j=1

A(Λj) = deg(v) · π
4
+ 2π < 4π,
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so the angles ∠C(Λj) must indeed add to 2π, as claimed. Thus, if C has no crossings, it
agrees with σ.

Lemma 7.7. For any (ε, δ)-extended linkage L, the configuration space Conf(L) is closed
and semialgebraic. If L is connected and has at least one pin, then Conf(L) is compact.

Proof. Let L′ be the underlying, unconstrained linkage. Then Conf(L′) is closed and semi-
algebraic (in fact algebraic), so it is enough to show that each of the constraints specifies a
closed, algebraic subset of Conf(L′).

For the angle constraint, suppose Λ = uvw is a corner with A(Λ) = α and ∆(Λ) = θ.
If u = w then v has degree 1 and there is no constraint, so we may assume u and w are
distinct vertices. We claim the angle constraint at Λ can be expressed by the dot product
inequality p′ · q ≥ cos θ, where p = u−v

ℓ(uv) , p
′ = Rotα p is the rotation of p by angle α around

the origin, and q = w−v
ℓ(wv) . To see this, first observe that in any configuration of L′, p and q

(and hence also p′) will be unit vectors. The dot product then computes the cosine of the
angle between p′ and q. The inequality bounds this angle to the interval [−θ, θ], as desired.
So the angle constraint is indeed a closed, semialgebraic subset of Conf(L′).

The sliceform constraint is simpler. If v is a sliceform vertex with neighboring vertices
w, x, y, z in cyclic order, then the constraint may be expressed by the vector equalities

w − v

ℓ(vw)
= −y − v

ℓ(vy)
and

x− v

ℓ(vx)
= −z − v

ℓ(vz)
,

which is an algebraic (and therefore closed semialgebraic) constraint on Conf(L′). The
configuration space Conf(L) is therefore closed and semialgebraic, as claimed.

If L is connected and has at least one pin, then Conf(L) is closed and bounded and
is therefore compact.

7.2 Detailed Overview of Strategy

Our Main Construction is primarily concerned with showing, for a finite set F of polynomials
in R[x1, y1, . . . , xm, ym], how to construct an extended linkage that draws a bounded portion
of the common zero set Z(F ), i.e., a set between Z(F ) ∩ [−1, 1]2m and Z(F ), up to a
translation. This subsection outlines the key points of our approach, with full details to
follow in subsequent subsections.

Convention 7.8. For convenience, points in R2 will be specified by cartesian coordinates
or by complex numbers interchangeably, so (3 cos θ, 3 sin θ) and 3 exp(iθ) are identical.

Our construction will be able to more easily manipulate angles than vectors, so
wherever possible we will encode a point using two angles α and β, which relate to the
point’s Cartesian coordinates as follows:

Rect(α, β) := (cosα, sinα) + (− sinβ, cosβ)− (1, 1) = eiα + i · eiβ − (1 + i). (2)
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Usually α and β will be small angles, so geometrically, Rect(α, β) is the result of starting
at (−1,−1), stepping one unit at angle α (nearly horizontal), and then one unit at angle
β + π/2 (nearly vertical). In particular, Rect(0, 0) = (0, 0). We refer to these angles α
and β as angular coordinates for the corresponding point. Similar strategies are employed
in [12, 1].

Lemma 7.9. For any angle 0 < θ < π/4, the function Rect is a homeomorphism from the
region [−θ, θ]2 onto its image, which is a compact region (specifically, the Minkowski sum of
two circular arcs) containing the box [−θ/2, θ/2]2.

Proof. The region M := Rect([−θ, θ]2) is the Minkowski sum of two orthogonal circular
arcs, each with central angle 2θ, as shown in Figure 6.

Rect is a local homeomorphism on [−θ, θ]2, because the Jacobian determinant at
(α, β) is cos(α − β) ̸= 0. It may also be seen geometrically that Rect is injective on the
boundary of [−θ, θ]2, since the four circular arcs bounding M in Figure 6 are disjoint away
from their endpoints. This is enough to ensure that Rect is bijective and in fact homeomor-
phic with its image, by [17, Corollary 2.6].

Region M contains the square [− sin θ, sin θ+cos θ−1]2, as shown in Figure 6. If we
could show that p(θ) := sin θ−θ/2 and q(θ) := (sin θ+cos θ−1)−θ/2 are both nonnegative,
we would conclude that this square, and hence M itself, contains [−θ/2, θ/2]2. Both p and q
are concave down functions of θ ∈ [0, π/4], so it is enough to verify nonnegativity only at the
endpoints 0 and π/4, which is straightforward: p(0) = q(0) = 0, p(π/4) = (4

√
2 − π)/8 >

0.314 > 0, and q(π/4) =
√
2− 1− π/8 > 0.0215 > 0.

o

a b

cd

w

y = sin θ + cos θ − 1

y = θ/2

y = 0

y = −θ/2

y = − sin θ

Figure 6: The region M described in Lemma 7.9 (gray) is bounded by four circular arcs and
contains the square [−θ/2, θ/2]2.

For the constructions below, in place of rectangular coordinates (xj , yj) we will use
angles (αj , βj) related by (xj , yj) = 2r · Rect(αj , βj), where the radius 2r will be carefully

http://jocg.org/


Journal of Computational Geometry jocg.org

chosen later. We may write this equivalently as

xj = r
(
eiαj + e−iαj + ieiβj − ie−iβj − 2

)
,

yj = r
(
−ieiαj + ie−iαj + eiβj + e−iβj − 2

)
. (3)

Applying (3) for each 1 ≤ j ≤ m, write # –xy := (x1, y1, . . . , xm, ym) as a function # –xy(
#  –

αβ)
where

#  –

αβ := (α1, β1, . . . , αm, βm). Make this substitution into each polynomial f ∈ F ,
expand fully, and combine like terms, resulting in an expression of the form

f( # –xy(
#  –

αβ)) =
3∑

u=0

∑
I∈Coeffs(2m,d)

iu · du,I · ei·(I·
#  –
αβ),

where each du,I is a nonnegative real number, and

Coeffs(2m, d) := {(a1, b1, . . . , am, bm) ∈ Z2m | |a1|+ |b1|+ · · ·+ |am|+ |bm| ≤ d}. (4)

(The factors of r from (3) have been incorporated into coefficients du,I .) Only du,I − du+2,I

(with indices taken modulo 4) affects the total, so by further cancellation we may assume
one or both of these coefficients is 0 (for each u, I pair). It will prove useful to change the
form of this expression a bit: replace each term ei·(I·

#  –
αβ) from (4) with ei·(I·

#  –
αβ) − 1, and add

a constant term to compensate for this change. The result is

f( # –xy(
#  –

αβ)) = f (⃗0) +

3∑
u=0

∑
I∈Coeffs(2m,d)

iu · du,I ·
(
ei·(I·

#  –
αβ) − 1

)
; (5)

by evaluating at
#  –

αβ = 0⃗ (equivalently, # –xy = 0), it may be verified that the required constant
term is in fact f (⃗0). Note that the four coefficients du,I with I = 0⃗ can be discarded, as
these terms in (5) are identically 0.

Even though f( # –xy(
#  –

αβ)) computes real values, these complex representations of f
will prove more useful for turning polynomials into linkages. In particular, the modified
form (5) has the advantage that each term other than the f (⃗0) term evaluates to 0 + 0i at
#  –

αβ = 0⃗, which is crucial for ensuring that our linkages come with nice, rational coordinates
when f (⃗0) = 0.

Lemma 7.10. If f has 2m variables of total degree at most d and coefficients with magnitude
at most M , and r > 0, then in representation (5) there are at most 2(2m)d(2d+1)d nonzero
coefficients du,I , and the absolute values of all of these coefficients add to at most 6d · rd ·M ·(
2m+d

d

)
. If f has integer coefficients and r is a positive integer, then entries du,I are also

integers, and they may be computed from f in deterministic time O(poly(md, dd, rd,M)).

Proof. We may bound the size of Coeffs(2m, d) by overcounting as follows: construct an
integer vector I ∈ Z2m by choosing d entries (or choosing all of them if d > 2m), assigning
each chosen entry a value from {−d,−d+1, . . . , d}, and assigning 0 for the remaining entries.
The number of such I is max(

(
2m
d

)
, 1) · (2d+ 1)d ≤ (2m)d(2d+ 1)d. There are therefore at

most 2 · (2m)d(2d+ 1)d nonzero coefficients du,I .
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For each monomial c · # –xyJ in f of total degree k ≤ d, substitute each xj and yj as in
Equation (3) and expand fully without collecting like terms. There are at most 6k terms in
this expansion (interpreting 2 as two separate terms 1+1), each of the form c · rk · iu · eI·

#  –
αβ ,

so the sum of the magnitudes of these coefficients is at most 6k · rk · c ≤ 6d · rd ·M . Adding
this quantity across all monomials in f , we obtain a sum no larger than 6d · rd ·M ·

(
2m+d

d

)
.

Finally, collecting like terms (including cancelling du,I and du+2,I pairs as much as possible)
can only decrease the sum of the magnitudes of the coefficients by the triangle inequality.
The coefficients du,I do not change when modifying Equation (4) to Equation (5) except
that the coefficients with I = 0⃗ can be discarded, as the corresponding terms are identically
zero.

If the coefficients of f are integers, then every term in the above expansion also has
integer coefficients. This expansion may be performed in time O(poly(md, dd, rd,M)) with
straightforward methods.

We will use this angular representation as a template to compute each polynomial f
in the linkage. Indeed, much like in Kempe’s original strategy [12] and especially in Abbott
et al.’s correction thereof [1], we provide gadgets for the following tasks.

• The Start Gadget (Figure 15a) converts from rectangular position (xj , yj) to angles
(αj , βj).

• The Angle Sum Gadget (Figure 16b), built from the Angle Average Gadget (Figure 13),
allows adding and subtracting angles to construct all of the I · #  –

αβ values.

• The Vector Creation Gadget (Figure 15b) and Vector Rotation Gadget (Figure 11d)
construct the vectors iu · du,I · ei(I·

#  –
αβ).

• The Vector Sum Gadget (Figure 16c), built from the Vector Average Gadget (Fig-
ure 16a), allows adding vectors to construct the values f( # –xy(

#  –

αβ)) − f (⃗0) for each
f ∈ F .

• The End Gadget (Figure 15c) constrains these values to equal −f (⃗0).

We employ several new ideas to ensure the resulting extended linkage E(F ) is noncrossing.
First, we construct a rigid grid of large square cells. Each gadget is isolated in one or O(1)
of these cells, and information is passed between gadgets/cells only using sliceform vertices
along grid edges. In this way, these modular gadgets may be analyzed individually, as
there is no way for distinct gadgets to intersect each other. Second, the linkage E(F ) is an
(ε, δ)-extended linkage, where ε and δ (the angle tolerances in AngleConE(F )(σ,A,∆)) are
global constants that restrict movement enough to prevent crossings within each separate
gadget. The values of constants ε and δ are discussed in the next subsection. We rely on
the Copy Gadget (Figure 11a) to copy angles and propagate them along paths of cells to
distant gadgets in the grid. The Crossover Gadget (Figure 11b) allows these paths to cross,
so we are not restricted to planar communication between gadgets. All of our gadgets make
frequent use of the Parallel Gadget in Figure 10, which (with pins removed) keeps segments
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parallel without otherwise restricting motion (within some neighborhood). Figure 17 shows
an example of the gadgets working together.

Finally, we simulate extended linkage E(F ) with a partially rigidified linkage L(F ),
in two steps. First, by replacing a vicinity of each sliceform vertex in E(F ) with the Sliceform
Gadget (Figure 18), we construct an extended linkage E ′(F ) that perfectly simulates E(F )
but has no sliceforms. Then, we replace each edge of E ′(F ) with a rigidified orthogonal
tree, connected to neighboring edges with the Angle Restrictor Gadget (Figure 19), which
enforces the precise bounds in the angle constraints.

7.3 Constants and Parameters

Our construction uses a few carefully chosen and interconnected parameters, which we ex-
plain and collect here for ease of reference.

Linkage E(F ) is an (ε, δ)-extended linkage, where the angle tolerances ε and δ are
global constants tuned for specific purposes. The parameter ε has a single, simple goal:
to constrain bar movement enough to ensure uniqueness (but not necessarily existence)
of configurations. For example, Kempe’s fatal flaw was failing to prevent parallelograms
from “flipping” into contraparallelograms, and vice versa. Abbott et al. [1] resolved this
problem by using an additional brace along the midline of the contraparallelogram. Our
angle constraints provide an alternative solution6: if a rectangular linkage is given angle
constraints with tolerance ε < π/2, then it cannot flip into a contraparallelogram, since one
of its angles, constrained to the interval π/2±ε, would be forced to lie in the disjoint interval
3π/2± ε.

The smaller parameter δ has a double purpose. First, δ further restricts movement
enough to prevent intersections and to control the global minimum feature size. But simply
upper bounding how much each gadget can move is not enough: at some point, we must
be able to say that our linkage can move at least enough to draw the loci we are interested
in. This is δ’s second purpose: in each of our gadgets, we ensure that every corner with
tolerance δ can in fact realize any angle offset in the entire interval [−δ, δ]. In other words,
while ε ensures uniqueness, δ measures existence.

The precise values we have chosen are

ε := cos−1

(
1− 3

10
· 2nε

n2
ε + 1

)
, where nε = 5 · 103; and (6)

δ := cos−1

(
1− 3

10
· 2nδ

n2
δ + 1

)
, where nδ = 4 · 1014. (7)

Numerically, these come out to approximately ε ≈ 0.0155 and δ ≈ 5.48 · 10−8. Most
uses of ε and δ rely only on the facts that ε ≤ π/16 and δ · 218 ≤ ε, which may be
numerically verified for the choices above. Only our final gadget, the Angle Restrictor
Gadget in Section 7.7, places additional constraints on these values, in terms of both size

6Angle constraints per se only apply to constrained linkages. It is more correct to say that we resolve
parallelogram flipping via angle constraints combined with a method of simulating these constraints using
classical linkages.
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and form: the trigonometric forms allow the Angle Restrictor Gadget to have rational
coordinates.

Henceforth, all (ε, δ)-extended linkages will use these global constants for ε and δ,
so we will refer to them simply as “extended linkages”.

Recall that the input F is a set of polynomials in variables # –xy = (x1, y1, . . . , xm, ym)
each with total degree at most d and with integer coefficients bounded in magnitude by M .
There are |F | = s polynomials. The recurring parameters used in our construction are as
follows:

• r = ⌈d/δ⌉ is half the radius used in the angular change of coordinates (x, y) = 2r ·
Rect(α, β) applied to each polynomial.

