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We consider two types of folding applied to equilateral plane graph linkages. First, under

continuous folding motions, we show how to reconfigure any linear equilateral tree (lying
on a line) into a canonical configuration. By contrast, it is known that such reconfigura-

tion is not always possible for linear (nonequilateral) trees and for (nonlinear) equilateral
trees. Second, under instantaneous folding motions, we show that an equilateral plane
graph has a noncrossing linear folded state if and only if it is bipartite. Furthermore,
we show that the equilateral constraint is necessary for this result, by proving that it

is strongly NP-complete to decide whether a (nonequilateral) plane graph has a linear
folded state. Equivalently, we show strong NP-completeness of deciding whether an ab-

stract metric polyhedral complex with one central vertex has a noncrossing flat folded
state. By contrast, the analogous problem for a polyhedral manifold with one central

vertex (single-vertex origami) is only weakly NP-complete.
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1. Introduction

This paper is motivated by two different types of problems related to folding:
(1) linkage folding, specifically locked trees; and (2) paper folding, specifically single-
vertex origami.

1.1. Locked Trees: Not if Equilateral and Linear

Biedl et al.6 introduced the notion of a “locked tree” and gave the first example
thereof. Here a tree refers to a plane tree linkage, that is, a tree graph with specified
edge lengths and a preferred planar embedding. Such a linkage can move or fold
continuously subject to the constraints that the edges remain straight line segments
of the specified lengths and the edges never properly cross each other.7 A tree
is universally foldable if it can be folded continuously from any configuration to
any other.6 Equivalently, a tree is universally foldable if it can be folded from
any configuration into a canonical configuration, in which the edges lie along a
horizontal line and point rightward from a single root vertex. Otherwise, the tree is
locked . We say that a particular tree configuration is locked if it cannot be folded
to a canonical configuration. While the complexity of testing lockedness of a tree or
tree configuration is unknown, the related problem of deciding whether two given
configurations of a tree are connected by a continuous motion is PSPACE-complete.3

Beidl et al.6 gave a specific example of a locked tree configuration in 2002. In
2006, Poon14 provided a simpler example and conjectured that any equilateral tree,
in which all edges lengths are equal, is universally foldable. However, Ballinger et
al.4 later constructed a locked equilateral tree configuration. Furthermore, their pa-
per produced the first examples of linear locked tree configurations, where all edges
initially lie along a line. The constructed examples of linear locked tree configura-
tions and equilateral locked tree configurations seem very different; for example,
the locked equilateral tree configuration has no touching bars (except at common
endpoints), while the locked linear tree configurations necessarily have overlapping
bars. Thus it is natural to wonder whether there are locked tree configurations that
are simultaneously linear and equilateral.

Our results. We settle this question by showing that every linear equilateral tree
configuration can be folded into a canonical configuration. As a consequence, any
equilateral tree can be folded between all of its linear configurations. This result
may be considered an analogue of flat-state connectivity1,2, previously considered
for 3D fixed-angle chains. Our proof of this result, given in Section 3, builds up a
progressively more canonical configuration by repeatedly fixing any deviations. To
keep track of the overall structure of the linkage, we introduce the notion of a plane
homomorphism to enable manipulating multiple overlapping edges as one.
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1.2. Single-Vertex Origami: Generalization

A classic structure in mathematical origami is the single-vertex crease pattern—a
circular piece of paper with creases all emanating from the center. This special case is
useful because it effectively models the local behavior of a general crease pattern in a
small neighborhood around a vertex. Kawasaki’s Theorem13,11,10 describes precisely
when a single-vertex crease pattern can fold flat using exactly the prescribed creases,
which can be tested in linear time.

As described in Ref. 10, flat folding single-vertex crease patterns can be viewed
as folding a cycle linkage into a linear configuration, subject to the constraint of
bending at every vertex. Each edge of the cycle linkage corresponds to a pie wedge
of the crease pattern, and the edge length equals the pie angle. Although flat pieces
of paper have the extra property that the lengths/angles sum to 360◦, the charac-
terization of flat foldability has been generalized to arbitrary cycles.10,15

Recall that the question of locked trees deals with continuous motions. Con-
tinuous motions of the cycle linkage, corresponding to single-vertex rigid origami ,
are in fact always possible.15 For this section, however, we focus on instantaneous
motions, asking whether a linear configuration exists instead of how to get there.
Our motivation is that regular (nonrigid) origami allows the paper to bend any-
where during the motion, so long as it is creased only where we want at the end.
For polygonal paper (not just single vertex), any configuration can be reached by
such a flexible folding motion.9

Fig. 1. A single-vertex complex with

one pie wedge per edge of a cube.

