
Folding Equilateral Plane Graphs

Zachary Abel1, Erik D. Demaine2, Martin L. Demaine2, Sarah Eisenstat2,
Jayson Lynch2, Tao B. Schardl2, and Isaac Shapiro-Ellowitz3

1 MIT Department of Mathematics, zabel@math.mit.edu
2 MIT Computer Science and Artificial Intelligence Laboratory,

{edemaine,mdemaine,seisenst,jaysonl,neboat}@mit.edu
3 University of Massachusetts Boston, isaac.shapiroello001@umb.edu

Abstract. We consider two types of folding applied to equilateral plane
graph linkages. First, under continuous folding motions, we show how to
reconfigure any linear equilateral tree (lying on a line) into a canonical
configuration. By contrast, such reconfiguration is known to be impossi-
ble for linear (nonequilateral) trees and for (nonlinear) equilateral trees.
Second, under instantaneous folding motions, we show that an equilat-
eral plane graph has a noncrossing linear folded state if and only if it
is bipartite. Not only is the equilateral constraint necessary for this re-
sult, but we show that it is strongly NP-complete to decide whether
a (nonequilateral) plane graph has a linear folded state. Equivalently,
we show strong NP-completeness of deciding whether an abstract met-
ric polyhedral complex with one central vertex has a noncrossing flat
folded state with a specified “outside region”. By contrast, the analogous
problem for a polyhedral manifold with one central vertex (single-vertex
origami) is only weakly NP-complete.

1 Introduction

This paper is motivated by two different types of problems related to folding:
(1) linkage folding, specifically locked trees; and (2) paper folding, specifically
single-vertex origami.

1.1 Locked Trees: Not if Equilateral and Linear

Biedl et al. [2] introduced the notion of a “locked tree” and gave the first example
thereof. Here a tree refers to a plane tree linkage, that is, a tree graph with
specified edge lengths and a preferred planar embedding. Such a linkage can move
or fold continuously subject to the constraints that the edges remain straight line
segments of the specified lengths, and that the edges never properly cross each
other [3]. A tree is universally foldable [2] if it can be folded continuously from
any configuration to any other. Equivalently, a tree is universally foldable if it
can be folded from any configuration into a canonical configuration, in which
the edges lie along a horizontal line and point rightward from a single root
vertex. Otherwise, a tree is locked . The construction in [2] gives a specific tree



configuration that is locked in the sense that it cannot be folded to a canonical
configuration.

Ballinger et al. [1] showed the existence of locked tree configurations with
either of two special properties: (a) linear , where all edges lie along a line; and
(b) equilateral , where all edge lengths are equal. The constructed examples of
each type seem very different; for example, the locked equilateral tree has no
touching bars (except at common endpoints), while the locked linear trees nec-
essarily have many overlapping bars. Thus it is natural to wonder whether there
are locked tree configurations that are simultaneously linear and equilateral.

Our results. We settle this question by showing that every linear equilateral
tree configuration can be folded into a canonical configuration. As a consequence,
any equilateral tree can be folded between all of its linear configurations. Our
proof of this result, given in Section 3, builds up a progressively more canonical
configuration by repeatedly fixing any deviations. To keep track of the overall
structure of the linkage, we introduce the notion of a plane homomorphism to
enable manipulating multiple overlapping edges as one.

1.2 Single-Vertex Origami: Generalization

A classic structure in mathematical origami is the single-vertex crease pattern—
a circular piece of paper with creases all emanating from the center. This special
case is useful because it effectively models the local behavior of a general crease
pattern in a small neighborhood around a vertex. Kawasaki’s Theorem [8] de-
scribes precisely when a single-vertex crease pattern can fold flat using exactly
the prescribed creases; see also [6, Thm. 12.2.1].

As described in [6, ch. 12], flat folding single-vertex crease patterns can be
viewed as folding a cycle linkage into a linear configuration, subject to the con-
straint of bending at every vertex. Each edge of the cycle linkage corresponds to
a pie wedge of the crease pattern, and the edge length equals the pie angle. Al-
though flat pieces of paper have the extra property that the lengths/angles sum
to 360◦, the characterization of flat foldability has been generalized to arbitrary
cycles: see [6, Thm. 12.2.2] and [9].