• Q = 40⌈6drdM
(
2m+d

d

)
/(6δ)⌉ is the side-length of each cell in the background grid,

chosen large enough to accommodate the necessary constructions. It is a positive
integer divisible by 40.

• R = 3Q/10 is the radius used in angular coordinate representations in most of the
gadgets. It is a positive integer, and R > 4r may be readily verified.

It may seem unnecessary to use two different radii (2r and R) for angular coordinates,
but there is a good reason to do so. We evaluate the angular representation (5) of each
polynomial term-by-term, constructing partial sums along the way. The size of these partial
sums grows as a function of the radius 2r used in the polynomial change of coordinates, and
they may be much larger than 2r. We thus make r as small as possible to control the size
of the partial sums, while R must be large enough to be able to compute the partial sums.
As consolation, choosing a constant ratio R/Q allows most gadgets to scale uniformly with
Q, making them simpler to analyze.

We have not attempted to optimize the parameters ε, δ, r,Q,R or the gadgets they
depend on, instead choosing the most expedient values that allow the proofs to succeed. In
fact, for convenience, we round many constant factors to powers of 2. Significant improve-
ments are likely possible.

7.4 Hook Linkage and Parallel Linkage

To streamline the analysis of the gadgets in Sections 7.5 and 7.7, we collect here a few
tools to provide explicit bounds on the displacement and rotation of certain linkages under
small perturbation. We show that the Parallel Gadget in Figure 10, which is used in every
gadget in Section 7.5, constrains two edges ab and ef to remain parallel without otherwise
restricting their movement, so long as neither tries to move or rotate too far from how it
started (Lemma 7.17). Along the way we analyze the hook linkage, i.e., a path of two edges
ab and bc: if vertices a and c are each displaced by a small amount, we provide explicit
bounds on how far b must move to preserve the lengths of edges ab and bc (Lemma 7.15).
This hook linkage bound is helpful for the parallel linkage, but it is also directly invoked by
a few of the gadgets in Sections 7.5 and 7.7.
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Lemma 7.11. For 0 < t < 1/2, we have sin t > 0.9t and sin−1 t < 1.1t.

Proof. For 0 < t < 1/2 we may compute

sin t− 9

10
t >

(
t− 1

6
t3
)
− 9

10
t =

1

30
t(3− 5t2) > 0

and
11

10
t− sin−1 t ≥ 11

10
t−

(
t+

1

6
t3
)

=
1

30
t(3− 5t2) > 0.

Lemma 7.12. If A and B are complex numbers with |B| ≤ 1
2 |A|, and if θ = arg A+B

A , then
|θ| ≤ sin−1 |B|

|A| ≤ 1.1 |B|
|A| .

Proof. By replacing (A,B) with (1, B/A), we may assume A = 1. Let |B| = t. Geometri-
cally, 1 +B lies on a circle with center 1 and radius t, and the points p on this circle where
arg p is maximized or minimized are the points of contact of the lines through the origin
that are tangent to this circle. These angles are sin−1 t = sin−1 |B|

|A| , as claimed. Lemma 7.11
shows that sin−1 t ≤ 1.1t so long as t ≤ 1/2.

Lemma 7.13. If an edge of length ℓ rotates around an endpoint by angle θ, the other
endpoint lands no farther than ℓ · |θ| from its initial position. More generally, if a path of
edges v1v2, v2v3, . . . , vk−1vk of total length ℓ reconfigures itself so that v1 stays fixed while
each edge changes its angle by at most ±θ, then vertex vk is displaced by at most ℓ · |θ|.

Proof. In the case of a single edge of length ℓ, the distance in question is

ℓ ·
∣∣∣eiθ − 1

∣∣∣ = ℓ ·
∣∣∣∣2 sin θ

2

∣∣∣∣ ≤ ℓ ·
∣∣∣∣2 · θ2

∣∣∣∣ = ℓ · |θ|,

as claimed. The more general claim follows by applying the previous fact to each edge
separately, noting that the displacements simply add together, and applying the triangle
inequality to their sum.

Lemma 7.14. Let C be a noncrossing configuration of a (possibly constrained) linkage L
that is noncrossing with minimum feature size f . If C ′ is another configuration such that
|C ′(v)−C(v)| ≤ h for each vertex v, and if h < f/2, then C ′ is noncrossing with minimum
feature size f − 2h.

Proof. Let p be a general point on L, by which we mean either a vertex v or a fixed
ratio k along an edge vw; call the latter an edge point. For an edge point p, C(p) :=
(1− k) · C(v) + k · C(w), and likewise for C ′(p). We claim that |C ′(p)− C(p)| ≤ h for any
general point p. The result is immediate if p is a vertex, so consider the edge point case:∣∣C ′(p)− C(p)

∣∣ ≤ (1− k) · |C ′(v)− C(v)|+ k · |C ′(w)− C(w)| ≤ (1− k) · h+ k · h = h,

as claimed. It follows that if p and q are two general points on L that start with |C(p) −
C(q)| ≥ f , then |C ′(p) − C ′(q)| ≥ f − 2h by the triangle inequality. This means C ′ has
minimum feature size f − 2h, so long as we can show that C ′ is noncrossing.
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So suppose C ′ has a crossing. This means either a vertex p = u coincides with
a point q on edge vw not incident with u, or two edge points p and q from non-incident
edges u1u2 and v1v2 coincide. Then C ′(p) = C ′(q). On the other hand, |C(p) − C(q)| ≥ f
because the smallest distance between non-incident edges is lower bounded by the smallest
distance between a vertex and a non-incident edge, which is the minimum feature size f
(Definition 2.5). As noted above, |C ′(p)−C ′(q)| ≥ f −2h, which is strictly positive because
h < f/2, contradicting that C ′(p) = C ′(q). For completeness, we include a proof of the
second case. Consider triangle C(p)C(v1)C(v2). If one of the triangle’s angles at C(v1) or
C(v2) is at least π/2, then C(p)C(q) is at least as long as one of the features C(p)C(vj).
So we may assume both these angles are ≤ π/2, meaning the projection of C(p) onto
line C(v1)C(v2) lands on segment C(v1)C(v2). Redefine q as this projection, which does not
lengthen C(p)C(q). Now slide p and q while keeping C(p)C(q) perpendicular to C(v1)C(v2);
there is some direction of sliding that does not lengthen C(p)C(q), so continue until one of
p or q hits an endpoint of its segment. Thus we obtain a distance between a vertex and a
non-incident edge that is no longer than the original C(p)C(q), as desired.

Lemma 7.15 (Hook Linkage). Define Lhook = Lhook(ℓ1, ℓ2, θ) as the unconstrained linkage
shown in Figure 7, initially configured at a0 := C0(a) = 0, b0 := C0(b) = ℓ1, and c0 :=
C0(c) = ℓ1 + ℓ2e

iθ, where θ ∈ [π/3, 2π/3].

1. For any point c′ in the plane, there is at most one configuration with vertex c resting
at point c′ such that ∠cba ∈ (0, π). If h ≤ min(ℓ1, ℓ2)/2

4 and |c′ − c0| ≤ h, this
configuration indeed exists, and it has the additional properties that b has been displaced
at most |b− b0| ≤ 1.5h from its initial position, the angle of bar ab has changed by at
most ±1.5h/ℓ1, and likewise the angle of bc has changed by at most ±1.5h/ℓ2.

2. If the pin in Lhook is removed and any points a′ and c′ in the plane are chosen, there is
at most one configuration placing vertex a at a′ and vertex c at c′ having ∠cba ∈ (0, π).
If h ≤ min(ℓ1, ℓ2)/2

5 and |a′ − a0|, |c′ − c0| ≤ h, then this configuration exists, and it
has the additional properties that b has moved at most |b − b0| ≤ 4h from its initial
position, the angle of bar ab has changed by at most ±4h/ℓ1, and the angle of bc has
changed by at most ±4h/ℓ2.

Proof. For Part 1, we first prove uniqueness. Suppose C some configuration has C(a) = a0
and C(c) = c′. Observe that C(b) must lie on the circle centered at a0 with radius ℓ1, as
well as the circle centered at c′ with radius ℓ2. These circles cannot be concentric: indeed,
C(a) = C(c) would force ∠C(c)C(b)C(a) = 0, which is outside the allowed bounds. It follows
that there are at most two positions for b, namely at C(b) or at the reflection of C(b) across
C(a)C(c). If C ′ is the configuration that uses the latter option, then ∠C ′(c)C ′(b)C ′(a) =
2π − ∠C(c)C(b)C(a) /∈ (0, π). So C is indeed unique, as claimed.

We now prove existence, so suppose |c′ − c0| ≤ h as above. If bars ab and bc rotate
by angles α and β respectively, point c ends up at

H(α, β) := ℓ1e
iα + ℓ2e

i(θ+β).

(This function H is similar to the Rect function defined in Section 7.2, except that (1)
H(0, 0) has not been shifted to the origin, and (2) H will not be used beyond this proof.)
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Let U = [−1.5h/ℓ1, 1.5h/ℓ1] × [−1.5h/ℓ2, 1.5h/ℓ2]. We will first show that there are some
angles (α, β) in U with H(α, β) = c′. To that end, we define a related function

G(α, β) := ℓ1(1 + i sinα) + eiθ · ℓ2(1 + i sinβ).

When |α| ≤ 1.5h/ℓ1 we may verify that∣∣ℓ1(1 + i sinα)− ℓ1e
iα
∣∣ = ℓ1 · |1− cosα| = ℓ1 · 2 sin2

α

2

≤ ℓ1 ·
1

2
α2 ≤ ℓ1 ·

1

2

(
3h

2ℓ1

)2

=
9h2

8ℓ1
≤ h

12
,

where the last inequality follows from h/ℓ1 ≤ 1/16. By similar comparison between the
other two terms of H and G, we conclude that when (α, β) ∈ U , |H(α, β)−G(α, β)| ≤ h/6.

θa b

c

Figure 7: The Hook Linkage from
Lemma 7.15 consists of two incident
bars.

c0

ℓ1 sin(1.5h/ℓ1)

ℓ2 sin(1.5h/ℓ2)

θ

Figure 8: The region G(U) in Lemma 7.15 is a
parallelogram centered at c0 with dimensions as
shown.

The linear map G is easy to describe: region G(U) is a parallelogram centered on c0
with dimensions as shown in Figure 8. The horizontal distance from the center to (the line
containing) either vertical edge is

ℓ1 · sin
3h

2ℓ1
· sin θ ≥ ℓ1 ·

9

10

3h

2ℓ1
·
√
3

2
>

7

6
h,

where our use of Lemma 7.11 is valid because 1.5h/ℓ1 ≤ 3/32 < 1/2. The distance to the
(line containing) each diagonal edge is likewise greater than 7h/6, so the interior of G(U)
contains the disk centered at c0 of radius 7h/6. Restricting attention to the boundary of U ,
we find that the loop G(∂U) surrounds this disk and is disjoint from it. In particular, this
loop has winding number 1 around c′ and does not come within distance h/6 of c′.

By our comparison of H and G above, the straight-line homotopy between loops
G(∂U) and H(∂U) (which moves corresponding points along straight line segments) does
not meet c′, so the latter loop also has winding number 1 around c′. If c′ were not contained
in region H(U), then continuous function H would map the contractible set U into a non-
contractible subset of R2 \ c′, which is impossible. So there indeed exists a pair of angles
(α, β) ∈ U with H(α, β) = c′.
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Using these angles α and β, we claim that the configuration C that places a at
a0 = 0, b at ℓ1e

iα and c at H(α, β) = c′ will exhibit all of the desired properties. The angle
at b will have changed by at most 1.5h/ℓ1+1.5h/ℓ2 ≤ 3/16 < π/3, so it will still lie in (0, π).
Also, b has moved by at most

|b− b0| = ℓ1 ·
∣∣eiα − 1

∣∣ = 2ℓ1 ·
∣∣∣sin α

2

∣∣∣ ≤ ℓ1 · |α| ≤ 1.5h,

as required.

For Part 2, apply Part 1 with target position ĉ := c′ − a′ and distance 2h. Let
â = 0, b̂, ĉ be the resulting positions for vertices a, b, c. This configuration satisfies |b̂− b0| ≤
1.5 · 2h = 3h, the angle of bar ab is in the interval 0± 1.5 · 2h/ℓ1 = 0± 3h/ℓ1, and likewise
the angle of bar bc is in the interval θ ± 1.5 · 2h/ℓ2 = θ ± 3h/ℓ2. Now we translate this
configuration by a′ to obtain vertices at a′ = â+ a′, b′ = b̂+ a′, c′ = ĉ+ a′. By the triangle
inequality, |b′ − b0| = |b̂ − b0 + a′| ≤ |b̂ − b0| + |a′| ≤ 3h + h = 4h. The bar angles remain
the same under translation; we increase the lead constant from 3 to 4 = 22 for future ease
of use.

We rely heavily on parallelograms to force edges to remain parallel. As described
in Section 7.3, angle constraints can be used to ensure that parallelograms remain paral-
lelograms, forbidding the contraparallelogram “flip” that Kempe failed to account for. We
formalize this as follows:

a b

cd

Λ

(a) Parallelogram linkage P1, initially with op-
posite corners at a = (0, 0) and c = (x, y) where
x, y ≥ 1.

a b

cd

p q

Λ

(b) Parallelogram linkage P2, with corners ini-
tially at a = (0, 0), b = (4, 0), c = (6, 2), and
d = (2, 2).

Figure 9: Creating parallelograms with extended linkages. Corners marked with gray sectors
are frozen, and vertices enclosed in squares are pinned, as in Convention 7.4.

Lemma 7.16 (Parallelogram Linkage). Extended linkages P1 and P2 of Figures 9a and 9b,
whose corners are given ε-tolerance angle constraints, are globally noncrossing with global
minimum feature size at least 1/2, and every configuration of either linkage has

#–

dc =
#–

ab.
Furthermore, the configuration spaces Conf(P1) and Conf(P2) are perfectly described by the
map OffsetΛ, which provides homeomorphisms

Conf(P1) ≃ [−ε, ε] and Conf(P2) ≃ [−ε, ε].

In every configuration of P2, all vertices other than a and b are configured at least 1/2 units
away from the line through a and b.
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Note that the pins in P1 and P2 merely serve to fix the reference coordinate frame.
Without pins, the angle displacement at corner Λ uniquely determines the locations of c and
d relative to a and b.