We consider the generalized problem of in-
stantaneous foldings of plane graphs (instead of
just cycles) into linear configurations. Mapped
to the context of origami, this problem is equiva-
lent to finding flat foldings of single-vertex com-
plexes, which consist of pie wedges with a com-
mon apex, sharing some edges, and bounded by
great circular arcs on the surface of a sphere
centered at the common apex. Figure 1 shows a
simple example. This situation models the local
behavior of a vertex neighborhood in a polyhe-
dral complex (3D polygons attached at edges or
vertices).

Our results. For the special case of equilateral plane graphs, we prove that in-
stantaneous folding into a linear configuration is possible if and only if the graph
is bipartite. Bipartiteness is an obvious necessary condition: any linear configura-
tion of a cycle naturally assigns each edge of the cycle to one of two directions, so
the number of edges in any cycle must be even. The interesting result, shown in
Section 4, is that all bipartite equilateral plane graphs have a linear configuration.

Interpreted in the context of single-vertex complex origami, this result says that
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a single-vertex complex in which all pie angles are equal can be folded flat if and
only if every spherical region has an even number of edges. For example, Figure 1
satisfies both conditions, so it folds flat. We can even require that the flat folding
uses all of the given creases: any linear equilateral configuration can be folded down
so that all angular regions are collocated.

Finally, we prove that these results can hold only for the equilateral situation,
in a strong sense. Specifically, Section 5 shows that finding a linear configuration
becomes strongly NP-complete for nonequilateral plane graphs, even when edge
lengths are restricted to the set {1, 2}. Our reduction is from planar monotone
3-SAT, which was recently shown to be NP-complete.8

Interpreted in the context of single-vertex complex origami, this result says that
it is strongly NP-complete to determine flat foldability of an abstract metric single-
vertex complex with a specified outside region. We show moreover that this technical
“outside region” condition may be removed. This result suggests that there is no
complex analog of the efficient Kawasaki’s Theorem characterizing the case of a
single cycle, though there are a few differences. First, the constructed complex might
not be embeddable on the sphere with the given edge lengths. Second, we do not
require every vertex (crease) to be folded. This change makes even the cycle problem
NP-complete, though only in the weak sense, as it admits a pseudopolynomial-time
algorithm. Our result shows that the problem is strongly NP-complete for general
graphs.

2. Definitions

In this paper, every graph G = (V (G), E(G)) is assumed to be equipped with
positive edge weights (lengths) ` : E(G)→ R>0 unless otherwise specified. A plane

graph is a (weighted) graph with a preferred combinatorial planar embedding (i.e.,
not necessarily respecting edge lengths).

Recall that a linkage is a straight-line embedding of a plane graph (known as
the underlying graph) with compatible edge lengths. A motion of a linkage is
a continuous deformation of the linkage that preserves the lengths of edges and
does not self-intersect. Intuitively, a self-touching linkage is a linkage that can
self-intersect, but cannot combinatorially cross itself. Connelly et al.7 give a more
formal definition of a self-touching linkage, which we use throughout this paper.

Definition 1. A self-touching embedding (also known as a configuration or
state) of a plane graph G is a self-touching linkage L with an isomorphism iden-
tifying L’s underlying graph with G—in particular, the planar embedding and the
edge lengths agree.

Next we define the notion of a plane homomorphism, i.e., a graph homomorphism
that respects the underlying combinatorial planar embeddings. This language is
pivotal for describing “partially folded” states of graphs. In this definition below, a
chain is a path of two distinct edges.
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Definition 2. For two weighted or unweighted plane graphs G and H, a plane

homomorphism g : G → H is a graph homomorphism (preserving edge weights
in the weighted case) together with, for each oriented edge e = (w1, w2) ∈ E(H),
a linear (counterclockwise) ordering Ig(w1, w2) around w1 of the edges g−1(e) (the
set of undirected edges in G mapping to e) satisfying certain compatibility and
planarity constraints. For any vertex w ∈ H, the cyclic ordering of edges around w
in H and the linear orders Ig(w, ·) around w induce a cyclic order of all edges in
G whose images are incident to w; call this ordering Ig(w). The compatibility and
planarity constraints may be expressed as follows:

(1) Edge Ordering Compatibility : For every oriented edge e = (w1, w2) in H,
the linear orders Ig(w1, w2) and Ig(w2, w1) are reversed, i.e., edges g−1(e) are
linearly ordered.

(2) Respect for Planar Embeddings: For each vertex v ∈ G, the cyclic order of
the edges incident to v induced by Ig(g(v)) matches their cyclic order around
v in G.

(3) Noncrossing : For any two vertices v 6= v′ in G with g(v) = g(v′) = w, and any
two chains (e0, e1) and (e′0, e

′
1) centered at v and v′ respectively, the induced

cyclic order of these four edges around w is not e0, e′0, e1, e
′
1 or e0, e′1, e1, e

′
0. In

other words, these chains are not made to cross at w.

A plane homomorphism is surjective if it is surjective on vertices and edges.