Compared to locked trees, a key difference here is that we are interested only
in instantaneous motions, and thus whether a linear configuration exists.

We consider the generalized problem of instantaneous folding of plane graphs
(instead of just cycles) into linear configurations. Mapped to the context of
origami, this problem is equivalent to flat folding of a single-vertex complex ,
consisting of pie wedges with a common apex, sharing some edges, and bounded
by great circular arcs on the surface of a sphere centered at the common apex.
This situation models the local behavior of a vertex neighborhood in a polyhedral
complex (3D polygons attached at edges or vertices).

Our results. For the special case of equilateral plane graphs, we prove
that instantaneous folding into a linear configuration is possible if and only if
the graph is bipartite. Bipartiteness is an obvious necessary condition: every
cycle with a linear configuration must have an even number of edges, for the
linear configuration naturally partitions the edges into two classes, one for each



direction along the line. The interesting result, shown in Section 4, is that all
bipartite equilateral plane graphs have a linear configuration.

Interpreted in the context of single-vertex complex origami, this result says
that a single-vertex complex in which all pie angles are equal can be folded flat
if and only if every spherical region has an even number of edges. We can even
require that the flat folding uses all of the given creases: any linear equilateral
configuration can be folded down so that all angular regions are collocated.

Finally, we prove that these results can hold only for the equilateral situation,
in a strong sense. Specifically, Section 5 shows that finding a linear configuration
becomes strongly NP-complete for nonequilateral plane graphs. Our reduction is
from planar monotone 3-SAT, which was recently shown to be NP-complete [4].

In the context of single-vertex complex origami, this result says that it is
strongly NP-complete to determine flat foldability of an abstract metric single-
vertex complex with a specified outside region. This result suggests that there is
no complex analog of the efficient Kawasaki’s Theorem characterizing the case of
a single cycle, though there are a few differences. First, the outside region must
be specified; this technical requirement can likely be removed with additional
effort. Second, the constructed complex might not be embeddable on the sphere
with the given edge lengths. Third, we do not require every vertex (crease) to
be folded. This change makes even the cycle problem NP-complete, though only
in the weak sense, as it admits a pseudopolynomial-time algorithm. Our result
shows that the problem is strongly NP-complete for general graphs.

2 Definitions

In this paper, every graph G = (V (G), E(G)) is assumed to be equipped with
positive edge weights (lengths) ` : E(G) → R>0 unless otherwise specified.
A plane graph is a (weighted) graph with a preferred combinatorial planar
embedding (i.e., not necessarily respecting edge lengths).

Recall that a linkage is a straight-line embedding of a plane graph (known
as the underlying graph) with compatible edge lengths. A motion of a linkage
is a continuous deformation of the linkage that preserves the lengths of edges
and does not self-intersect. Intuitively, a self-touching linkage , which can self-
intersect, but cannot combinatorially cross itself. Connelly et al. [3] give a more
formal definition of a self-touching linkage, which we use throughout this paper.

Definition 1. A self-touching embedding (also known as a configuration
or state) of a plane graph G is a self-touching linkage L with an isomorphism
identifying L’s underlying graph with G—in particular, the planar embedding
and the edge lengths agree.

In the next definition, a chain is a path of two unequal edges.

Definition 2. For two weighted or unweighted plane graphs G and H, a plane
homomorphism g : G→ H is a graph homomorphism (preserving edge weights
in the weighted case) together with, for each oriented edge e ∈ E(H) from w1



to w2, a linear (counterclockwise) ordering around w1 of the edges g−1(e) (the
set of edges in G mapping to e) satisfying certain compatibility and planarity
constraints. For any vertex w ∈ H, the cyclic ordering of edges around w in H
and the linear orders around w defined by g induce a cyclic order of all edges in
G whose images are incident to w. The compatibility and planarity constraints
may be expressed as follows:

– Edge Ordering Compatibility: For every oriented edge e in H, the linear
orders for e and for e with opposite orientation are reversed, i.e., edges
g−1(e) are linearly ordered.