Proof. Begin with linkage P1 in Figure 9a, which has initial configuration a = (0, 0) and
c = (x, y). In any configuration C,

d = y · (cos(π/2 + θ), sin(π/2 + θ))

where θ = OffsetΛ(C) ∈ [−ε, ε]. Based on edge lengths, vertex c has two potential positions:
b+d−a (forming a parallelogram), or the reflection of this point across diagonal bd (forming a
contraparallelogram). The former case indeed satisfies all of its constraints and is noncrossing
with feature size at least min(x, y)/2 because ε < π/4. In the latter case, corner dcb would
have angle 3π/2− θ, which is well outside the allowable range of [π/2− ε, π/2 + ε]. So the
parallelogram configuration exists uniquely.

In linkage P2, the vertices have initial positions a = (0, 0), b = (4, 0), c = (6, 2), and
d = (2, 2). By similar arguments, each configuration C has c − d = b − a and is uniquely
determined by θ = OffsetΛ(C). If the minimum feature size were to drop below 1/2, this
would happen first when p came that close to edge ab or cd. We may calculate that these
events correspond to respective angles θ = π/3 = 60◦ and

θ = sin−1 1/2√
5
− sin−1 1√

5
≈ −13.64◦.

Because ε < π/16 = 11.25◦, the interval [−ε, ε] keeps the minimum feature size above 1/2,
as required. We may also observe that, in this interval, no vertex comes closer than 1/2 to
the x-axis, as required.

Parallelograms are especially useful in pairs, as with the linkage in Figure 10, which
forces bars ab and ef to remain parallel while letting them move freely relative to each
other (within some neighborhood). The classical counterpart of this linkage [12] suffers from
nonuniqueness: When positions for bars ab and ef are chosen (necessarily parallel), usually
there are two possible locations for bar cd. Angle constraints again improve the situation:
one of these two positions violates the angle constraints (at all six named vertices!) and is
therefore invalid.

Lemma 7.17 (Parallel Gadget).

1. The extended linkage Lparallel drawn in Figure 10, in which all corners are given an ε
angle constraint, is globally noncrossing with minimum feature size at least 1

2 . In every
configuration, vectors ab, dc, and ef are equal. Any choice of position for a, b, and e
can be completed to at most one configuration of Lparallel.

2. If three points a′, b′, and e′ are chosen at distance at most ε/27 from their initial
positions of a0 = (0, 0), b0 = (4, 0), and e0 = (0, 4) respectively such that |b′ − a′| = 4,
then a unique configuration C exists with C(a) = a′, C(b) = b′, and C(e) = e′. This
configuration C moves each vertex no farther than ε/2 from its initial position and
rotates each edge by at most ±ε/2.
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a b

e f

cd

Λ

Γ

p

a b

e f

Figure 10: Left: The Parallel Gadget allows e to move freely in a neighborhood of its initial
position while forcing ef to remain parallel to ab. Corners marked with gray sectors are
frozen, as in Convention 7.4. Edge lengths are all in {1, 2, 4} and are drawn to scale. Right:
a schematic representation of the same gadget.

Note. In this Parallel Gadget, once a and b have been configured, angles Offset(Λ,Γ)(C) =
(α, β) ∈ [−ε, ε]2 uniquely determine the rest of the configuration C, but it is worth men-
tioning that not all such pairs (α, β) actually give rise to valid configurations. Indeed, the
angle to the left of vertex d becomes π + α − β, so the ε-tolerance forces |α − β| ≤ ε as
an additional constraint (in fact, the only other constraint). This lemma does not need to
worry about this fact because it does not attempt to explore the entire configuration space
of Lparallel, instead restricting attention to |α|, |β| ≤ ε/2.

Proof. Let C0 be the initial configuration of Lparallel shown in Figure 10, and for each vertex
v, we use the shorthand v0 = C0(v).

This linkage is made from two instances of P2 (one reflected) attached along a bar.
In any configuration C of Lparallel, by Lemma 7.16, vectors ab and dc must be equal, as must
dc and ef . Each vertex other than c and d has distance at least 1/2 from the line containing
c and d, so the smallest feature of C comes from one of the two instances of P2 and is thus
at least 1/2.

For uniqueness, suppose positions a′, b′, and e′ have been chosen for a, b, and e.
First observe that the position of d is forced: treating the paths from a to d and from d
to e as bars ad, de of fixed lengths ℓ(ad) = ℓ(de) = 2

√
2, and thus ade as a hook linkage,

Lemma 7.15 shows that there exists a unique point d′ at distance 2
√
2 from each of a′ and e′

with ∠e′d′a′ < π, which is required by one of the angle constraints at vertex d. The previous
paragraph then shows that c must be placed at c′ = d′ + (b′ − a′) and f must be placed at
e′ + (b′ − a′). Finally, the rigidified paths (e.g., from a to d) are uniquely determined by
their endpoints, so all vertex locations are forced, as claimed.

Define k := ε/27. To prove Part 2, first consider the easier case where a′ = a0,
b′ = b0, and |e′ − e0| ≤ 6k. We will show that a (necessarily unique) configuration C with
C(a) = a′ = a0, C(b) = b′ = b0, and C(e) = e′ exists, moves each vertex by at most 28k,
and rotates each edge by at most 9k.

As described above, Lemma 7.15 (Hook Linkage) allows us to construct the unique
positions b′, c′, and f ′ where vertices b, c, f must lie, which then determines the entire
configuration; we must show that this forced configuration C is actually valid, i.e., satisfies
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its angle constraints. Because 6k < min(ℓ(ad), ℓ(de))/32 = (2
√
2)/32, Lemma 7.15 proves

that a′d′ and d′e′ are each rotated from a0d0 and d0e0 by angle at most ±4 · 6k/(2
√
2) =

6k
√
2 ≤ 9k, so the angles at C’s corners differ from those of C0 by at most 18k < ε

and therefore satisfy their ε-tolerance angle constraints. The same lemma also shows that
|c′−c0| = |d′−d0| ≤ 24k. The bound |f ′−f0| = |e′−e0| ≤ 6k ≤ 24k follows by assumption.

It remains to show that |C(v) − v0| ≤ 28k for each vertex v of Lparallel other than
a, b, c, d, e, f . Focus on vertex p first, and let p′ = C(p). Because the path from e to d
through p is frozen in Figure 10, triangles e0p0d0 and e′p′d′ are congruent. Thus p0 and p′

can be written as the same affine linear combination of e0, d0 and e′, d′ respectively. Because
d0 = (2, 2) = 2 + 2i, e0 = (0, 4) = 4i, and p0 = (0, 3) = 3i, we have the (unique) solution

p0 =

(
1− i

4

)
d0 +

(
3 + i

4

)
e0,

and thus the same for p′. Therefore

p′ − p0 =

(
1− i

4

)
(d′ − d0) +

(
3 + i

4

)
(e′ − e0).

Because |d′ − d0| and |e′ − e0| are upper bounded by 24k (as argued above), the triangle
inequality gives ∣∣p′ − p0

∣∣ ≤ ∣∣∣∣1− i

4

∣∣∣∣ · 24k +

∣∣∣∣3 + i

4

∣∣∣∣ · 24k ≤ 28k.

The remaining vertices other than a, b, c, d, e, f follow the same analysis as p because the
four frozen paths are isometric, leading to the same affine weights or their conjugates, and
all six points a, b, c, d, e, f are displaced by at most 24k (as argued above).

Now we tackle Part 2 in general; as was done for the Hook Linkage in Lemma 7.15,
we will reduce this general case to the special case where a and b are fixed. So suppose a′,
b′, and e′ are chosen at distance at most k from a0, b0, e0 respectively and with |a′ − b′| = 4.
Uniqueness is guaranteed as above, so we focus on existence.

Let θ = arg(b′ − a′), i.e., b′ − a′ = 4 exp(iθ), and observe that |θ| ≤ 1.1 · 2k
4 ≤ k by

Lemma 7.12, using A = 4 and B = b′ − b0 + a′ − a0, which satisfy |B| ≤ 2k < 1
2 |A|. Define

a′′ = a0, b′′ = b0, and e′′ = (e′ − a′) · exp(−iθ), which may be obtained from a′, b′, e′ by
translating by −a′ and then rotating by angle −θ. We have∣∣e′′ − e0

∣∣ = ∣∣(e′ − a′) · exp(−iθ)− e0
∣∣

≤
∣∣(e′ − a′) · exp(−iθ)− e0 · exp(−iθ)

∣∣+ |e0 · exp(−iθ)− e0|
=

∣∣(e′ − a′)− e0
∣∣+ |e0 · exp(−iθ)− e0|

≤ |e′ − e0|+ |a′|+ |e0 · exp(−iθ)− e0|
≤ k + k + 4|θ|
≤ 6k.

By the special case discussed above, there exists a unique configuration C with C(a) = a0,
C(b) = b0, and C(e) = e′′ where each vertex is at most 28k away from its initial position,
and where each bar is rotated by at most 9k from its initial direction. Now define C ′ as the
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configuration formed by rotating configuration C through angle θ (around the origin) and
then translating the result by a′. This C ′ is a valid configuration of Lparallel because C itself
was, and furthermore, C ′(a) = a′, C ′(b) = b′, and C ′(e) = e′. So C ′ is the promised unique
configuration.

Finally, we measure how much C ′ perturbs the vertices and edge rotations. For each
vertex v, we have |C(v)| ≤ |C0(v)|+ |C(v)− C0(v)| ≤ 3

√
5 + 6k ≤ 7k, so rotating by angle

θ moves C(v) by at most 7|θ| ≤ 7k by Lemma 7.13. Translating by a′ moves each vertex by
another |a′| ≤ k, so in total,∣∣C ′(v)− v0

∣∣ ≤ 28k + 7k + k = 35k <
ε

2

for each vertex v. Likewise, C has rotated each bar by at most 9k, so C ′ rotates each bar
by at most 9k + |θ| ≤ 10k < ε/2. This finishes the proof.

7.5 The Cell Gadgets

With the above tools in place, we now present the modular gadgets themselves. Each will
inhabit one or a constant number of Q×Q square cells, where Q was defined in Section 7.3.
Each cell has pairs of transmission edges attached at transmission vertices, which are slice-
form vertices at the midpoints of cell edges (usually labelled bj), and the corners around
each transmission vertex will have tolerance δ or 0—never ε—as required by the gadget. All
other vertices will have tolerance ε or 0, never δ. If v is a transmission vertex with transmis-
sion edge vw, the corner uvw is the corresponding transmission corner; the angles at these
transmission corners are the gadgets’ only means of communicating with each other.

We use a few naming conventions for corners and their angle offsets. Corners are
usually labelled by Λj or Γj , chosen because these letters visually resemble corners, and their
corresponding angle offsets are αj = αj(C) := OffsetΛj (C) and βj = βj(C) := OffsetΓj (C) =
βj , chosen because ‘Λ‘ resembles a capital ‘A’ and ‘Γ’ resembles part of a capital ‘B’. These
corners should be considered a pair: αj and βj together will form the angular coordinates
for some meaningful vector. Corners that are not paired in this way will be labelled Θj ,
corresponding to angle offsets θj = θj(C) := OffsetΘj (C).

The analyses in this section do not depend on the precise values of ε and δ; only on
the facts that ε ≤ π/16 and δ ≤ ε/218. For each gadget L below, we will prove a statement
of the following form: φ : Conf(L) → U is a homeomorphism, where φ is a function defined
in terms of angle displacements OffsetY and possibly vertex positions πX , and U is some
subset of some Rk. This provides an explicit parametrization of L’s configuration space:
each configuration is uniquely and continuously determined by just the corners in Y and
vertices in X, which are related by the shape of U . For example, the Angle Average Gadget
L∠avg is exactly parametrized by

U∠avg =

{
(θ1, θ2, θ3) ∈ [−δ, δ]3

∣∣∣∣ θ2 = θ1 + θ3
2

}
.

This means the angle offsets θj at corners Θj must satisfy this average condition, and any
triple of angles in [−δ, δ] that does satisfy it gives rise to a unique configuration of L∠avg.
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Furthermore, this configuration depends continuously on the angles θj . Because Conf(L) is
compact by Lemma 7.7, the following well-known fact says that this continuity comes for
free once we know φ to be a bijection:

Lemma 7.18 ([20, Theorem 4.17]). If φ : A → B is a continuous bijection of metric spaces
and A is compact, then φ−1 is continuous, i.e., φ is a homeomorphism.

When using some of these gadgets later on, we will not need to work with the exact
configuration space U , and it will instead suffice to know that the gadgets have sufficient
mobility, i.e., U contains a large enough neighborhood of the initial configuration. The
lemma below also specifies these useful neighborhoods when appropriate.

For clarity, Figures 11, 13, 15, 16a, and 22 draw Parallel Gadgets using the schematic
shorthand from Figure 10 (right). All other vertices in these figures are explicitly marked by
a dot or an ‘x’, and we call these vertices marked. We will analyze marked vertices separately
from the vertices internal to Parallel Gadgets.

We now analyze each gadget in turn. They are organized by similarity of analysis,
not of function. This first set of gadgets all exhibit scale invariance: all coordinates are
constant multiples of the cell edge length Q, so increasing Q serves only to increase the
global minimum feature size of each gadget without otherwise affecting the gadget. This
greatly simplifies the analysis.

Lemma 7.19 (Scale Invariant Cell Gadgets). The abstract extended linkages described be-
low are globally noncrossing with global minimum feature size at least 1/2, and with their
configuration spaces U exactly parameterized as specified in each case. Each gadget is de-
scribed by an initial configuration where a3 = (0, 0) and a1 = (Q,Q), all marked vertices
have coordinates that are integer multiples of Q/10, and so all vertices have coordinates that
are integer multiples of Q/40 (an integer). For some gadgets, we prove that the configuration
space U contains a conveniently shaped subset, identified below as a useful neighborhood.

Copy Gadget. The Copy Gadget Lcopy drawn in Figures 11a and 12 constrains its four
sliceform angles to remain equal. Specifically, Offset(Θ1,Θ2,Θ3,Θ4) is a homeomorphism from
Conf(Lcopy) to

Ucopy = {(θ, θ, θ, θ) | θ ∈ [−δ, δ]}.

Crossover Gadget. The Crossover Gadget Lcross drawn in Figure 11b constrains opposite
sliceform angles to remain equal. Specifically, Offset(Θ1,Θ2,Θ3,Θ4) is a homeomorphism from
Conf(Lcross) to

Ucross = {(θ1, θ2, θ1, θ2) | θ1, θ2 ∈ [−δ, δ]} .

Angular Gadget. The Angular Gadget Langular drawn in Figure 11c relates the rectangular
coordinates of vertex g with the angles α, β in its angular representation. Specifically, the
function πg ×OffsetΛ,Γ is a homeomorphism from Conf(Langular) to

Uangular = {((x, y), (α, β)) | α, β ∈ [−δ, δ] and (x, y) = (Q/2, Q/2) +R · Rect(α, β)} .