Intuitively, we interpret a plane homomorphism g : G → H as a “self touching
embedding of G along graph H,” and this connection can be made explicit using the
language of “magnified views” (cf. the Connelly et al.7 definition of self-touching
linkage.) For each vertex w ∈ H, we define the magnified view of g around w as
a graph inside a disk specified as follows: There is a terminal node inside the disk
for each vertex in g−1(w), and a nonterminal node for each edge in G whose image
is incident to w. The nonterminals are ordered around the boundary of the disk

v1

v2

v3
v4

v5

v6

v7 v8

(a)

wAwB wC

wD

(b)

wAwB wC

wD

v1

v2v3

v4
v5

v6

v7 v8

(c)

Fig. 2. An example of a plane homomorphism. Figures (a) and (b) depict the graphs G and H,

respectively. Figure (c) is a schematic representation of plane homomorphism g : G→ H.
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in the cyclic order Ig(w) induced by g. Finally, this graph has an edge connecting
terminal-nonterminal pairs corresponding to vertex-edge incidences in G. Then the
noncrossing condition can be restated simply as follows: these magnified view graphs
are planar.

Figure 2 depicts an example of a plane homomorphism. Let us discuss this fig-
ure more thoroughly to clarify the three conditions of Definition 2. As an example
of condition (1), the linear order Ig(wA, wB) = ((v1, v5), (v1, v4), (v2, v4), (v3, v4))
(of unoriented edges) is the reverse of the linear order Ig(wB , wA) =
((v3, v4), (v2, v4), (v1, v4), (v1, v5)), reflecting the fact that these edges are “stacked”
along edge (wA, wB) according to g. As an example of condition (2), observe that
the cyclic order [(v2, v4), (v2, v7), (v2, v8), (v2, v6)] of edges around v2 in G is com-
patible with their induced order from Ig(wA), ensuring that g is consistent with
the preferred embedding of G. Finally, the fact that the edges incident to v1 and
the edges incident to v2 do not interleave in the cyclic ordering Ig(wA) illustrates
condition (3) for these vertices, ensuring that these edges do not “intersect com-
binatorially” at wA. The dotted circles in Figure 2(c) enclose the magnified views
of g.

The following lemmas make plane homomorphisms particularly useful:

Lemma 1. Plane homomorphisms compose: Two plane homomorphisms g : F → G

and h : G→ H canonically induce a plane homomorphism h ◦ g : F → H.

Lemma 2. A plane homomorphism g : G→ H and a self-touching embedding M of
H canonically induce a self-touching embedding of G, denoted g∗(M). Furthermore,
if t 7→Mt is a valid motion of M , then t 7→ g∗(Mt) is a valid motion of g∗(M).

The proofs of these lemmas are somewhat technical and may safely be skipped
upon first reading.

Proof of Lemma 1. To define plane homomorphism h ◦ g : F → H, we begin by
setting (h◦g)(u) = h(g(u)) for each vertex u ∈ V (F ) and (h◦g)(u, u′) = h(g(u, u′))
for each edge (u, u′) ∈ E(F ). Next, we define the linear orders I(h◦g)(w,w′) for each
oriented edge (w,w′) ∈ V (H) as follows. If Ih(w,w′) = ((v1, v′1), . . . , (vk, vk)′), then
I(h◦g)(w,w′) is obtained by concatenating the lists Ig(v1, v′1), . . . , Ig(vk, v

′
k) in this

order.
It remains to verify that our definition of h ◦ g satisfies the requirements of

Definition 2. Conditions (1) and (2) for h ◦ g follow directly from the corresponding
conditions on g and h individually. To verify the noncrossing condition, suppose we
have two vertices u 6= u′ in F with (h ◦ g)(u) = (h ◦ g)(u′) = w, and edge chains
(e0, e1) and (e′0, e

′
1) centered at u and u′ respectively. We consider two cases. If

g(u) = g(u′) = v, then the noncrossing constraint of g ensures that edges g(e0) and
g(e1) are not interleaved with edges g(e′0) and g(e′1) around v in G, and condition (2)
of h preserves this non-interleaved cyclic ordering around h(v) = w in H. Otherwise,
if g(u) 6= g(u′), then the result follows from the noncrossing constraint on h.
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Proof of Lemma 2. Recall that, for any plane graph G, a path of two distinct
edges is called a chain. If this path follows two consecutive edges of a face of G
in clockwise order around the face, we call it a facial chain. Equivalently, a facial
chain consists of two distinct edges that are consecutive in the counterclockwise
order of edges around their central vertex.

The self-touching linkage L = g∗(M) is obtained from M by modifying the
magnified views of M . In particular, each nonterminal-nonterminal connection rep-
resenting an edge e in a magnified view of M is replaced by multiple copies corre-
sponding to the edges g−1(e). Likewise, for each vertex w in H, in the magnified
view of M containing w, the component containing w is replaced by the planar mag-
nified view graph of g around w. The resulting self-touching linkage indeed respects
the planar embedding of G, which can be verified as in Lemma 1.