– Respect for Planar Embeddings: For each vertex v ∈ G, the cyclic order
of the edges incident to v around g(v) induced by g matches their cyclic order
around v in G.

– Noncrossing: For any two vertices v, v′ in G with g(v) = g(v′) = w,
and any two chains (e0, e1) and (e′0, e

′
1) centered at v and v′ respectively,

the induced cyclic order of these four edges around w is not e0, e
′
0, e1, e

′
1 or

e0, e
′
1, e1, e

′
0. In other words, these chains are not made to cross at w.

A plane homomorphism is surjective if it is surjective on vertices and edges.

We interpret a plane homomorphism g : G → H as a “self touching embed-
ding of G along graph H.” More explicitly, for each vertex w ∈ H, the mag-
nified view of g around w is a graph inside a disk specified as follows: There
is a terminal node inside the disk for each vertex in g−1(w), and a nonterminal
node for each edge in G whose image is incident to w. The nonterminals are or-
dered around the boundary of the disk in the cyclic order induced by g. Finally,
this graph has an edge connecting terminal-nonterminal pairs corresponding to
vertex-edge incidences in G. Then the noncrossing condition can be restated
simply as follows: these magnified view graphs are planar.

The following lemmas, proven in the full version, make plane homomorphisms
particularly useful:

Lemma 1. Plane homomorphisms compose: Two plane homomorphisms g :
F → G and h : G→ H canonically induce a plane homomorphism h◦g : F → H.

Lemma 2. A plane homomorphism g : G → H and a self-touching embedding
M of H canonically induce a self-touching embedding of G, denoted g∗(M).
Furthermore, if t 7→ Mt is a valid motion of M , then t 7→ g∗(Mt) is a valid
motion of g∗(M).

3 Linear Equilateral Trees

In this section, we consider the question of whether a linear equilateral tree
can be “unfolded.” Recall that a linear (which we also refer to in this paper as
flat) state of a graph is a state where all edges geometrically lie on a line [1]. For
trees, a canonical state with root vertex v is a horizontal linear state where



all simple paths in the tree starting at v proceed monotonically to the right.
Note that Ballinger et al. [1] call this a “flat configuration”; we use the term
“canonical configuration” instead to minimize the ambiguity of the word “flat.”

It is useful to interpret canonical states of trees as “unfolded” states, because
all canonical states are equivalent: for any desired vertex v′ and edge e incident
to v′, there exists a continuous motion from any canonical state to the canonical
state rooted at v′ in which edge e is the topmost edge incident to v′ [2].

Not all linear trees can be deformed into a canonical state; Ballinger et al.
provide multiple such examples [1]. Likewise, not all equilateral trees are univer-
sally foldable: as shown in [], there are configurations of equilateral trees that
cannot be deformed into a canonical state. By contrast, for tree configurations
that are both linear and equilateral, we show:

Theorem 1. Any linear configuration of an equilateral tree can be continuously
deformed (without overlap) into a canonical state.

Our algorithm proceeds roughly as follows. The initial linear state is “par-
tially canonical.” We search for breaks in the “boundary” of the homomorphism,
and unfold G at the location of the break to make it closer to canonical. By re-
peating this process, we end up with a canonical state.

We will need two definitions to make this argument precise. This first defi-
nition allows us to formally discuss the “boundary” of a plane homomorphism
as a set of threshold edges:

Definition 3. Say that we have a plane graph G on n vertices, and a plane
homomorphism g : G→ H. For each oriented edge e from w1 to w2 in the image
of g, the edges g−1(e) are ordered counterclockwise around w1, and we define the
threshold edge thr(e) to be the first edge in that ordering. Furthermore, if thr(e)
has endpoints v1, v2 with g(v1) = w1 and g(v2) = w2, then choose orientation
(v1, v2) for this edge.