Useful Neighborhood: if (x, y) is any point at most Rδ/2 away from the center of the cell, a
unique configuration exists placing g at (x, y).
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a1

b1
Θ1c1

d1

e1

f1

a2 b2 Θ2

c2

d2

e2 f2

a3

b3

Θ3 c3
d3

e3

f3

a4b4Θ4

c4

d4
e4f4

(a) The Copy Gadget forces θ1 = θ2 = θ3 = θ4.
See this gadget’s movement in Figure 12.

a1a2

a3 a4

b1

b2

b3

b4

c1

c2

c3

d1

d2

d3 e1

e2

e3

f1

f2

f3
g Θ1

Θ2

Θ3

Θ4

(b) The Crossover Gadget forces θ1 = θ3 and
θ2 = θ4.

a1a2

a3 a4

b1

b2

b3

b4

Γ

Λ

e
f

g

(c) The Angular Gadget forces g = (Q/2, Q/2)+
R · Rect(α, β).

a1a2

a3 a4

b1

b2

b3

b4Λ1

Γ1

Λ2

Γ2

g

(d) The Vector Rotation Gadget forces
Rect(α1, β1) = i · Rect(α2, β2).

Figure 11: A selection of extended linkage gadgets for manipulating angles and vectors.
These scale-invariant gadgets are analyzed in Lemma 7.19. In these figures, OffsetΛ(C) = α,
OffsetΓ(C) = β, OffsetΘ(C) = θ, and similarly with subscripts. As described in Conven-
tion 7.4, vertices surrounded by squares are pinned; those marked with an “x” are sliceform
vertices; and corners marked with a solid gray sector are frozen, i.e., have tolerance 0. Un-
frozen sliceform vertices bj are assigned tolerance δ, while all remaining unfrozen corners
have tolerance ε. The pins at the vertices aj are for clarification only; in the overall con-
struction, these nodes aj are forbidden from moving by other means, so these explicit pins
are unnecessary. The thick edges emphasize the rigidified background grid (in gray) and the
transmission edges (in black), along with everything rigidly attached to those edges. Each
cell has dimensions Q×Q, and all marked vertices have coordinates at integer multiples of
Q/10, indicated by cyan axis notches.
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Vector Rotation Gadget. The Vector Rotation Gadget Lrot (Figure 11d) enables con-
structing the 90◦ rotation of a given vector. Specifically, Offset(Λ1,Γ1,Λ2,Γ2) is a homeomor-
phism from Conf(Lrot) to

Urot =
{
(α1, β1, α2, β2) ∈ [−δ, δ]4

∣∣ Rect(α1, β1) = i · Rect(α2, β2)
}
.

Useful Neighborhood: if α1 and β1 are such that |R·Rect(α1, β1)| ≤ Rδ/2, then a (necessarily
unique) configuration C exists with Offset(Λ1,Γ1)(C) = (α1, β1).

Angle Average Gadget. The Angle Average Gadget L∠avg drawn in Figures 13 and 14
constrains one sliceform angle to equal the average of the other two. Specifically, Offset(Θ1,Θ2,Θ3)

is a homeomorphism from Conf(L∠avg) to

U∠avg = {(θ1, θ2, θ3) | θ1, θ3 ∈ [−δ, δ] and θ2 = (θ1 + θ3)/2} .

Proof. Each of these gadgets is scale invariant : scaling down by a factor of 40/Q results in
the same gadgets with the value of Q replaced by 40. Showing that each of these scaled down
gadgets has global minimum feature size at least 1/2 will show that the original gadgets have
global minimum feature size at least Q

40 · 1
2 ≥ 1

2 , so we may proceed as if Q = 40 instead of
being defined as in Section 7.3.

Copy Gadget. Consider first the Copy Gadget Lcopy of Figure 11a, whose movement is
illustrated in Figure 12. The idea of the proof is as follows: ε enforces uniqueness and the
claimed angle relationships, while δ ensures existence.

Constraint and Uniqueness. Relying only on our choice of ε, we first verify that angles
θ1, θ2, θ3, θ4 must be equal, and that there is at most one configuration having θ1 = θ2 =
θ3 = θ4 = θ for each value θ. Path b1c1d1e1f1 must move as a rigid subassembly because of
its frozen corners. So angle offset θ1 determines the locations of vertices c1, d1, e1, f1: they
are simply rotated around b1 from their initial positions by angle θ1. Positions for the rest of

Figure 12: Snapshots of the configuration space of the Copy Gadget (cf. Figure 11a,
Lemma 7.19), not drawn to scale. Angle offsets shown are −3◦, 0◦ and 3◦ respectively.
The gadget has been slightly modified and simplified to emphasize movement. The thick
blue edges emphasize the transmission edges.
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the marked vertices in Figure 11a are likewise determined by θ2, θ3, and θ4. By Lemma 7.17,
the Parallel Gadgets force djcj ∥ ej+1fj+1 for 1 ≤ j ≤ 4 (with indices taken cyclically) in any
configuration of Lcopy. It follows that θ1 = θ2 = θ3 = θ4 in any configuration; let θ be this
common value. By the same lemma, the positions of dj , cj , and ej+1 uniquely determine the
positions of the other vertices within their Parallel Gadget, whenever such a configuration
exists. So each configuration is indeed uniquely characterized by its single angle θ. Said
differently, the map φ = Offset(Θ1,Θ2,Θ3,Θ4) injectively maps Conf(Lcopy) to Ucopy.

Existence. On its own, the above paragraph does not prove that every angle θ ∈ [−δ, δ]
gives rise to a configuration of Lcopy, or said differently, that φ is a bijection. Indeed,
too large a θ would stretch or compress the Parallel Gadgets too far, resulting in broken
angle constraints or worse. However, we next show that our choice of δ is small enough
to guarantee φ is indeed a bijection. By Lemma 7.13, because the path bj , cj , dj , ej , fj
has length 6

10 · 40 = 24, the rotations by θ around each bj move each vertex cj , dj , ej , fj
at most 24δ < ε/27 from its starting position, and guarantee that ejcj ∥ ej+1fj+1 for
each j = 1, 2, 3, 4. Then Lemma 7.17 (Parallel Gadget) shows that each Parallel Gadget
can configure itself at these new endpoints, making sure that each vertex moves by no
more that ε/2 from its starting point and each edge rotates by no more than ε/2 from
its original direction. This is enough to guarantee that all angle constraints are satisfied,
so the configuration indeed exists. By Lemma 7.14, this configuration is noncrossing with
minimum feature size at least 1− 2 · ε/2 > 1/2.

Crossover Gadget. The proof proceeds similarly to that of Lcopy above.

Constraint and Uniqueness. In any configuration of Lcross, the Parallel Gadgets and the
sliceform vertex g enforce b3c3 ∥ f3g ∥ gf1 ∥ c1b1 and likewise b4g ∥ gf2 ∥ c2b2. This shows
that θ1 = θ3 and θ2 = θ4 throughout Conf(Lcross), and that these two angles uniquely deter-
mine the entire configuration (when such a configuration exists): each bold rigid assembly
bjcjdj (1 ≤ j ≤ 3) has rotated by angle θj around its (stationary) pivot bj , edge b4g has
rotated by angle θ4 around b4, each smaller rigid assembly gfjej has likewise rotated by
angle θj around the new location of g, and by Lemma 7.17 each Parallel Gadget can be
drawn to connect its endpoints in at most one way.

Existence. Consider a given pair of angles θ1, θ2 ∈ [−δ, δ]. Because every marked vertex
has a path of length at most 8

10 · 40 = 32 to a transmission vertex bi (avoiding Parallel
Gadgets),by Lemma 7.13, the forced location of each marked vertex is at most 32δ < ε/27

units away from its initial position. The opposite ends of each Parallel Gadget are indeed
parallel, allowing the Parallel Gadgets to configure themselves by Lemma 7.17. As before,
vertices have been displaced by at most ε/2 and edges have been rotated by at most ε/2,
guaranteeing the configuration’s validity and minimum feature size of at least 1− ε ≥ 1/2.

Angular Gadget. Constraint and Uniqueness. This is straightforward: the Parallel Gad-
gets force ef and assembly b4c4d4 to have rotated by α, and likewise fg and the as-
sembly containing b1, c1, d1 to have rotated by β around the new position of f , so g =
(Q/2, Q/2) +R · Rect(α, β), so everything is uniquely specified.

Existence. This is also easy: because every marked vertex has a path of length at most
8
10 · 40 = 32 to a vertex of the rigidified background grid (avoiding Parallel Gadgets),
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Lemma 7.13 shows that each marked vertex has moved at most 32δ ≤ ε/27 from its initial
position, so the Parallel Gadgets can be configured to connect their opposite edges, which
can be checked to be parallel. As above, we may also conclude that each edge has rotated at
most ±ε/2 from its initial direction. We conclude the validity, noncrossing, and minimum
feature size of the resulting configuration as before.

Useful Neighborhood. Suppose (x, y) = g′ is some point at distance at most Rδ/2 from the
center of the cell. By Lemma 7.9 with θ = δ, there is exactly one pair (α, β) ∈ [−δ, δ]2 such
that R · Rect(α, β) = g′ − (Q/2, Q/2), i.e., such that (g′, (α, β)) ∈ Uangular.

Vector Rotation Gadget. Constraint and Uniqueness. This is perfectly analogous to
previous analyses—in fact, this gadget is essentially two conjoined Angular Gadgets—so we
have omitted this analysis.

Existence. This is also analogous and therefore omitted.

Useful Neighborhood. Vertex g must land in the region (Q/2, Q/2) + R · Rect([−δ, δ]2)
(because of Λ1,Γ1) as well as in this same region rotated by π/2 (because of Λ2,Γ2). These
two regions are not identical, but by Lemma 7.9 with θ = δ, they both contain the square
(Q/2, Q/2) + [−Rδ/2, Rδ/2]2. Any point within this square therefore gives rise to a valid
configuration of Lrot.

Angle Average Gadget. This analysis is more involved than the previous ones, but it
follows the same outline. The gadget L∠avg is depicted in Figure 13 (drawn to scale). We
choose f1, f3, and e1 such that f3e3he2 and he1f1e2 are kites which are initially similar. We
will show that these kites remain similar throughout Conf(L∠avg), which is pivotal (so to
speak) to how the gadget works. This gadget is based on the Reflector Gadget from [2], but
as a proof of the Reflector Gadget’s movement was not included in that extended abstract,
we provide a self-contained proof of our Angle Average Gadget here. The motion of this
gadget has been illustrated in Figure 14, which is not drawn to scale to emphasize the
movements.

Constraint and Uniqueness. We first argue that angles θ1, θ2, θ3 uniquely determine their
configuration, when one exists. Arguments like those above show that all marked vertices
other than e2, k1, and k2 depend straightforwardly on angles θ1, θ2, θ3, by rotations and
translations. Treating he2 as a single fixed-length bar, Lemma 7.15 (Hook Linkage) on he2f3
(which has angle cos−1(−1/

√
5) < 2π/3) shows that e2 has at most one valid position, and

the same lemma shows that k1 and k2 are likewise uniquely determined.

We next argue that, for a configuration to exist, θ2 = (θ1 + θ3)/2 must hold. Focus
for now on kites he1f1e2 and f3e3he2. Define α1 = ∠e1he2 and α2 = ∠f1e1h, and similarly,
β1 = ∠e3f3e2 and β2 = he3f3. Considering path m1e1he2f3m3, segments m1e1 and f3m3

being parallel (which is guaranteed by the two upper Parallel Gadgets) implies that

α2 + α1 + (2π − β2) + (π − β1) = 3π,

i.e., α1 + α2 = β1 + β2. We will show that this forces the kites to be similar.

Kite f3e3he2 has edge lengths 4 and 4
√
5. We may compute that |e2− e3| = 8 sin β1

2 ,
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∠e2e3f3 = (π − β1)/2, and

∠he3e2 = cos−1 |e2 − e3|/2
4
√
5

= cos−1 t√
5
,

where t = sin β1

2 . So, in terms of t,

β1 + β2 =
π

2
+

1

2
β1 + ∠e2e3h =

π

2
+ sin−1 t+ cos−1 t√

5
.

Analogously, if s = sin α1
2 , we have

α1 + α2 =
π

2
+ sin−1 s+ cos−1 s√

5
.

But the function f(x) := sin−1 x+cos−1 x√
5

is strictly monotonically increasing on x ∈ [0, 1],
because its derivative is (1−x2)−1/2−(5−x2)−1/2 > 0. So f(s) = f(t) implies s = t, meaning
α1 = β1 and α2 = β2.

Revisiting Figure 13, let κ = cos−1 −1√
5

be the initial value of angles α2 = ∠f1e1h and
β2 = ∠he3f3. The new values for these angles are κ+ θ1 − θ2 and κ+ θ2 − θ3 respectively.
But these values must be equal, so indeed θ2 = (θ1 + θ3)/2.

Existence. Conversely, we must show that if angles θj ∈ [−δ, δ] are chosen from the set U∠avg
(i.e., satisfying θ2 = (θ1+ θ3)/2), then a configuration indeed exists. Use the θj to configure
all marked vertices other than e2, k1, and k2 by rotations as above. Because every marked
vertex has a path of length at most 11

10 ·40 = 44 to a transmission vertex bi (avoiding Parallel
Gadgets),by Lemma 7.13, each marked vertex is displaced by at most 44δ < 26δ.

Let p be the reflection of e1 across hf1, and q the reflection of e3 across hf3; we will
verify that p = q, so that e2 has a well-defined position at the correct distances from h,
f1, and f2 simultaneously. Equality θ2 = (θ1 + θ3)/2 implies that α2 = β2 and therefore
kites he1f1p and f3e3hq are similar. Label their angles as α′

1 := ∠e1hp = ∠e3f3q and
α′
3 := ∠pf1e1 = ∠qhe3. We have 2π = ∠f1e1h+ ∠e1he3 + ∠he3f3 = ∠e1he3 + 2α2 because

f1e1 and e3f3 are parallel, so we may compute

∠phq = ∠e1he3 − ∠e1hp− ∠qhe3
= (2π − 2α2)− α′

1 − α′
3

= 0,

meaning p = q, as claimed.