Now suppose t 7→ Mt defines a valid motion of M ; we wish to show t 7→ Lt =
g∗(Mt) is a valid motion of L. As in Ref. 7, we must show that no active vertex-edge,
edge-edge, or vertex-chain constraint is violated geometrically or combinatorially.

We consider vertex-edge constraints first. If at time s a vertex v ∈ V (G) is in
a neighborhood of the relative interior of edge e ∈ E(G), then the configuration
uniquely specifies which side of e vertex v lies on, whether by geometry or—if v
geometrically lies in the relative interior of e—by the magnified view at v of the
configuration Ls. We must verify that this sidedness answer stays consistent in a
neighborhood of time s. It follows from the definition of plane homomorphism that
v’s side of e is the same as g(v)’s side of g(e), and since these satisfy their vertex-edge
constraint in motion t 7→Mt, it follows that v and e do not violate their constraint
in Lt.

For edge-edge constraints between, say, edges e1 and e2, if g(e1) = g(e2) then
the configurations induced by the plane homomorphism guarantee that these edge
do not switch sides. Otherwise, the constraint holds by the same argument used for
vertex-edge constraints.

Finally, consider an active vertex-chain constraint with vertex v and facial chain
c that visits vertices v0, v1, v2 and edges e0, e1 in order in G. We must show that, if v
is inside chain c in a small neighborhood of v1 at some time t, whether geometrically
or—if v lies on one of these edges—combinatorially according to v’s magnified view,
then this remains true in a neighborhood of time t. There are two cases. If g(e0) 6=
g(e1), then g(c) is a (not necessarily facial) chain in H, and the facial chain that
bounds g(v) near g(v1) restricts g(v)’s motion to a (geometric and combinatorial)
wedge contained in the corresponding wedge g(e0e1). So v indeed does not leave
wedge e0e1 for positive time, and the constraint is not violated. Otherwise, g(e0) =
g(e1). Let us write Ig(v1, v0) = Ig(v1, v2) = [e′1, . . . , e

′
k], which contains edges e0

and e1. By the definition of induced configurations, it follows that e′1, . . . , e
′
k are

consecutive without interruptions in the magnified view around v at time t. Because
v and its adjacent edges are between e0 and e1 at this time, it follows that, in fact,
the edges adjacent to v are among the edges e′1, . . . , e

′
k and lie between e0 and e1

in the linear order, and furthermore, that g(v) = g(v1). So v is pinned inside wedge
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e0e1 at all times by plane homomorphism g, and the constraint is not violated.

3. Linear Equilateral Trees

In this section, we consider the question of whether a linear equilateral tree can
be “unfolded.” Recall that a linear (which we also refer to in this paper as flat)
state of a graph is a state where all edges geometrically lie on a line.4 For trees, a
canonical state with root vertex v is a horizontal linear state where all simple paths
in the tree starting at v proceed monotonically to the right. Note that Ballinger et
al.4 call this a “flat configuration”; we use the term “canonical state” instead to
minimize the ambiguity of the word “flat.”

It is useful to interpret canonical states of trees as “unfolded” states, because
all canonical states are equivalent: for any vertex v′ and any edge e incident to v′,
there exists a continuous motion from any canonical state to the canonical state
rooted at v′ in which edge e is the topmost edge incident to v′.6

Not all linear trees can be deformed into a canonical state; Ballinger et al.
provide multiple such examples. Likewise, not all equilateral trees are universally
foldable: as shown in Ref. 4, there are configurations of equilateral trees that cannot
be deformed into a canonical state. By contrast, for tree configurations that are both
linear and equilateral, we show:

Theorem 1. Any linear configuration of an equilateral tree can be continuously
deformed (without overlap) into a canonical state.

Our algorithm proceeds roughly as follows. The initial linear state is “partially
canonical.” We search for breaks in the “boundary” of the homomorphism, and
unfold G at the location of the break to make it closer to canonical. By repeating
this process, we end up with a canonical state.

We will need two definitions to make this argument precise. This first definition
allows us to formally discuss the “boundary” of a plane homomorphism as a set of
threshold edges:

Definition 3. Say that we have a plane graph G on n vertices, and a plane homo-
morphism g : G→ H. For each oriented edge e from w1 to w2 in the image of g, the
edges g−1(e) are ordered counterclockwise around w1, and we define the threshold

edge thr(e) to be the first edge in that ordering. Furthermore, if thr(e) has end-
points v1, v2 with g(v1) = w1 and g(v2) = w2, then choose orientation (v1, v2) for
this edge.