It will also be helpful to have a definition for “partially canonical” states to
measure our progress during an induction:

Definition 4. A configuration of a tree G is k-canonical if there exists a tree
Hk on k nodes in a canonical state and a surjective plane homomorphism gk :
G→ Hk such that the configuration of G is the one induced by gk. Note that if
a tree on n nodes is in an n-canonical state, then the tree is canonical.

Proof (of Theorem 1). Let G be the given tree with n vertices, initially in a
linear state L. This initial state of G is `-canonical for some 2 ≤ ` ≤ n. We
will show, by induction on ` ≤ k ≤ n, that G can be deformed from L to a
k-canonical state; the base case k = n is the desired result.

Suppose that G has been deformed into the k-canonical state induced by
a surjective plane homomorphism gk : G → Hk, where Hk is a tree on k ver-
tices in a canonical state. Let p1, p2, . . . , p2k−2 be the vertices of the outer face
of Hk in clockwise order around this face, and define d1 = thr(p1, p2), d2 =
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Fig. 1. An example of splitting a vertex. Figure (a)
shows how the split is used to transform Hk into
Hk+1. Figure (b) shows how the graph G is affected.
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Fig. 2. Reconfiguring Hk+1

into a canonical state.

thr(p2, p3), . . . , d2k−2 = thr(p2k−2, p1). Intuitively, these are the oriented edges
of G that lie adjacent to Hk’s outer face according to gk. We claim that these
edges cannot form a cycle in G. Assume to the contrary that they form a cy-
cle. Because k < n, there must be some oriented edge e = (w1, w2) in Hk with
|g−1

k (e)| ≥ 2. Hence the edges thr(w1, w2) and thr(w2, w1), when taken as unori-
ented edges, are not equivalent, and so each appears in the cycle exactly once.
The cycle is therefore nontrivial, contradicting the fact that G is a tree.

It follows that there must be some i such that the oriented edges di = (v1, v2)
and di+1 = (v3, v4) have v2 6= v3. Fix some i with this property. Let w1 = gk(v1),
w2 = gk(v2) = gk(v3), and w4 = gk(v4). By [2], we may move Hk to a new
canonical state with w2 at the root, and (w2, w1) as the topmost edge incident to
w2 (thereby making (w2, w4) the bottommost edge incident to w2). This motion
of Hk to a new state Nk induces a motion of G to a new state Mk = g∗k(Nk)
lying on a horizontal line. Let (v2, v5) be the bottommost edge of G incident to
v2 in Mk, and let w5 = gk(v5). Note that w5 may equal w1, w4, or both.

We next show how to “split” the vertex w2 along edge (w2, w5) to construct
a surjective plane graph homomorphism gk+1 : G → Hk+1, where Hk+1 is a
tree with k + 1 vertices. We construct Hk+1 from Hk by replacing w2 with
two vertices w′2 and w′′2 , as depicted in Fig. 1(a). Vertex w′2 is connected to all
neighbors of w2 between w5 and w1 inclusive in the counterclockwise ordering of
the edges around w2, and likewise, vertex w′′2 is connected to all neighbors of w2

between w4 and w5 inclusive in the counterclockwise ordering. Edges (w5, w
′
2)

and (w5, w
′′
2 ) replace (w5, w2) in the counterclockwise order of edges around w5,

with (w5, w
′
2) coming before (w5, w

′′
2 ). Splitting the node in this way naturally

yields a surjective plane graph homomorphism h : Hk+1 → Hk sending w′2 and
w′′2 to w2, which in turn defines a planar configuration P = h∗(Nk) of Hk+1.



This construction also yields a plane homomorphism gk+1 : G → Hk+1 de-
fined as follows: In the counterclockwise order on g−1

k (w5, w2), those edges before
and including (v5, v2) (equivalently, lying above (v5, v2) in Mk) map to (w5, w

′
2)

in Hk+1 with the same ordering, and the rest map to (w5, w
′′
2 ). The rest of gk+1

is defined to match gk. This can be checked to be well defined. We may also
prove surjectivity: Homomorphism gk+1 hits every edge of Hk+1 except possi-
bly (w′′2 , w5), and the connected graph G cannot surject onto the disconnected
graph Hk+1 \ {(w′′2 , w5)}. So this edge is in the image of gk+1. We also have
gk+1 ◦ h = gk, and it follows that the current configuration on G, namely Mk, is
induced by gk+1: indeed, Mk = g∗k(Nk) = g∗k+1(h∗(Nk)) = g∗k+1(P ).