Each of h and f3 has been displaced by at most 26δ as above, which is less than
1
32 min(|h−e2|, |e2−f3|) = 1/8, so the Hook Linkage Lemma shows that e2’s forced location
of p = q is at most 28δ from its initial position and that he2 and e2f3 have each rotated by
at most 26δ from their original directions (since |h−e2| and |e2−f3| are at least 4). Triangle
hk2e2 must be rotated by this same amount to match its hypotenuse, so k2 is displaced by
at most |h− k2| · 26δ = 29δ.
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Similarly, the Hook Linkage Lemma applied to he2f1 shows that edge e2f1 has been
rotated by at most 26δ, so the same is true for edges k1f1 and k1e2. So k1’s total displacement
may be bounded by e2’s displacement plus |e2 − k1| · 26δ, namely (28 + 210)δ ≤ 211δ.

We have thus displaced all marked vertices no farther than 211δ ≤ ε/27 and rotated
each edge (other than those in Parallel Gadgets) by no more than 26δ < ε/2. We may thus
configure the Parallel Gadgets and then verify angle constraints and minimum feature size
exactly as for prior gadgets, which completes the analysis.

a1a2

a3 a4

b1

b2

b3

b4

k1

k2

Θ1

Θ2

Θ3 c1

d1

c2

c3

d3

e3 e1

e2f3

f1

m1m3

g1g3 h

α2

α1

β1

β2

Figure 13: The Angle Average Gadget forces θ2 = (θ1 + θ3)/2. This gadget is analyzed in
Lemma 7.19. See this gadget’s movement in Figure 14. The drawing follows Convention 7.4.
Unfrozen sliceform vertices bj are assigned tolerance δ, while all remaining unfrozen corners
have tolerance ε. The pins at the vertices aj are for clarification only; in the overall con-
struction, these nodes aj are forbidden from moving by other means, so these explicit pins
are unnecessary. The thick edges emphasize the rigidified background grid (in gray) and the
transmission edges (in black), along with everything rigidly attached to those edges. Dotted
segments and dashed angles are referred to in the proof. The cell has dimensions Q × Q,
and all marked vertices have coordinates at integer multiples of Q/10, indicated by cyan
axis notches.

The next batch of cell gadgets are not scale invariant: they may have minimum
feature size less than 1/2 when scaled down by 40/Q, unlike the previous gadgets, so we
cannot assume Q = 40 as above. We must therefore skip the simplifying scaling step, work
instead with the value of Q given in Section 7.3, and be more careful when arguing about
feature size.
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Θ1
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Figure 14: Snapshots of the Angle Average Gadget’s configuration space (cf. Lemma 7.19,
Figure 13), shown for each pair of values θ1, θ3 ∈ {−8◦, 0◦, 8◦} (where θj = OffsetΘj ). In
each configuration, it may be observed that θ2 = (θ1 + θ3)/2. Edge lengths have been
altered from those in Figure 13 to exaggerate the gadget’s movement. The thick colored
edges emphasize the transmission edges, and non-black thin edges are colored to indicate
which transmission edge controls their angle.
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Lemma 7.20 (Cell Gadgets with Unscaled Measurements). The abstract extended linkages
described below are globally noncrossing with global minimum feature size at least 1/2, and
their configuration spaces are exactly parameterized as described. Each gadget is described
by an initial configuration having a3 = (0, 0) and a1 = (Q,Q), and where all marked vertices
have coordinates that are integer multiples of Q/10, with a few exceptions listed below.

Start Gadget. The Start Gadget Lstart (Figure 15a) relates rectangular and angular co-
ordinates just like the Angular Gadget, but this time the angular coordinates use radius 2r
instead of R. Recall r = ⌈d/δ⌉ is half the radius used in the angular change of coordi-
nates (x, y) = 2r · Rect(α, β) applied to each polynomial and that r ≤ Q/20. The function
πv ×OffsetΛ,Γ is a homeomorphism from Conf(Lstart) to

Ustart = {((x, y), (α, β)) | α, β ∈ [−δ, δ] and (x, y) = (Q/5 + 2r,Q/5 + 2r) + 2rRect(α, β)} .

Exceptional vertices are initially configured at points u = (Q/5, Q/5)+(2r, 0), v = (Q/5, Q/5)+
(2r, 2r), and w = (Q/2, Q/5) + (0, 2r), which all have integer coordinates.

Vector Creation Gadget. For a positive number 1 ≤ w ≤ Rδ/2 (not necessarily an
integer), the Vector Creation Gadget Lcreate(w) (Figure 15b) enables constructing angular
coordinates for the vector with complex representation w · (eiθ − 1) for all θ ∈ [−δ, δ]. Specif-
ically, Offset(Θ,Λ,Γ) provides a homeomorphism from Conf(Lcreate(c)) to

Ucreate =
{
(θ, α, β) ∈ [−δ, δ]3

∣∣ w · (cos θ, sin θ)− (w, 0) = R · Rect(α, β)
}
.

In the initial configuration shown in Figure 15b, the only exceptional vertex has position
c3 = (Q/2− w,Q/2), which has integer coordinates when w itself is an integer.

End Gadget. For any chosen real number w with magnitude at most Rδ/2, the End Gadget
Lend = Lend(w) (Figure 15c) constrains a vector to the position (Q/2+w,Q/2). Specifically,
Conf(L) has exactly one configuration, and this configuration has R · Rect(α, β) = (w, 0).
When w = 0, there are no exceptional vertices. (When w ̸= 0, we make no promises about
vertices having integer coordinates other than those frozen to the background grid.)

Proof. We consider each gadget in turn.

Start Gadget. This gadget is simply the Angular Gadget from Lemma 7.19 amended with
three vertices u, v, w forming a parallelogram with f .

Constraint and Uniqueness. Vertices u and w must move rigidly with assemblies ef and
fg, so their positions are determined by rotations by α and β. By Lemma 7.16, vertex
v must complete the parallelogram, so its position is likewise uniquely determined as e +
2r exp(iα) + 2r · i · exp(iβ) = e+ (2r, 2r) + 2r · Rect(α, β).
Existence. As in the Angular Gadget, each bar is rotated by at most ±ε/2, so all angle
constraints are satisfied. It remains to show that the linkage is noncrossing with minimum
feature size at least 1/2. The only differences from the Angular Gadget are vertices u, v, w
and edges uv, vw, so if a crossing or smaller feature size occurs, it must involve one of these
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(a) The Start Gadget forces v = 2r ·Rect(α, β).

a1a2

a3 a4

b1

b2

b3

b4

Γ

Θ

Λ

c1

c2

e
f

gc3
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(b) The Vector Creation Gadget forces R ·
Rect(α, β) = w · (eiθ − 1), where ℓ(c3g) = w.

a1a2

a3 a4

b1

b2

b3

b4

Γ

Λ

g

(c) The End Gadget forces R · Rect(α, β) = (w, 0). The edge length ℓ(b3g) is Q/2 + w.

Figure 15: A selection of extended linkage gadgets for manipulating angles and vectors.
These gadgets do not scale uniformly with Q, and they are analyzed in Lemma 7.20. In
these figures, OffsetΛ(C) = α and OffsetΓ(C) = β. As described in Convention 7.4, vertices
surrounded by squares are pinned; those marked with an “x” are sliceform vertices; and
corners marked with a solid gray sector are frozen, i.e., have tolerance 0. However, unfrozen
sliceform vertices bj are assigned tolerance δ, while all remaining corners have tolerance ε.
The pins at the vertices aj are for clarification only; in the overall construction, these
nodes aj are forbidden from moving by other means, so these explicit pins are unnecessary.
Each cell has dimensions Q × Q, and all vertices except those specified in Lemma 15 have
coordinates at integer multiples of Q/10, indicated by cyan axis notches.
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five items. Because 2r ≤ R/2, the smallest feature introduced by this parallelogram is at
least

|u− v| · |sin∠vue| ≥ 2r · sin
(π
2
− ε

)
≥ r >

1

2
,

as required.

Vector Creation Gadget. Constraint and Uniqueness. Rigid assemblies b2c2d2e2 and
c3gd3e3 must have been rotated by angle θ, meaning g = c3 + w · (cos θ, sin θ). The rest is
an instance of the Angular Gadget, which uniquely positions all other marked vertices and
locates g at (Q/2, Q/2) +R ·Rect(α, β). These two positions of g must agree, proving that

R · Rect(α, β) = w · (cos θ, sin θ)− w · (1, 0),

as required.

Existence. Each marked vertex is determined by a rigidified path (from a vertex rigidly
attached to the rigidifed background grid) of total length at most 6

10Q < Q where each edge
rotates by at most ±δ, so each marked vertex is displaced by at most 6

10Qδ < ε/27 ·Q/40 by
Lemma 7.13. Then Lemma 7.17 (Parallel Gadget) shows that each Parallel Gadget (scaled
up by Q/40) can connect its opposite edges such that each vertex moves by at most ε/2·Q/40
and each edge rotates by at most ±ε/2. Any feature not involving c3 has length at least
1
2Q/40 by Lemma 7.14, and c3’s smallest feature is the distance from c3 to fg, which is at
least |c3 − g| · sin(π/2− ε) ≥ w/2 ≥ 1/2.

End Gadget. This is an Angular Gadget with one additional edge keeping g stationary at
g = (Q/2 + w,Q). Because this chosen point is at most Rδ/2 from the cell’s center, the
Angular Gadget case of Lemma 7.19 guarantees that the required configuration exists and
is unique. When w = 0, this unique configuration agrees with the Angular Gadget‘s initial
configuration.

Finally, we demonstrate a few compound gadgets, each inhabiting a constant number
of grid cells instead of just one. As described in Section 7.2, the background grid is pinned in
place and consists of Q×Q cells with transmission edges incident to transmission sliceform
vertices at the midpoints of the sides of each cell. Neighboring cells communicate through
these sliceform vertices, and similarly, gadgets that are not intended to interact must be
placed in non-adjacent cells so as to not share a transmission vertex. Each transmission
vertex will either be adjacent to one or more gadgets (meaning the angle at its transmission
edges is determined by those gadgets) or it will be frozen, so there is no possibility for
movement away from the gadgets. In the case of the Vector Average Gadget, a multi-cell
cavity is carved into the background grid to make way for a larger assembly: cell edges
that are not drawn are indeed missing from the grid, but all remaining cell edges have a
transmission vertex and transmission edges at their midpoint, as usual.

Lemma 7.21 (Compound Gadgets). The abstract extended linkages described below are
globally noncrossing with global minimum feature size at least 1/2, and with their configu-
ration spaces U exactly parameterized as specified in each case. Each gadget is described by
an initial configuration where the lower-left corner is configured at (0, 0), all marked vertices
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(a) The Vector Average Gadget forces g2 = (g1 + g3)/2, i.e., Rect(α2, β2) = (Rect(α1, β1) +
Rect(α3, β3))/2.
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(b) The Angle Sum Gadget forces θ3 = θ1 + θ2.
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(c) The Vector Sum Gadget forces
Rect(α2, β2) = Rect(α1, β1) + Rect(α3, β3)

Figure 16: Compound gadgets for manipulating vectors and angles, built from earlier, more
primitive gadgets. In these figures, OffsetΛ(C) = α, OffsetΓ(C) = β, OffsetΘ(C) = θ, and
similarly with indices. Cells labelled with an angle are Copy Gadgets, those marked with an
“x” are Crossover Gadgets, and cells labelled Aj are Angle Average Gadgets. All grid edges
(where present) have a transmission sliceform and transmission edges, but only important
ones are shown here.
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have coordinates that are integer multiples of Q/10, and so all vertices have coordinates that
are integer multiples of Q/40 (an integer). As in Lemma 7.19, for some gadgets, we prove
that the configuration space U contains a conveniently shaped subset, identified below as a
useful neighborhood.

Vector Average Gadget. The Vector Average Gadget L #   –avg (Figure 16a) constrains one
vector to be the average of two others. Specifically, the function Offset(Λ1,Γ1,Λ2,Γ2,Λ3,Γ3) is a
homeomorphism from Conf(L #   –avg) to

U #   –avg =
{
(α1, β1, α2, β2, α3, β3) ∈ [−δ, δ]6

∣∣ 2Rect(α2, β2) = Rect(α1, β1) + Rect(α3, β3)
}
.

Useful Neighborhood: whenever three vectors satisfying v1 + v3 = 2v2 are given with magni-
tudes at most |vj | ≤ δ/2 for j = 1, 2, 3, there exists a (necessarily unique) configuration of
L #     –sum with Rect(αj , βj) = vj for j = 1, 2, 3.

Angle Sum Gadget. The Angle Sum Gadget L∠sum drawn in Figure 16b constrains one
sliceform angle to equal the sum of the other two: Offset(Λ1,Λ2,Λ3) is a homeomorphism from
Conf(L∠sum) to

U∠sum = {(θ1, θ2, θ3) | θ1, θ2, θ3 ∈ [−δ, δ] and θ3 = θ1 + θ2} .

Vector Sum Gadget. The Vector Sum Gadget L #     –sum (Figure 16c) constrains one vector
to be the sum of two others. Specifically, Offset(Λ1,Γ1,Λ2,Γ2,Λ3,Γ3) is a homeomorphism from
Conf(L #     –sum) to

U #     –sum =
{
(α1, β1, α2, β2, α3, β3) ∈ [−δ, δ]6

∣∣ Rect(α3, β3) = Rect(α1, β1) + Rect(α2, β2)
}
.

Useful Neighborhood: whenever three vectors satisfying v1+v2 = v3 are given with magnitudes
at most |vj | ≤ δ/2 for j = 1, 2, 3, there exists a (necessarily unique) configuration of L #     –sum
with Rect(αj , βj) = vj for j = 1, 2, 3.

Note. The Vector Average Gadget uses the well-known pantograph linkage to keep g2 at the
midpoint of g1 and g3.

Proof. We consider each gadget in turn.

Vector Average Gadget. The Vector Average Gadget, L #   –avg, illustrated in Figure 16a, is
formed within a 3 × 11 rectangle of grid cells, where some grid edges have been removed
as shown. Three Angular Gadgets (missing their top and left cell edges) are placed with
lower-left corners at (0, 0), (4Q,Q), and (8Q, 2Q), and their vertices g1, g2, g3 are connected
to parallelogram defg2 as shown. The angles αj and βj (j = 1, 2, 3) at the three Angular
Gadgets are duplicated by Copy Gadgets and output along the bottom edge. Observe that
this gadget is scale invariant, like the gadgets from Lemma 7.19, so we may assume Q = 40
in our analysis.

Constraint and Uniqueness. Temporarily ignoring d, e, f , and their edges, the Angular and
Copy Gadgets ensure that the six angles αj and βj are each free to move within [−δ, δ],
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and together they uniquely determine the positions of all vertices (other than d, e, and
f). Lemma 7.15 (Hook Linkage) shows that the positions of d, e, and f are determined by
g1, g2, g3. Furthermore, parallelogram defg2 (which remains a parallelogram by Lemma 7.16)
ensures that triangle g1dg2 remains similar to g1eg3, so g2 must lie at the midpoint of g1g3.
This is equivalent to Rect(α2, β2) being the average of Rect(α1, β1) and Rect(α3, β3), as
required.