It will also be helpful to have a definition for “partially canonical” states to
measure our progress during an induction:

Definition 4. A configuration of a tree G is k-canonical if there exists a tree Hk

on k nodes in a canonical state and a surjective plane homomorphism gk : G→ Hk

such that the configuration of G is the one induced by gk. Note that an n-canonical
configuration of a tree with n nodes is in fact a canonical configuration.
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v4
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v1
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v3

v4

v5

(b)

Fig. 3. An example of splitting a vertex. Figure (a) shows how the split is used to transform Hk

into Hk+1. Figure (b) shows how the graph G is affected.

Proof (of Theorem 1). Let G be the given tree with n vertices, initially in a
linear state L. This initial state of G is `-canonical for some 2 ≤ ` ≤ n. We will
show, by induction on ` ≤ k ≤ n, that G can be deformed from L to a k-canonical
state; the base case k = n is the desired result.

Suppose that G has been deformed into the k-canonical state induced by a
surjective plane homomorphism gk : G→ Hk, where Hk is a tree on k vertices in a
canonical state. We will show how to deform G into a (k+1)-canonical configuration.
Let p1, p2, . . . , p2k−2 be the vertices of the outer face of Hk in clockwise order around
this face, and define d1 = thr(p1, p2), d2 = thr(p2, p3), . . . , d2k−2 = thr(p2k−2, p1).
Intuitively, these are the oriented edges of G that lie adjacent to Hk’s outer face
according to gk. We claim that these edges cannot form a cycle in G. Assume to the
contrary that they form a cycle. Because k < n, there must be some oriented edge
e = (w1, w2) in Hk with |g−1

k (e)| ≥ 2. Hence the edges thr(w1, w2) and thr(w2, w1),
when taken as unoriented edges, are not equivalent, and so each appears in the
cycle exactly once. The cycle is therefore nontrivial, contradicting the fact that G
is a tree.

It follows that there must be some i such that the oriented edges di = (v1, v2)
and di+1 = (v3, v4) have v2 6= v3. Fix some i with this property. Let w1 = gk(v1),
w2 = gk(v2) = gk(v3), and w4 = gk(v4). By Ref. 6, we may move Hk to a new
canonical state with w2 at the root, and (w2, w1) as the topmost edge incident to
w2 (thereby making (w2, w4) the bottommost edge incident to w2). This motion of
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w′
2

w5

w′′
2

w′
2

w5

w′′
2

Fig. 4. Reconfiguring Hk+1 into a canonical state.

Hk to a new state Nk induces a motion of G to a new state Mk = g∗k(Nk) lying on
a horizontal line. Let (v2, v5) be the bottommost edge of G incident to v2 in Mk,
and let w5 = gk(v5). Note that w5 may equal w1, w4, both, or neither.

We next show how to “split” the vertex w2 along edge (w2, w5) to construct a
surjective plane graph homomorphism gk+1 : G→ Hk+1, where Hk+1 is a tree with
k + 1 vertices. We construct Hk+1 from Hk by replacing w2 with two vertices w′2
and w′′2 , as depicted in Figure 3(a). Vertex w′2 is connected to all neighbors of w2

between w5 and w1 inclusive in the counterclockwise ordering of the edges around
w2, and likewise, vertex w′′2 is connected to all neighbors of w2 between w4 and
w5 inclusive in the counterclockwise ordering. Edges (w5, w

′
2) and (w5, w

′′
2 ) replace

(w5, w2) in the counterclockwise order of edges around w5, with (w5, w
′
2) coming

before (w5, w
′′
2 ). Splitting the node in this way naturally yields a surjective plane

graph homomorphism h : Hk+1 → Hk sending w′2 and w′′2 to w2, which in turn
defines a planar configuration P = h∗(Nk) of Hk+1.

This construction also yields a plane homomorphism gk+1 : G→ Hk+1 defined as
follows: In the counterclockwise order Igk

(w5, w2) on g−1
k (w5, w2), those edges before

and including (v5, v2) (equivalently, lying above (v5, v2) in Mk) map to (w5, w
′
2) in

Hk+1 with the same ordering, and the rest map to (w5, w
′′
2 ). The rest of gk+1 is

defined to match gk. This can be checked to be well defined. We may also prove
surjectivity: Homomorphism gk+1 hits every edge of Hk+1 except possibly (w′′2 , w5),
and the connected graph G cannot surject onto the disconnected graph Hk+1 \
{(w′′2 , w5)}, so this edge is in the image of gk+1. We also have gk+1 ◦ h = gk, and it
follows that the current configuration on G, namely Mk, is induced by gk+1: indeed,
Mk = g∗k(Nk) = g∗k+1(h∗(Nk)) = g∗k+1(P ).