Finally, we use plane homomorphism gk+1 to reconfigure G from Mk to a
(k + 1)-canonical state. Consider (Hk+1, P ) schematically as in Fig. 1(b) with
two edges (w′2, w5) and (w′′2 , w5) and a canonical subtree rooted at each of these
vertices. Swinging edge (w′′2 , w5) around w5 while holding the subtree rooted at
w′′2 horizontal, as in Fig. 2, reconfigures Hk+1 into a canonical state with root
w′2. This induces a motion on G, resulting in a (k + 1)-canonical state. ut

4 Flat-Foldable Planar Graphs

We now consider the more general question of instantaneously folding a plane
graph into a linear state. In this section we show:

Theorem 2. Given a plane graph G, there exists a linear equilateral linkage
configuration with the same planar embedding if and only if G is bipartite.

Proof. Suppose graph G has a linear equilateral linkage configuration. This con-
figuration can be accordion-folded into a configuration whose geometric graph
consists of a single edge of length 1. The two nodes of this graph induce a bi-
partite structure on G, so G is bipartite.

Conversely, consider a bipartite graph G with a planar embedding and n =
|V (G)| vertices. Without loss of generality, we may assume G is connected. We
proceed by induction, showing roughly that we can repeatedly fold together
adjacent edges on a face until only two vertices remain. Specifically, we show
by downward induction on n ≥ k ≥ 2 that there exists a plane homomorphism
from G to a bipartite graph Hk on k vertices. The configuration induced by the
plane homomorphism G→ H2 will yield a linear state of G.

The base case k = n is satisfied by the identity homomorphism G → G.
Now suppose we have a plane homomorphism hk : G → Hk for some k ≥ 3.
It can be verified that there must therefore exist at least one face F in Hk

with at least 3 edges. Face F must contain at least two adjacent edges (u1, u2)
and (u2, u3) such that u1, u2, and u3 are all distinct. We now “fold” these two
edges together: define Hk−1 as the plane graph obtained by first inserting edge
(u1, u3) into Hk inside face F and then contracting this edge to a vertex w. This
operation defines a plane homomorphism from Hk to Hk−1, sending u1 and u3

to w, and furthermore Hk−1 is bipartite. The composed plane homomorphism,
G → Hk → Hk−1 proves the inductive step. Any configuration of H2 must be
linear, and therefore the configuration induced by G→ H2 is also linear. ut



5 NP-Hardness of Graph Folding

Although it is possible to determine in polynomial time whether an equilateral
graph has a linear state, it is hard to determine whether a weighted graph has a
linear state. Consider the problem when restricted to cycles. Because the cycle
need not fold at every vertex, it is possible to reduce from the integer partition
problem [7] by creating a cycle whose edge lengths are the numbers to partition.
Hence, it is weakly NP-hard to determine whether a weighted graph has a lin-
ear state. In this section, we show that the problem is strongly NP-hard via a
reduction from planar monotone 3-SAT, which is known to be NP-hard [4].

Let G = (U ∪ (C+ ∪ C−), E) be a plane graph encoding an instance of the
planar monotone 3-SAT problem. Specifically, let U = (x1, x2, . . . , xn) denote a
sequence of n variables that lie along the y-axis in order with x1 on top. Let C+

denote a 3-CNF formula over U containing only positive literals, and similarly
let C− denote a 3-CNF formula over U containing only negative literals. The
clauses c ∈ C+ have x-coordinate less than zero, and the clauses c ∈ C− have
x-coordinate greater than zero. The edge set E of the graph G consists of all
edges (x, c) ∈ U × (C+ ∪ C−) such that clause c contains either x or x.