Existence. Suppose angles αj and βj are chosen for j = 1, 2, 3 satisfying this average
constraint, i.e., lying in U #   –avg. As in Lemma 7.19 (the Copy Gadget and Angular Gad-
get cases), all vertices other than d, e, f may be configured at most ε/2 from their initial
positions such that all edges other than those incident to d, e, f have rotated by at most
±ε/2 from their initial directions. Membership in U #   –avg guarantees that g2 is the mid-
point of g1g3. Lemma 7.15 (Hook Linkage) applied to g1dg2, which is applicable because
max((ε/2)/|g1 − d|, (ε/2)/|d− g2|) = ε/80 < 1/32, shows that d may be configured at most
4 · ε/2 = 2ε from its initial position such that edges g1d and dg2 have each rotated by at
most max ((ε/2)/|g1 − d|, (ε/2)/|d− g2|) ≤ ε/20 < ε/2 from their initial directions. Similar
computations apply to hooks h2fg3 and g1eg3, and because g2 is the midpoint of g1g3, sim-
ilar triangles ensure that d and f land at the midpoints of g1e and g3e, respectively. The
result is thus a valid configuration of L #   –avg with minimum feature size at least 1− 4ε ≥ 1/2.

Useful Neighborhood. This final claim follows from the Angular Gadget case of Lemma 7.19.

Angle Sum Gadget. The Angle Sum Gadget in Figure 16b is constructed in a 6×7 grid of
Q×Q cells, with transmission sliceforms and transmission edges as described immediately
preceding this Lemma (most not depicted). The cells labeled A1 and A2 are Angle Average
Gadgets (L∠avg), where one of A2’s transmission sliceforms (drawn in gray) has been frozen,
fixing that input to 0. The other gray cells are Copy Gadgets, Lcopy. This analysis follows
straightforwardly from the characterizations of the Angle Average and Copy Gadgets from
Lemma 7.19, as we now show. Define θ′j = θ′j(C) = OffsetΘ′

j
(C) for a given configuration

C, analogous to the definitions of θj .

Constraint and Uniqueness. Suppose θ1, θ2, θ3 ∈ [−δ, δ] are given. We must show that
they give rise to at most one configuration of L∠sum, and that θ3 = θ1 + θ2 must hold
for a configuration to exist. The Copy Gadgets labeled θ1 and θ2 show that θ′1 = θ1 and
θ′2 = θ2. Then gadget A1 forces θ4 = (θ1 + θ2)/2. Copy Gadgets transfer this same value
to θ′4 = θ4 = (θ1 + θ2)/2, and then gadget A2 and the remaining Copy Gadgets ensure
that θ′4 = (θ1 + θ2)/2 is the average of 0 and θ3, or in other words, θ3 = θ1 + θ2. All copy
and Angle Average Gadget configurations are uniquely determined by these values. Because
transmission edges not part of a gadget on either side are frozen, angles θ1, θ2, θ3 uniquely
determine the entire configuration of L∠sum (when it exists), as required.

Existence. The conditions θj ∈ [−δ, δ] for j = 1, 2, 3 show that θ4 = (θ1 + θ2)/2 also lies
in [−δ, δ], and the condition θ3 = θ1 + θ2 ensures that the inputs at A1 and A2 satisfy
the average constraint required by each Angle Average Gadget, so the desired configuration
indeed exists by Lemma 7.19.

Vector Sum Gadget. In this gadget illustrated in Figure 16c, each Q×Q cell labeled with
an angle αj or βj is a Copy Gadget, and each cell with an “x” is a Crossover Gadget. As with
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the previous compound gadgets, all unused transmission edges are frozen, as are the two
transmission sliceforms illustrated in gray instead of black at the right of the bottom-most
Vector Average Gadget. The analysis is similar to that of the Angle Sum Gadget, so we
omit the details.

7.6 Combining the Gadgets

We are now prepared to use these gadgets to construct an extended linkage that draws a
piece of Z(F ), up to a translation. Recall that F = {f1, . . . , fs} is a family of polynomials in
R[x1, y1, . . . , xm, ym], each with total degree at most d. We apply the change of coordinates
(xk, yk) = 2r · Rect(αk, βk) (for 1 ≤ k ≤ m) to write each polynomial fj (for 1 ≤ j ≤ s) in
angular form as in Lemma 7.10:

fj(
# –xy(

#  –

αβ))− fj (⃗0) =
3∑

u=0

∑
I∈Coeffs(2m,d)

iu · dj,u,I ·
(
exp(i · (I · #  –

αβ))− 1
)
, (8)

where the numbers dj,u,I are nonnegative. If the polynomials in F do not have integer
coefficients, we may need to modify the input slightly: scale up F uniformly (which scales
the dj,u,I coefficients by the same amount) until each nonzero term dj,u,I is at least 1, and
let M be an upper bound on the scaled up coefficients in F (as standard polynomials in
# –xy). If F originally had integer coefficients, the dj,u,I were already integers, so this scaling
is unnecessary.

For each 1 ≤ j ≤ s, the numbers dj,u,I are nonnegative and add to at most 6d ·
rd · M ·

(
2m+d

d

)
≤ Rδ/2, by Lemma 7.10 and by the choice of R in Section 7.3. This

shows that every partial sum of the right-hand side of (8) has magnitude at most Rδ/2. In
particular, the Vector Creation, Vector Rotation, Vector Average, and Vector Sum Gadgets
can all safely construct these terms and partial sums, according to the gadget specifications
in Lemmas 7.19 through 7.21. The same holds for the value fj (⃗0) and the End Gadget,
because |fj (⃗0)| ≤ M ≤ Rδ/2.

The extended linkage E = E(F ) that will be built in this section will draw a trans-
lation of Z(F ) ∩

(
2r · Rect([−δ/d, δ/d]2)

)m, which by Lemma 7.9 contains Z(F ) ∩ [−1, 1]2

because 2r · δ/(2d) ≥ 1 by choice of r.

Step 1: Grid. To begin, define extended linkage E as a rectangular grid of Q×Q cells, with
O(poly(md, dd, s)) cells on each side. Each cell is given tolerance-0 corners and transmission
edges attached at cell edge midpoints. The transmission vertices (which are sliceforms)
initially have frozen corners. Add pins to three noncollinear vertices of this grid, so the
entire grid E is globally rigid. There will be no other pins anywhere in E ; pins illustrated
in the gadgets above are removed before use here, though they are effectively still present
because the grid E is globally rigid.

In the rest of the construction, gadgets will be added to this grid, with their trans-
mission vertices’ corners upgraded to tolerance-δ as required by the gadgets.
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Step 2: Start Gadgets to set up α1, β1, . . . , αm, βm. Add m Start Gadgets Lstart(k), 1 ≤
k ≤ m to E as illustrated at the top of Figure 17, and let vk be the vertex in Lstart(k) cor-
responding to vertex v in Figure 15a; these vertices X = {v1, . . . , vm} will be the drawing
vertices of E . Likewise define corners Λk and Γk as the corners from Lstart(k) that are la-
belled Λ and Γ in Figure 15a, and set (αk, βk) = (αk(C), βk(C)) = Offset(Λk,Γk)(C) for a
configuration C, as usual.

With E in this state, by Lemma 7.20 (Start Gadget), Conf(E) is perfectly described
by corners Y = (Λ1,Γ1, . . . ,Λm,Γm): the map OffsetY is a homeomorphism of Conf(E) with
[−δ, δ]2m.

Angle Sum

S S

α1

α1

α1

α1

α1

α1

α1

α1

α1

α1

β1 β1

β1

β1

β1

β1

β1

β1

β1

β1

β1

β1

β1 β1 β1 β1 β1

α2

α2

α2

α2

α2

α2

α2

α2

α2

α2 α2 α2 α2

β2 β2

β2

β2

β2

β2

β2

β2

β2

β2

γγ

γ

γ

...
...

...
...

...ΘI1 ΘI2 ΘI3 ΘI4 ΘI5

Figure 17: Constructing the sum γ = β1 + α2. Cells with “S” are Start Gadgets; those with
“x” are Crossover Gadgets; and those with αk, βk, or γ are Copy Gadgets.

Step 3: Construct all linear combinations θI . In the next step, we modify E further to
construct all the angles θI := I · #  –

αβ, where
#  –

αβ = (α1, β1, . . . , αm, βm) and I ranges over all
vectors of Coeffs(2m, d).

We start with base cases of the angle 0 (corresponding to I = (0, . . . , 0)) and the
angles αk and βk (corresponding to I = (0, . . . , 0, 1, 0, . . . , 0)). The angle 0 can be con-
structed by placing a 0 angle constraint on any transmission edge. The angles αk and βk are
already constructed by the Start Gadgets. Use Copy Gadgets to build wires that copy all of
these base cases vertically along columns, as shown in Figure 17. We call this collection of
wires the wire column, and it will accumulate other wires constructing other angles as the
construction continues.

By ordering all the remaining vectors I ∈ Coeffs(2m, d) according to the sum of the
absolute values of entries in I, each successive θI may then be computed as θI = θI′ ± αk

or θI = θI′ ± βk, which can be constructed using a single Addition Gadget. To do this, as
illustrated in Figure 17, we use Crossover Gadgets to transmit the desired input angles to
the Addition Gadget, and then the constructed θI joins the wire column. Repeat this for
each remaining I ∈ Coeffs(2m, d).
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For each I, let ΘI be any transmission corner in the wire coming from the con-
struction of θI above. We claim that Conf(E) is still perfectly described by the corners
Y = (Λ1,Γ1, . . . ,Λm,Γm), but this time on a smaller range: we will show that OffsetY
is a homeomorphism of Conf(E) with [−δ/d, δ/d]2m, and furthermore that the corners ΘI

indeed have angle OffsetΘI
(C) = θI(C). The latter claim follows from induction on I. To

see that the αk and βk are each precisely (and independently) constrained to the interval
[−δ/d, δ/d], first consider the corner ΘI where I = (d, 0, 0, . . . , 0). We have θI = d · α1, and
the δ-tolerance at corner ΘI requires this value to remain in [−δ, δ], so α1 must remain in
[−δ/d, δ/d]. The other entries in

#  –

αβ are likewise constrained by analogous arguments. In the
other direction, for any vector

#  –

αβ ∈ [−δ/d, δ/d]2m and any I ∈ Coeffs(2m, d), the value I · #  –

αβ
lies in the interval [−δ, δ] by triangle inequality. Thus, by our gadget analyses (Lemmas 7.19,
7.20, and 7.21), any such vector

#  –

αβ may be realized by a unique configuration of E .

Step 4: Construct the terms in the angular expansions of f1, . . . , fs. For each 1 ≤
j ≤ s and each nonzero coefficient dj,u,I in the angular representation of fj( # –xy(

#  –

αβ)), insert
a Vector Creation Gadget using angle θI and length w = dj,u,I (which indeed satisfies
1 ≤ |w| ≤ Rδ/2), and if u ̸= 0, chain this with u Vector Rotation Gadgets. The result
constructs the desired vector iu · dj,u,I · (exp(i · θI) − 1): specifically, the result is a pair
of wires with transmission corners Λ′

j,u,I and Γ′
j,u,I whose angles (α′

j,u,I(C), β′
j,u,I(C)) =

OffsetΛ′
j,u,I ,Γ

′
j,u,I)

(C) satisfy

R · Rect(α′
j,u,I , β

′
j,u,I) = iu · dj,u,I · (exp(i · θI)− 1).

These additional gadgets do not constrain E ’s movement in any way, so the map OffsetY is
still a homeomorphism of Conf(E) with [−δ/d, δ/d]2m.

Step 5: Add the vectors to construct fj(
#   –

αβ) − fj (⃗0). For each 1 ≤ j ≤ s, use
Vector Addition Gadgets to successively construct the sum of the nonzero vectors among
R · Rect(α′

j,u,I , β
′
j,u,I), resulting in a single pair of wires with transmission corners Λ′

j ,Γ
′
j

whose angle offsets α′
j , β

′
j satisfy

R · Rect(α′
j , β

′
j) =

(
fj(

#  –

αβ)− fj (⃗0), 0
)
.

(Join these wires to the wire column, as usual.) As above, these additional gadgets do not
constrain E ’s movement, so OffsetY : Conf(E) → [−δ/d, δ/d]2m is still a homeomorphism.

Step 6: Conclude with End Gadgets Finally, for each 1 ≤ j ≤ s, feed the α′
j and β′

j wires
into an End Gadget that enforces the constraints

R · Rect(α′
j , β

′
j) =

(
−fj (⃗0), 0

)
.

The configuration space of the resulting linkage E is then homeomorphic to the subset of
#  –

αβ ∈ [−δ/d, δ/d]2m that satisfies the constraints of these End Gadgets, i.e.,

Conf(E) =
{

#  –

αβ ∈ [−δ/d, δ/d]2m | fj(
#  –

αβ) = 0, 1 ≤ j ≤ s
}
.
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v w1

w2

w3

w4

Figure 18: The Sliceform Gadget keeps w1, v, w3 and w2, v, w4 collinear. All marked vertices
have coordinates at integer multiples of |v − wj |/4, indicated by cyan axis notches.

And because the offset of each vertex vk from the lower-left corner of its cell is precisely
(Q/5, Q/5) + (2r, 2r) + 2r · Rect(αk, βk) = (Q/5, Q/5) + (2r, 2r) + (xk, yk), these vertices
{v1, . . . , vm} indeed draw a translation of

Z(F ) ∩ (2r · Rect([−δ/d, δ/d], [−δ/d, δ/d]))m ,

as required.

7.7 Sliceform and Angle Restrictor Gadgets

In Section 7.8, we will convert the extended linkage E(F ) constructed above into a partially
rigidified linkage (with no other constraints). In this section, we describe two gadgets to
help with this process: the Sliceform Gadget obviates the need for sliceform vertices, and
the Angle Restrictor Gadget enforces E ’s angle constraint, after replacing each edge with a
rigidified tree.

Lemma 7.22 (Sliceform Gadget). The extended linkage that has four edges meeting at
a sliceform vertex with tolerance θ (where θ is in {0, δ, ε}) is perfectly simulated by the
extended linkage L∠slice(θ), where all non-frozen corners are given tolerance θ (see Figure 18).
Furthermore, the global minimum feature size is at least |v − wj |/8 (which is the same for
all j = 1, 2, 3, 4 and in all configurations), and all vertices lie within distance 3

2 |v−wj | of v,
in all configurations.
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o
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c1

d1

g1
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Figure 19: Angle Restrictor Gadget, L∠restrict(n), shown in full (left) and closeup (right).
Tree A is bold and black, with leaves at o and aj , j = 1, 2, 3; B is bold and gray, with leaves
at o and bj , j = 1, 2, 3, 4, 5. Coordinates depend on input integer n such that the range
of motion of the gadget approaches zero as n increases. Dashed segments show alternative
configurations for edges, with vertices constrained to dashed circles.