Finally, we use plane homomorphism gk+1 to reconfigure G from Mk to a (k+1)-
canonical state. Consider (Hk+1, P ) schematically as in Figure 3(b) with two edges
(w′2, w5) and (w′′2 , w5) and a canonical subtree rooted at each of these vertices.
Swinging edge (w′′2 , w5) around w5 while holding the subtree rooted at w′′2 horizontal,
as in Figure 4, reconfigures Hk+1 into a canonical state with root w′2. This induces
a motion on G, resulting in a (k + 1)-canonical state.
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4. Flat-Foldable Planar Graphs

We now consider the more general question of instantaneously folding a plane graph
into a linear state. In this section we show:

Theorem 2. Given a plane graph G, there exists a linear equilateral linkage con-
figuration with the same planar embedding if and only if G is bipartite.

Proof. Suppose graph G has a linear equilateral linkage configuration. This config-
uration can be accordion-folded into a configuration whose geometric graph consists
of a single edge of length 1. The two nodes of this graph induce a bipartite structure
on G, so G is bipartite.

Conversely, consider a bipartite graph G with a planar embedding and n =
|V (G)| vertices. Without loss of generality, we may assume G is connected. We pro-
ceed by induction, showing roughly that we can repeatedly fold together adjacent
edges on a face until only two vertices remain. Specifically, we show by downward
induction on n ≥ k ≥ 2 that there exists a plane homomorphism from G to a bipar-
tite graph Hk on k vertices. The configuration induced by the plane homomorphism
G→ H2 will yield a linear state of G.

The base case k = n is satisfied by the identity homomorphism G → G. Now
suppose we have a plane homomorphism hk : G → Hk for some k ≥ 3. It can be
verified that there must therefore exist at least one face F in Hk with at least 4
edges because Hk is bipartite. Face F must contain at least two adjacent edges
(u1, u2) and (u2, u3) such that u1, u2, and u3 are all distinct. We now “fold” these
two edges together: define Hk−1 as the plane graph obtained by first inserting
edge (u1, u3) into Hk inside face F and then contracting this edge to a vertex w.
This operation defines a plane homomorphism from Hk to Hk−1 sending u1 and
u3 to w, and furthermore Hk−1 is bipartite. The composed plane homomorphism,
G→ Hk → Hk−1 proves the inductive step. Any configuration of H2 must be linear,
and therefore the configuration induced by G→ H2 is also linear.

5. NP-Hardness of Graph Folding

Although it is possible to determine in polynomial time whether an equilateral
graph has a linear state, it is hard to determine whether a weighted graph has a
linear state. Consider the problem when restricted to cycles. Because the cycle need
not fold at every vertex, it is possible to reduce from the integer partition problem
(defined in Ref. 12) by creating a cycle whose edge lengths are the numbers to
partition. Hence, it is weakly NP-hard to determine whether a weighted cycle has a
linear state. In this section, we show that the problem on general weighted graphs
(not necessarily cycles) is strongly NP-hard via a reduction from planar monotone
3-SAT, which is known to be NP-hard.8
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5.1. Reduction Overview

Let G = (U ∪ (C+ ∪ C−), E) be a plane graph encoding an instance of the planar
monotone 3-SAT problem. Specifically, let U = (x1, x2, . . . , xn) denote a sequence
of n variables that lie along the y-axis in order with x1 on top. Let C+ denote a
3-CNF formula over U containing only positive literals, and similarly let C− denote
a 3-CNF formula over U containing only negative literals. The clauses c ∈ C+ have
x-coordinate less than zero, and the clauses c ∈ C− have x-coordinate greater than
zero. The edge set E of the graph G consists of all edges (x, c) ∈ U × (C+ ∪ C−)
such that clause c contains either x or x.

We first define a new graph G′ from G as follows. Each variable vertex x in G

with degree k “splits” into k copies of itself in G′, thus forming a longer vertical
line of variable vertices, and each clause connects to a copy of each of its literals
such that each variable copy connects to at most one clause. This can be done while
preserving planarity.

The idea of the reduction is as follows (see Figure 5): we encode the original
graph G with a linkage where we represent each variable xi ∈ G with a “variable
gadget” as shown in Figure 5(a), which encodes as many copies of xi as are to
be found in G′. Each clause is represented with the “clause gadget” shown in Fig-
ure 5(c). Connections between variable and clause gadgets are dictated by planar
graph G′. Each variable gadget may independently “point” right or left, indicating
true or false values for the variable. The clause gadgets fit onto this central chain
of variables, and the “probe” of a clause gadget fits inside its face if and only if one
of the variables points away from the clause. We now discuss these constructions in
detail.

5.2. Variable Gadget

First we describe the variable gadget. Consider the doubled angle-fish plane graph
illustrated in Figure 6. The triangles with side lengths 1, 1, 2 must be flat in any
planar configuration of this graph, so we draw these flat triangles as straight seg-
ments with the understanding that they may not bend at their midpoint. It may
be checked that this graph has exactly 12 linear configurations, precisely two of
which have u1 and u2 exactly 4 units apart. One such configuration is given by
laying the vertices along a horizontal line with x-coordinates as in Figure 6; in this
configuration, its base-points s1 and s2 are “pointing left.” The other configura-
tion is the mirror image, with base-points “pointing right.” Observe that in both
configurations, vertices s1 and s2 are 4 units apart, as are vertices u3 and u4.