We first define a new graph G′ from G as follows. Each variable vertex x
in G with degree k “splits” into k copies of itself in G′, thus forming a longer
vertical line of variables vertices, and each clause connects to a copy of each of
its literals such that each variable copy connects to at most one clause. This can
be done while preserving planarity.

To perform this reduction, we represent each variable using an instance of
the gadget shown in Fig. 3(a), and we represent each clause using an instance of
the gadget shown in Fig. 3(c). We now discuss these gadgets in detail.

For each variable xi with degree k in G, we construct a variable gadget with k
entries, as exemplified in Fig. 3(a). These k entries correspond to the k copies of
xi in G′. On each side of the variable gadget, we consider two sets of points. We
call the points {vi,0, . . . , vi,k} the (positive) spine points of the variable gadget
and the points {wi,1, . . . , wi,k} the (positive) flex points of the variable gad-
get. Similarly, we define the points {v′i,0, . . . , v′i,k} and {w′i,0, . . . , w′i,k} to be the
(negative) spine points and (negative) flex points respectively.4 It can be
shown that the resulting gadget has two linear states. The first state, illustrated
in Fig. 3(a), has the flex points pointing right (i.e. positioned to the right of their
spine points) and indicates xi = true, while the other has the flex points point-
ing left and indicates xi = false. We then connect the variable gadgets together
to form the variable column , as shown in Fig. 3(b). This variable column has
exactly 2n linear states, corresponding to all possible boolean assignments to the
variables U . Moreover, each of these linear states ensures that the edges between
the spine and flex points have the same top-to-bottom ordering as Fig. 3(b).

We now describe the clause gadget for clause c. We describe the case in
which c ∈ C+ contains three literals; the cases of one or two literals are analo-
gous, and the C− clauses are symmetric. Clause c is represented using four new

4 We omit the “positive” and “negative” specifiers when it is clear from context.
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Fig. 3. Figure (a) shows a 4-entry variable gadget, set to true. The edge length between
any pair of adjacent spine and truth points on one side is 2. Figure (b) shows an
example variable column containing three variable gadgets. The bottom two variables
represented are set to true, while the top-most is set to false. Figure (c) shows an
example clause gadget. The six edges connecting t, b1, and b2 to the spine points all
have length 3, while the probe (edge (t, p)) has length 5.

vertices t, p, b1, b2 and six new edges as depicted in Fig. 3(c). The clause gadget
for c is connected to the three variable entries corresponding to c’s neighbors
in G′, thereby preventing the clause gadgets from interfering with each other.
The probe (t, p) is a long edge inside the clause gadget that permits a linear
state if and only if c is satisfied. The blockers, vertices b1, b2 and their incident
edges, prevent the probe from accessing variable entries for variables not in c.
By construction, the clause gadget has the following property.

Lemma 3. For each clause c ∈ C+ ∪ C−, the clause gadget for c has a linear
state if and only if c is satisfied.

Proof. If a clause is satisfied, then the clause gadget spans a distance of five
and the probe gadget can be placed in the satisfied variable as in Fig. 3(c). The
diagram demonstrates a linear state.

To prove necessity, consider a linear state of the clause gadget c; by symmetry,
we may assume c ∈ C+. The structure of the variable column ensures that all of
the positive spine points must be collocated at a point. Consider the magnified
view of the linear configuration around this point. From the ordering of the spine
points and the combinatorial embedding, the counterclockwise ordering of the
edges incident to t, b1, and b2 must be consistent with the top-to-bottom ordering
shown in Fig. 3(c). The points b1, b2, and t must lie three units away from the
spine, and because the distance from the spine to each flex point is two, b1 and b2

must lie at the same location as t. The probe has length five and is on the internal
face of the clause gadget, so t must point away from the variable column, and at
least one of the three variable entries must be set to true. Hence the clause gadget
and variable column have a linear configuration only if the clause is satisfied. ut



If G is an instance of planar monotone 3-SAT and H is the graph obtained by
this reduction, then by Lemma 3 and preceeding discussion, linear configurations
of H correspond exactly to satisfying assignments of G. We thus obtain:

Theorem 3. Determining whether a plane graph has a linear state is strongly
NP-complete.
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