Proof. For convenience, scale so that |v − w1| is 4 in the initial configuration, so that the
cyan notches in Figure 18 have unit distance between them, and all edge lengths are integers.
By Lemma 7.16 applied to the many rectangles of Figure 18, all parallelograms in the figure
remain parallelograms in all configurations. This, paired with the frozen angles keeping
collinear edges collinear, ensures the desired collinearity and that the distances |v − wj |
remain constant, namely 4. The gadget admits the desired motion by the simultaneous
motion of all the parallelograms. All edge lengths are at least 1, so by Lemma 7.16, the
global minimum feature size is at least 1/2 = |v −wj |/8. By triangle inequality, all vertices
remain at distance at most 6 = 3

2 |v − wj | from v.

The last gadget is built from partially rigidified linkages instead of extended linkages.
Recall that a partially rigidified linkage is a constrained linkage where all constraints are rigid
constraints, RigidCon(H,CH), each forcing a certain subgraph H to maintain a chosen, rigid
shape given by a specified configuration CH .

Lemma 7.23 (Angle Restrictor Gadget). For an integer n ≥ nε = 5000 (from Equation 6),
let L∠restrict = L∠restrict(n) be the partially rigidified linkage shown in Figure 19, with two
rigid constraints fixing orthogonal trees A and B in the configurations shown (but not gov-
erning their orientations or relative position). Tree A is drawn with bold black lines, while
B has bold gray lines. Tree B is also pinned to the plane for convenience, with o at (0, 0).

Then L∠restrict is globally noncrossing, and vertex a1 draws the locus

{ℓ(oa1) · (cos θ, sin θ) | π/2− γ ≤ θ ≤ π/2 + γ}
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liftably and rigidly, where γ = γ(n) is given by

γ(n) = cos−1

(
1− 3

10
· 2n

n2 + 1

)
.

Furthermore,

1. The initial configuration shown in the figure has rational coordinates.

2. All configurations are noncrossing and agree with the same combinatorial embedding.
In particular, tree A is always configured with the same orientation as in Figure 19.

3. At every vertex that is not interior to one of the rigidified trees (in other words, every
vertex given a name in Figure 19), every pair of consecutive edges forms an angle
strictly between 60◦ and 240◦ in every configuration, except for the external angle
∠a1ob1 ∈ [3π/2− γ, 3π/2 + γ].

4. There is a unique configuration of L∠restrict having ∠b1oa1 = π/2.

5. Finally, the limiting case L∠restrict(∞) is well-defined, satisfies all of the above, and is
globally rigid.

Note. The assumption of pinning B to the plane is equivalent to choosing a coordinate frame
relative to B’s configuration. Thus, if we do not pin B, then this lemma still describes tree
A’s position relative to that of B. In particular, if either tree is known to have orientation
matching that of Figure 19, then they both must—one cannot “flip” relative to the other—
and ∠b1oa1 must lie in [π/2− γ, π/2 + γ].

Figure 20: A simpler Angle Restrictor Gadget is possible if uniqueness at θ = π/2 is not
required. This is shown only for contrast with Figure 19; this simpler version is not formally
analyzed or used in this paper.
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Note. The uniqueness property of Part 4 is the crucial step in proving hardness of global
rigidity, but it also complicates the gadget. Without this requirement, a much simpler
construction is possible, such as that shown in Figure 20.

Proof. First we specify the initial configuration C0, drawn solid in Figure 19, more pre-
cisely. Vertex o rests at the origin, (0, 0). Let κ = sin−1(5/13), which is a Pythagorean
angle, meaning sin(κ) = 5/13 and cos(κ) = 12/13 are both rational, and define another
Pythagorean angle φ = φ(n) = sin−1(2n/(n2 + 1)) (its cosine is (n2 − 1)/(n2 + 1) ∈ Q),
where φ(n) ≤ φ(nε) < 0.0004. In the initial configuration, a2 = (cosκ, sinκ), c1 = 2a2,
∠b3c1o = ∠oc1b2 = π/2 − φ, and d1 is the midpoint of c1b2. Edges c1d1, d1b2, and c1b3
have length t, t, 2t respectively, where t = 3/20. (This arbitrary choice of t allowed for a
prettier figure than others we tried.) Vertices a3, c2, b4, b5, d2 are initially configured at the
reflections through the line y = x of the initial positions of vertices a2, c1, b3, b2, d1 respec-
tively. The upper right vertex of B has coordinates (2 + t, 2 + t). The initial configuration
has minimum feature size realized by point d1 to segment a2c1 (and d2 to a3c2), namely
t sin∠a2c1d1 = t cosφ ≥ t cosφ(nε) > 0.14999. Because we chose Pythagorean angles, all
coordinates are initially rational. We will proceed as if |o− a1| = |o− b1| = 2.75 (as drawn),
but they may be longer without affecting the global minimum feature size.

We now investigate a general configuration C of L∠restrict. Bar b3c1 restricts c1 to
the dashed circle with radius 2t, and bars b2d1 and d1c1 further restrict vertex c1 to the
disk with radius 2t, as shown. As a result, c1 must lie on the small circular arc g1g2 (see
Figure 19), centered at b3 with angle 2φ. (Note that g1 and g2 are fixed points in the plane,
not linkage vertices.) In turn, because |o − a2| = |a2 − c1| = 1, vertex a2 is confined to
the circular arc h1h2 centered at o with radius 1, where the endpoints of confinement, h1
and h2, are determined by rhombus oh1g1h2 of side length 1. Because o, g1, and g2 are
collinear, we may compute that |o − g1| = 2 − 4t sinφ, and so γ := 1

2∠h1oh2 is given by
γ = cos−1(1− 2t sinφ). We have γ(n) ≤ γ(nε) < 0.0155, which is less than the fixed value
|∠a2oa3| = π/2− 2κ > 0.78, so arcs h1h2 and h3h4 are disjoint. This forces ∠a2oa3 to have
counterclockwise orientation, and so tree A must maintain its orientation as claimed, and
θ = ∠b1oa1 must remain in the closed interval between π/2± γ.

We must show that L∠restrict cannot move far enough to intersect itself or to violate
the angle conditions in Part 3. Toward this goal, let us first argue that the angle of each
edge in configuration C differs from that in C0 by at most ±1/60 radians. The edges in tree
A can rotate by at most ±γ, and likewise edges a2c1 and a3c2 can change their direction
by at most ±γ, where γ < 1/60 as above. Edges b3c1 and b4c2 can rotate by at most
2φ ≤ 2φ(nε) < 0.0008 < 1/60. Only the edges incident to d1 and d2 remain, and by
symmetry, we may consider only those at d1. We will measure these edges relative to the
vector b2c1, which is not an edge of the linkage but is nevertheless a useful reference. This
vector b2c1 can change its direction by at most 2φ ≤ 2φ(nε) < 1/120. Its length is at least
|b2 − b3| − 2t = 2t(2 cos(φ)− 1) ≥ 2t(2 cos(φ(nε))− 1), which may be checked to be at least
2t · cos 1

120 . Isosceles triangle b2d1c1 then shows that |∠d1b2c1| = |∠d1c1b2| ≤ 1/120 radians.
So each of d1b2 and d1c1 can rotate by at most 1/120 + 1/120 = 1/60, as claimed.

Each vertex is connected to a vertex in the stationary tree B by a path of length at
most 3, so by Lemma 7.13, each vertex has been offset from its initial position by at most
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3·1/60 = 1/20. Because C0 has minimum feature size > 0.14999, we conclude by Lemma 7.14
that C is noncrossing (with minimum feature size at least 0.14999 − 2/20 > 0.04999 > 0).
Each corner at each named vertex initially had an angle between π/2 − φ and π + κ + φ,
and these angles are at most 2 · 1/60 = 1/30 different in configuration C, which confirms
that the corresponding angles in C lie safely between π/3 and 4π/3: indeed,

π

2
− φ− 1

30
> 88.06◦ > 60◦ and π + κ+ φ+

1

30
< 204.56◦ < 240◦,

confirming Part 3. It also proves that C and C0 agree with the same combinatorial embed-
ding (Part 2).

Conversely, given any angle θ ∈ [π/2 − γ, π/2 + γ], we will argue there are either 1
or 4 configurations C having ∠b1oa1 = θ. This angle determines the position of a2 along
arc h1h2, and then there is a unique point c1 on arc g1g2 with |a2 − c1| = 1. If c1 lies at g2
(i.e., θ = π/2), then because |b2 − c1| = 2t, vertex d1 must be configured at the midpoint of
b2c1. The case is similar if c1 is at g1, i.e., θ = π/2 ± γ. Otherwise, d1 lies in the interior
of the solid gray disk, so there are two possible choices for the location of d1. The same is
true for the other assembly anchored at a3, b4, and b5, and furthermore, vertices d1 and d2
may vary continuously with θ. This proves that vertex a1 draws liftably and rigidly.

In the limiting case n = ∞, the angles φ and γ are 0, so the resulting linkage
L∠restrict(∞) is globally rigid.

7.8 Implementing Extended Linkages with Partially Rigidified Linkages

We now use the gadgets from Section 7.7 to transform the extended linkage E , constructed
in Section 7.6, into a partially rigidified linkage L = L(F ) that simulates E—not perfectly,
but at least liftably and rigidly.

Extended linkage E has all edge lengths at least 1 and has global minimal feature
size at least 1/2, because each gadget individually has these properties. Construct a new
linkage E ′ = E ′(F ) by replacing each sliceform vertex v in E with a Sliceform Gadget L∠slice
of Lemma 7.22 with the same angle tolerance, scaled so that |v−wj | = 1/8. By Lemma 7.22,
each sliceform gadget individually has minimum feature size at least |v −wj |/8 = 1/64 and
lives within a disk of radius 3

2 |v − wj | = 3/16 centered at the replaced vertex. Thus the
feature size between different sliceform gadgets is at least 1

2 − 2 · 3
16 = 1

8 . Therefore E ′

perfectly simulates E , is globally noncrossing, and has global minimum feature size at least
1/64.

We transform E ′ into a partially rigidified linkage L = L(F ) as follows: first, consider
each edge uv of E ′ as a rigidified tree Tuv initially containing just one edge. For each
vertex v with neighbors wj (for 1 ≤ j ≤ deg v), we will modify the trees Tvwj in a small
neighborhood of v with (scaled down) Angle Restrictor Gadgets (from Lemma 7.23) adapted
as necessary to v’s structure, to faithfully implement v’s angle constraints. Specifically, look
at the angles A(Λ) for corners Λ around v: the 5 possibilities, up to cyclic reordering,
are (90◦, 90◦, 90◦, 90◦) (180◦, 90◦, 90◦), (180◦, 180◦), (270◦, 90◦), or (360◦). The last case
corresponds to deg v = 1, in which case its angle constraint does nothing and may be
ignored. In each of the first four cases, we modify the trees Tvwj in a small region around
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Figure 21: To turn extended linkage E ′ into L, a neighborhood of each vertex is replaced
with an Angle Restrictor Gadget neighborhood tailored to the base angles of its corners,
as shown. The possible vertex types are (90◦, 90◦, 90◦, 90◦) (top left), (180◦, 90◦, 90◦) (top
right), (180◦, 180◦) (bottom left), (270◦, 90◦) (bottom right), and (360◦) (not shown). In
the bottom two cases of degree 2, a single Angle Restrictor Gadget would suffice, but we
draw both for consistency. Each rigidified tree is a different color of thick edges.
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v with the appropriate Angle Restrictor Gadget neighborhood from Figure 21. Each Angle
Restrictor Gadget within this neighborhood is given the shape of L∠restrict(nε), L∠restrict(nδ),
or L∠restrict(∞) depending on whether the corner Λ has ∆(Λ) = ε, δ, or 0 respectively.
(Recall nε and nδ are given by Equations 6–7.) Finally, remove the three pins of E ′ (that
serve only to fix the background grid in place), and replace them in L with three noncollinear
pins in one of the rigidified trees Tu1u2 built from an edge u1u2 in the background grid.

We claim that L simulates E ′ (and hence E) liftably and rigidly. For each rigidified
tree Tuv, at least one of u or v has degree greater than 1 in E ′ because E ′ is connected,
so Tuv participates in at least one Angle Restrictor Gadget neighborhood. As shown in
Lemma 7.23 (Angle Restrictor Gadget), rigidified trees connected to each other by an Angle
Restrictor Gadget cannot change orientation relative to each other. Because tree Tu1u2 is
pinned rigidly in place and all rigidified trees in L are connected to each other by a sequence
of Angle Restrictor Gadgets, none of the rigidified trees in L can change orientation at all.
This same lemma guarantees that all angle constraints are enforced by the Angle Restrictor
Gadgets. In particular, the entire background grid in L is fixed rigidly in place by the pins
in Tu1u2 . The Angle Restrictor Gadgets maintain their constraints in a liftable and rigid
fashion, so L indeed simulates E ′ liftably and rigidly.

Below we will show that this linkage L = L(F ) satisfies all requirements of the Main
Theorem.

Theorem 7.24. This linkage L = L(F ), built from F = {f1, . . . , fs}, satisfies all of the
requirements of Theorem 2.14, with

D = 212 · 13 · 20 ·
(
n2
ε + 1

)
·
(
n2
δ + 1

)
≈ 4.26 · 1042.

Proof. Part I. 1. Define X ⊂ V (L) as the set of vertices of L that simulate vertices
v1, . . . , vm of E . Define translation T ( # –xy) = # –xy + (a1, b1, . . . , am, bm) where for each
1 ≤ k ≤ m, (ak, bk)− (Q/5 + 2r,Q/5 + 2r) are the coordinates of the lower left corner
of the cell containing Start Gadget Lstart(k); in other words, (ak, bk) is the position of
vertex vk that would correspond to (αk, βk) = (0, 0). We showed in Section 7.6 that E
perfectly draws the region T (Z(F )∩U), where U = (2r ·Rect([−d/δ, d/δ]))m. Because
L liftably and rigidly simulates E , L indeed liftably and rigidly draws the same trace.