The full variable gadget is illustrated in Figure 5(a), made from many doubled
angle-fish subgraphs. Specifically, for each variable xi with degree k in G, we con-
struct a k-instance variable gadget , as exemplified in Figure 5(a) for k = 4. We
refer to the vertices {vi,0, . . . , vi,k} as the (positive) spine points of the variable
gadget and the points {wi,1, . . . , wi,k} as the (positive) flex points of the variable
gadget. Similarly, we define the points {v′i,0, . . . , v′i,k} and {w′i,0, . . . , w′i,k} to be the
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(c) Clause gadget

Fig. 5. Figure (a) shows a 4-entry variable gadget pointing right, i.e., set to true. The edge length
between any pair of adjacent spine and flex points on one side is 2. Figure (b) shows an example

variable column containing variable gadgets for three variables x1, x2, and x3. Variables x2 and

x3 are set to true, while x1 is set to false. Figure (c) shows an example clause gadget. The six
edges connecting t, b1, and b2 to the spine points all have length 3, while the probe (edge (t, p))
has length 5.

(negative) spine points and (negative) flex points respectively. (We omit the
“positive” and “negative” specifiers when it is clear from context.) Recall that, ac-
cording to the description of the doubled angle-fish graph, all edges in the variable
gadget connecting a spine point with a flex point are in fact flat 1, 1, 2 triangles.

We show that the ith variable gadget has exactly two linear configurations—one
with the points wi,j and w′i,j pointing right (as illustrated), and one with them
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(a) Doubled angle-fish schematic

u1 u2

u3 u4

s1 s2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

4

(b) Doubled angle-fish, with vertex and distance labels

Fig. 6. Figure (a) shows a schematic for the doubled angle-fish plane graph. Figure (b) shows the

same doubled angle-fish graph with important vertices named and edges and distances labeled

with their lengths. To make the edges of the graph visually distinct, the drawing of the doubled
angle-fish in Figure (b) does not respect edge lengths. The dashed line in Figure (b) indicates the

distance from u1 to u2 and is not an edge in the graph.

pointing left. In truth values, these configurations will correspond to k copies of
variable xi (specifically, the k copies of xi in graph G′) all having value true (right,
as illustrated) or false (left).

Lemma 3. The k-instance variable gadget for variable xi, defined as illustrated
in Figure 5(a), has exactly two linear states shown, namely, the flat configuration
indicated in the illustration and its mirror image. In particular, edges (vi,0, wi,1),
(wi,1, vi,1), (vi,1, wi,2), . . . , (wi,k, vi,k) all lie above each other in that order, and
similarly for (v′i,0, w

′
i,1), (w′i,1, v

′
i,1), (v′i,1, w

′
i,2), . . . , (w′i,k, v

′
i,k).

Proof. We must verify that these are the only linear configurations. To this end,
consider any linear configuration of this variable gadget. Note that the doubled
angle-fish based at wi,1 and w′i,1 indeed has vertices vi,0 and v′i,0 constrained at
4 units apart, so this subgraph must be configured in the left-pointing or right-
pointing state. We may assume it points right by symmetry. Note also that wi,1

and w′i,1 are 4 units apart, so the doubled angle-fish based at vi,1 and v′i,1 must also
be left- or right-facing. By its overlap with the first angle-fish, we may conclude that
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this second angle-fish in fact points left. Continuing inductively down the variable
clause, we find that the given configuration is identical to the one illustrated in
Figure 5(a).

The variable gadgets for variables x1, . . . , xn are joined together to form the
variable column as illustrated in Figure 5(b). By construction, this graph has
exactly 2n linear configurations—one corresponding to each truth assignment to
variables x1, . . . , xn.

5.3. Clause Gadget

We now describe the clause gadget for clause c. We describe the case in which c ∈ C+

contains three literals; the cases of one or two literals are analogous, and the C−
clauses are symmetric. Clause c is represented using four new vertices t, p, b1, b2 and
six new edges as depicted in Figure 5(c). The clause gadget for c is connected to
the three variable entries corresponding to c’s neighbors in G′, thereby preventing
the clause gadgets from intersecting each other. The probe edge (t, p) is a length-5
edge inside the clause gadget that permits a linear state if and only if c is satisfied.
The blockers—vertices b1, b2 and their incident length-3 edges—prevent the probe
from accessing variable entries for variables not in c. By construction, the clause
gadget has the following property:

Lemma 4. For each clause c ∈ C+∪C−, the variable column with the clause gadget
for c has a linear state if and only if c is satisfied.