2. Following the construction above, there are m Start Gadgets, O(|Coeffs(2m, d)|) =
O(poly(md, dd)) Angle Addition, Vector Creation, Vector Rotation, and Vector Ad-
dition Gadgets, and s End Gadgets. Stacked one on top of the other to the side of
the wire column (other than the Start Gadgets above the wire column), these gad-
gets require a height of O(poly(md, dd, s)). The wire column likewise has no more
than O(poly(md, dd, s)) wires, so the entire construction fits in an O(poly(md, dd, s))×
O(poly(md, dd, s)) grid of cells. Each cell contains O(1) vertices and edges, proving the
claim.

3. We already concluded that E ′ is globally noncrossing with global minimum feature size
at least 2−8. In the insertion of Angle Restrictor Gadget neighborhoods to transform
E ′ to L, scale each gadget by a factor of 2−12, so that it fits within a 2−10 neighborhood
of its vertex and (on its own) has a global minimum feature size at least 2−12 · 1/20.
E ′ ensures that each Angle Restrictor Gadget neighborhood stays well separated from
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other edges or Angle Restrictor Gadgets, so 2−12 · 1/20 > 1/D is a lower bound on the
global minimum feature size of L, as desired.

4. Each rigidified tree Tuv in L is constructed by attaching a portion of an Angle Restrictor
Gadget neighborhood (as illustrated in Figure 21) to one or both endpoints of edge uv.
These rigidified trees are indeed orthogonal and edge disjoint, possess at least three
noncollinear vertices, and only connect to other trees or edges via leaves.

5. The combinatorial embedding σ of L follows from the combinatorial embedding of
extended linkage E ′ (which is unique by Lemma 7.22), augmented with the unique
combinatorial embedding of Angle Restrictor Gadgets (Lemma 7.23, Part 2). Any
vertex u of L that is not internal to a rigidified tree must either belong to an Angle
Restrictor Gadget neighborhood, or come from a vertex of E ′ of degree 1. In the latter
case, u still has degree 1 in L, so we need not consider it. If instead u belongs to
the Angle Restrictor Gadget neighborhood of some vertex v ∈ E ′, it may be seen in
Figure 21 that u’s angles remain within (60◦, 240◦): indeed, by Lemma 7.23 (Angle
Restrictor Gadget), the only place this condition might be violated is at the center of
the neighborhood, u = v, but Figure 21 shows that the angles at v’s corners remain in
π/2± γ or π ± γ.

6. This is true by construction.

Part II. 7. When the coefficients of f1, . . . , fs are integers, all coefficients dj,u,I are also
integers bounded by O(poly(md, dd, s,M)) (by Lemma 7.10). Parameters r,Q,R are
also integers bounded by O(poly(md, dd, s,M)), so it may be seen that all edge lengths
of E are integers no greater than Q (including the Vector Creation Gadgets with in-
tegers w = dj,u,I and End Gadgets with integers w = −fj(0)). The edges of E ′ have
lengths in 1

32Z, because the scaled Sliceform Gadgets L∠slice that were inserted into E
to form E ′ have these edge lengths. Finally, the scaled Angle Restrictor Gadget neigh-
borhoods (with each Angle Restrictor Gadget having shape L∠restrict(nε), L∠restrict(nδ),
or L∠restrict(∞)) may be checked to have edge lengths in 1

DZ, so the same can be said
for L.
The only edges of L not contained in a rigidified tree correspond to those edges in
Figure 19 (Angle Restrictor Gadget) that are drawn with thin lines. In L, these edges
all have lengths 2−12, 2−12 · 3/20, and 2−12 · 3/10, which are less than D.

8. Angular forms gj(
#  –

αβ) may be computed from polynomials fj( # –xy) in deterministic time
O(poly(md, dd, s,M)) by Lemma 7.10, and the magnitudes of the coefficients never
exceed O(poly(md, dd, s,M)). Our transformations from f1, . . . , fm to L(F ) are explicit
and deterministic.

Part III. 9. When the given polynomials fj satisfy fj(
#–
0 ) = 0, our construction of E(F )

uses End Gadgets only with input w = 0, which come with initial configurations
with coordinates that are integer multiples of Q/40 and are therefore integers, as in
Lemma 7.20. The Vector Creation Gadgets, with integer input w = dj,u,I , likewise
have integer coordinates initially. All other gadgets start at integer coordinates un-
conditionally. Together, these specify an initial configuration of E(F ) corresponding to
#  –

αβ = 0⃗, i.e., # –xy = 0⃗, which indeed has integer coordinates.
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The initial configurations of the Sliceform Gadgets and Angle Restrictor Gadgets were
also illustrated in Figures 18 and 19 and may be checked to have rational coordinates
in 1

DZ. These induce the desired initial configuration C0 of L(F ).
10. Linkage E ′ perfectly draws T (Z(F )∩U), meaning there is only one configuration of E ′

mapping to T (⃗0). In this unique configuration, each Angle Restrictor Gadget must be
in its initial state (corresponding to θ = π/2 in Lemma 7.23), and there is only one
such configuration for each gadget. So C0 is indeed unique.

11. All edges of E ′ are initially axis aligned, so the rigidified trees built from these edges
are likewise axis aligned.

12. As described above, our construction of C0 is explicit and deterministic.

All properties have been verified, so this concludes the proof.

7.9 Modifications for Strong Matchstick Universality

We may subtly modify the above proof of Theorem 2.14 (Main Theorem) to prove that the
proper subsets of R2 drawn by matchstick linkages are exactly the bounded semialgebraic
sets. We will use one extra cell gadget when constructing extended linkage E(F ), the Cross-
ing End Gadget (Figure 22, Lemma 7.26), which creates a crossing precisely when g( # –xy) = 0
for a given polynomial g. When linkage E(F ) is simulated by a matchstick linkage M(F )
as described in Section 6, all of E(F )’s noncrossing configurations transfer to M(F ), i.e.,
thickening does not introduce unintended crossings. This allows us to draw semialgebraic
sets of the form

{x⃗ ∈ Rk ∈ R2 | f1(x⃗) = · · · = fs(x⃗) = 0, g1(x⃗) ̸= 0, . . . , gr(x⃗) ̸= 0},

as well as coordinate projections thereof. This is sufficient to draw any bounded semialge-
braic set in the plane. Details follow.

Theorem 7.25 (Universality of Matchstick Linkages). The proper subsets R ⊊ R2 that are
drawable by a matchstick linkage are exactly the bounded semialgebraic sets.

Proof. Let M = (L,NXL) be a matchstick linkage that is connected and has at least one
pin. For the underlying, unconstrained linkage L, the set Conf(L) is described by closed
polynomial conditions and is therefore compact and algebraic. Noncrossing can be described
by the nonvanishing of polynomials, so Conf(M) = NXConf(L) ⊂ Conf(L) is bounded and
semialgebraic (not necessarily closed). Then, for any vertex v, the trace πv(Conf(M)) is
also bounded and semialgebraic.

Conversely, to show that every bounded, semialgebraic set can be drawn with a
matchstick linkage, it suffices (by Lemma 3.2) to show that every bounded, basic semialge-
braic set of the form

U = {x⃗ ∈ R2m | f1(x⃗) = · · · = fs(x⃗) = 0, g1(x⃗) ̸= 0, . . . , gr(x⃗) ̸= 0}

can be drawn by a matchstick linkage, up to translation. We may assume U does not contain
the origin (by translating if necessary), and by replacing each gj(x⃗) by gj(x⃗) · |x⃗|2 (which
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Figure 22: The Crossing End Gadget creates a crossing at g = h precisely when α = β = 0,
assuming g remains on the line y = Q/2.

does not modify U), we may further assume that each gj satisfies gj (⃗0) = 0. We first prove
the special case where U ⊂ [−1, 1]2m; the general case is discussed at the end.

By defining Fj(
# –xy) := fj(D · # –xy) and Gj(

# –xy) := gj(D · # –xy), we may write

1

D
· U = { # –xy | Fj(

# –xy) = 0 for 1 ≤ j ≤ s and Gj(
# –xy) ̸= 0 for 1 ≤ j ≤ r}. (9)

By scaling the polynomials Fj and Gj (which does not affect the solution set in (9)), we
may further assume that their coefficients are in [−1, 1].

Now we will use the “coefficients as variables” trick from the proof of Theorem 5.9.
Namely, for each polynomial P ∈ {F1, . . . , Fs, G1, . . . , Gr}, and for each monomial cP,J # –xyJ

in P , we create new variables aP,J and bP,J , gather all of these new variables into a vector
#–

ab, and define the new polynomials

P ′( # –xy,
#–

ab) :=
∑

J such that cP,J ̸=0

aP,J
# –xyJ .

Polynomials F ′
1, . . . , F

′
s, G

′
1, . . . , G

′
r now have integer coefficients: in fact, all coefficients

equal 1. It remains to implement the equations F ′
j(

# –xy,
#–

ab) = 0, G′
j(

# –xy,
#–

ab) ̸= 0, (aFj ,J , bFj ,J) =
(cFj ,J , 0), and (aGj ,J , bGj ,J) = (cGj ,J , 0), for all j and J , which exactly recover the solutions
# –xy from (9).

To implement each non-equality G′
j(

# –xy,
#–

ab) ̸= 0, we create a custom extended linkage
cell gadget, the Crossing End Gadget LX-end, that is not globally noncrossing, but instead
takes as input a real number in some range (namely, the horizontal offset of vertex g) and
induces a crossing precisely when that input is zero:

Lemma 7.26 (Crossing End Gadget). The Crossing End Gadget, LX-end, is a copy of
Langular with one additional edge b2h of length Q/2. (It is drawn short to emphasize that
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g and h are distinct and do not share an edge, but in the initial configuration depicted, g
and h actually overlap.) Let H ⊂ Conf(LX-end) consist of those configurations in which
g has y coordinate equal to Q/2. Then the only configuration in H with a crossing has
g = (Q/2, Q/2). All configurations in H have minimum feature size at least 1/2 if the
distance between edges b2h and kg is ignored.

Proof. This follows from Lemma 7.19 (Angular Gadget).

We may now proceed as in the proof of the Main Theorem (Theorem 2.14) using
polynomials F ′

1, . . . , F
′
s and G′

1, . . . , G
′
r, and concluding each G′

j with a Crossing End Gadget
instead of an End Gadget. The rest of the linkage is already designed to ensure that the
angles α, β fed into each Crossing End Gadget satisfy R · Rect(α, β) = (G′

j(
# –xy)−G′

j (⃗0), 0)
(see Step 5 of Section 7.6), so only configurations in the set H from Lemma 7.26 are possible.
Then, as in Theorem 5.9, we pin all the vertices vP,J in the plane to force variables (aP,J , bP,J)
to take the values (cP,J , 0). For the resulting extended linkage E with drawing vertices X,
we conclude that the map πX is a homeomorphism between NXConf(E) and a translation of
1
D ·U , and furthermore, the only crossings in any configurations of E come from the Crossing
End Gadgets.

As in Section 7.8, eliminate sliceforms in E to form E ′ and process this further (as
before) into partially rigidified linkage L. Finally, modify L into a matchstick linkage M as
in Construction 6.4.

We claim that M simulates D · E . This means that each noncrossing configuration
C of E gives rise to a noncrossing configuration of M, i.e., no unintended crossings arise
in M’s underlying linkage. Supposing the contrary, if C is a crossing configuration, the
crossing must happen in the vicinity of a Crossing End Gadget by Lemma 7.26: the edge
polyiamonds ultimately built from edges kg and b2h of LX-end must intersect. But the former
edge polyiamond lies entirely in the lower half of the gadget, except for its endpoint on the
line y = Q/2: indeed, in the Crossing End Gadget, vertex g remains on the line y = Q/2
and the direction of edge kg changes by at most ±δ, far less than the 30◦ required for any
other part of the edge polyiamond of kg to reach the line y = Q/2. For similar reasons,
the edge polyiamond for b2h remains above y = Q/2 except for its stationary endpoint at
h = (Q/2, Q/2), so they could intersect only at h. But then C is a crossing configuration of
E , contrary to assumption. So M indeed simulates D ·E and thus draws the set D · 1

D ·U = U .

Finally, we consider the general case where U does not necessarily reside in [−1, 1]2m.
First choose an integer n large enough so that 1

n · U lies in [−1, 1]2m, and construct a
matchstick linkage L that draws 1

n · U as detailed above. Build a new matchstick linkage
L′ that copies L except that each edge polyiamond is n-times longer. This linkage L′ will
indeed draw U , as required.

8 Open Problems

Table 1 settles most problems in this area, but a few interesting open problems remain.
The one combination in the table that remains unsolved is the complexity of deciding global

http://jocg.org/


Journal of Computational Geometry jocg.org

rigidity in graphs with unit edge lengths, allowing crossings. In particular, are there any
such graphs larger than a triangle? (If not, the decision problem has an easy algorithm!)

We could also consider additional graph types (rows) in Table 1. For example,
we considered unit edge lengths and edge lengths in {1, 2}, both when allowing crossings
and when forbidding crossings, but we did not consider globally noncrossing graphs with
edge lengths restricted to {1} or {1, 2}. Do these linkages remain universal for compact
semialgebraic sets? Is realizing them ∃R-complete? Is testing their rigidity and global
rigidity ∀R-complete? Our results for globally noncrossing graphs use only integer edge
lengths bounded by a universal constant D, so we are “only” a constant factor away from a
bound of 1 or 2.

On the practical side, D ≈ 1042 is rather large. We have been loose with our
constants to keep the analysis as simple as possible, but it would be interesting to tune the
constants and see how practical the whole construction can be made. After all, a primary
motivation for avoiding crossings was to make it possible to physically construct universal
linkages.

We also introduced the class of globally noncrossing graphs. Is it ∀R-complete to
determine whether a graph with edge-length constraints is globally noncrossing, that is,
whether all its realizations are noncrossing? Our ∃R-completeness proof for realizing glob-
ally noncrossing graphs shows that distinguishing between unrealizable graphs and realizable
globally noncrossing graphs is ∃R-complete, but both cases are technically “globally non-
crossing”.

What if we relax our edge-length constraints to allow approximate solutions, mod-
elling a small amount of pliancy in the bars or tolerance at the hinges? Approximate
realizations where each edge can be stretched by at most some α factor are considered ex-
tensively in the field of metric embedding, with many interesting approximation algorithms.
Saxe [21] proved that it is strongly NP-complete to distinguish between graphs realizable
with stretch α = 1+ 1

18 from graphs realizable with stretch α = 1+ 1
9 , when embedding into

one dimension. What about embedding into two dimensions? What about when restricted
to globally noncrossing graphs, matchstick graphs, graphs with unit edge lengths, or graphs
with edge lengths in {1, 2}? (Saxe’s proof uses edge lengths in {1, 2, 3, 4}.)
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