Proof. If a clause is satisfied, then the clause gadget spans a distance of five and the
probe gadget can be placed in the satisfied variable as in Figure 5(c). The diagram
demonstrates a linear state.

To prove necessity, consider a linear state of the clause gadget c; by symmetry,
we may assume c ∈ C+. The structure of the variable column ensures that all of
the positive spine points must be collocated at a point. Consider the magnified
view of the linear configuration around this point. From the ordering of the spine
points and the combinatorial embedding, the counterclockwise ordering of the edges
incident to t, b1, and b2 must be consistent with the top-to-bottom ordering shown
in Figure 5(c). The points b1, b2, and t must lie three units away from the spine,
and because the distance from the spine to each flex point is two, b1 and b2 must
lie at the same location as t. The probe has length five and is on the internal face
of the clause gadget, so t must point away from the variable column, and at least
one of the three variable entries must be set to true. Hence the clause gadget and
variable column have a linear configuration only if the clause is satisfied.

5.4. Proofs of Hardness

Theorem 3. Determining whether a plane graph has a linear state is strongly NP-
complete.
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Proof. It is possible to verify in polynomial time whether a graph G is in a linear
state by checking whether the embedding is planar, linear, and consistent with G,
so the problem is in NP.

Let G be an instance of the planar monotone 3-SAT problem, and let H be the
graph generated by this reduction. Given a satisfying assignment of G, we position
the flex points according to the assignment, and by Lemma 4 each clause has a linear
state, yielding a global linear state for H. Every linear state of H corresponds to
an assignment to the variables, and by Lemma 4 the assignment must satisfy all
clauses. Hence, the reduction is correct. Because the reduction takes polynomial
time, the problem is strongly NP-hard.

As mentioned in Section 1.2, the problem of linearly folding graphs corresponds
to a generalization of the single-vertex origami problem dealing with a single-vertex
complex instead of simply a cone of paper. The primary difference is that a plane
graph comes with a chosen outer face whereas the local structure of a single-vertex
complex more naturally lies on the sphere and does not have a chosen outer face. It
is thus natural to study the question of linearly folding a given metric sphere graph,
i.e., a metric plane graph with the additional freedom to pick any face as the outer
face. A small modification of the above reduction shows that this problem is also
strongly NP-hard.

Theorem 4. Determining whether a metric sphere graph has a linear state is
strongly NP-complete.

Proof. For an instance of the planar monotone 3-SAT problem, let H be the graph
generated by the reduction used for Theorem 3. Let ρ be the perimeter of the outside
face of H, and attach a leaf edge e to vertex v1,0 (at the top of the variable column)
of length ρ + 1 in the outside face to form plane graph H ′. The output of the
reduction is graph H ′ interpreted as a sphere graph.

If sphere graph H ′ has a linear embedding, then the chosen outer face must agree
with that of H, because otherwise edge e does not fit inside its face. Conversely, if
H has a linear configuration then edge e may be inserted into to this configuration
adjacent to edge (v1,0, v

′
1,0). This completes the proof.

Corollary 1. Given a plane graph or a metric sphere graph with edge lengths in
{1, 2}, determining whether the graph has a linear state is strongly NP-complete.

Proof. We may simulate an edge of integer length r ≥ 3 by joining r− 1 flat 1, 1, 2
triangles; this uses a total of 2r − 1 edges. The hardness results follow by applying
this transformation to each edge of length greater than 2 in the graph produced by
the reductions of Theorems 3 and 4, respectively.
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6. Open Problems

Our study of instantaneous flat foldings of single-vertex complexes leaves open nat-
ural directions of exploration, which can be translated into open problems about
instantaneous flat foldings of plane graphs.

First, what if we require all creases to be folded, i.e., the flat folding to not
have any 180◦ angles between incident edges? For a cycle, this condition enables
testing flat foldability in linear time by Kawasaki’s Theorem,10 whereas the problem
is weakly NP-complete in the setting considered here in which each crease may
or may not be folded. For equilateral graphs, bipartiteness is again necessary and
sufficient, because any linear folding of an equilateral graph may be accordion-folded
to fold every crease. For general metric graphs, does the problem remain strongly
NP-complete, or does the extra information enable efficient algorithms?

Second, what if we further require a specified mountain-valley assignment, i.e.,
every two consecutive edges around a vertex must form a specified angle of 0◦ or
360◦? This problem is even more constrained than the previous problem, and even
the equilateral case is open. A natural analogy is the NP-hardness of instantaneous
flat folding of general crease patterns,5 which holds with or without a prescribed
mountain-valley assignment.

Finally, when we can find a flat folded state such as the equilateral case, we
can ask additional questions about finding the “best” folded state. Two natural
measures, previously studied in the context of a path, are minimizing the maximum
crease width (the number of layers stuck between two consecutive edges around a
vertex) and minimizing the total crease width.16,17
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