Mario Kart is Hard

Jeffrey Bosboom Erik D. Demaine

Adam Hesterberg Jayson Lynch

Erik Waingarten

Massachusetts Institute of Technology

Abstract

Nintendo’s Mario Kart is perhaps the most popular
racing video game franchise. Players race alone or
against opponents to finish in the fastest time pos-
sible. Players can also use items to attack and de-
fend from other racers. We prove two hardness re-
sults for generalized Mario Kart: deciding whether
a driver can finish a course alone in some given time
is NP-hard, and deciding whether a player can beat
an opponent in a race is PSPACE-hard.

1 Introduction

Mario Kart is a popular racing video game series
published by Nintendo, starting with Super Mario
Kart on SNES in 1992 and since adapted to eleven
platforms, most recently Mario Kart 8 on Wii U in
2014. The series has sold almost 100 million game
copies by 2013 [2] and contains the best-selling rac-
ing game ever, Mario Kart Wii [4].

In this paper, we analyze the computational com-
plexity of most Mario Kart games, showing that
optimal gameplay is computationally intractable.
Our results follow a series of recent work on the
computational complexity of video games, includ-
ing the broad work of Forisek [3] and Viglietta [5]
as well as the specific analyses of classic Nintendo
games [I].

In Mario Kart, each player picks a character and
a race track. There are three modes of play: play-
ers race against each other (racing), a player races
alone to finish in the fastest time possible (time
trial), and players battle in an arena (battle). Each
race track features its own set of stationary or mov-
ing obstacles and geometry. The race tracks feature
sharp turns, uphills, downhills, and big jumps.

In addition, a player may acquire items. Items
temporarily give players special abilities. Each
Mario Kart game has its own set of items, but
three items are common to all Mario Kart games:
mushrooms, Koopa shells, and bananas. Mush-
rooms boost a driver’s speed for a certain amount
of time. Koopa shells are shot at other players and,
upon contact, temporarily stun them, reducing
their speed and control. Bananas can be dropped
by players along the track, and any player who runs
over a banana becomes temporarily stunned. Cru-

cially, shells can destroy bananas.

In this paper, we consider a generalized version
of time trial and racing. We allow race tracks to
be any size and have carefully placed items on the
track. In Section 2 we show that that time trial is
NP-hard, that is, it is NP-hard to decide whether a
lone player can finish a race track in time at most ¢.
In Section 3] we show PSPACE-hardness for racing:
it is PSPACE-hard to decide whether a player can
win the race against even a single opposing player.
Finally, Section |4| considers upper bounds.

Our proofs apply to nine of the eleven games in
the series. The items used in our proofs are avail-
able in all games, but tracks in Super Mario Kart
and Mario Kart Super Circuit are flat, while our
proofs use three-dimensional tracks.

2 Time Trial is NP-Hard

Theorem 1 [t is NP-hard to determine whether a
driver can finish a given course in at most t time.

We reduce from 3SAT. Given a boolean formula
¢ with variables x1,xs,...,x,, we build a level
with the “Rainbow Road” style. The driver will
first drive through each variable gadget where the
branch they choose represents setting each variable
to true or false. After setting all the variables, the
driver will drive through each clause gadget. The
driver will be able to complete the level in time if
and only if the variable assignments chosen in the
gadgets form a satisfying assignment for ¢.

The variable gadget splits the road into two, one
corresponding to setting x; to true, and the other to
setting x; to false. Each path will contain a green
shell for each instance z; or z; and travels over that
corresponding location in the clause. This allows
the player to shoot the green shell, removing the
banana obstacle from the corresponding location in
the clause; however, the roads are placed far enough
the player cannot jump onto the other track.

The clause gadget is a set of branching tracks
with bananas in them. When a green shell is shot
to a literal in a clause, it will remove a banana,
allowing the clause to be driven through without
delay.

Crossover gadgets are simple: roads can pass over
and under other roads in three dimensions. To pre-

= o
|

(a) Clearing -

Gadget (b) Variable gadget and literals

vent players from shooting shells or bananas during
crossovers (maintaining the invariant that players
shoot items only inside variable gadgets), we use a
clearing gadget.

The clearing gadget, shown in Figure pre-
vents players from carrying items past it. In a clear-
ing gadget, players must use the mushroom to cross
the gap in the track. As players can only hold one
item at a time, using the mushroom requires dis-
carding shells or bananas, ensuring players have no
items after the clearing gadget.

3 Racing is PSPACE-Hard

Theorem 2 [t is PSPACE-hard to decide whether
Player 1 has a forced win in a two-player Mario
Kart race from given starting positions for the play-
ers.

We prove this problem PSPACE-hard by reduc-
tion from the game QSAT. Player 1 will set the
existentially-quantified variables and Player 2 will
set the universally-quantified variables. We con-
struct the track similarly to the NP-hardness proof.
Player 1 will shoot shells from an elevated road
to clear bananas from the clause gadgets. Player
2, who sets the universally-quantified variables, is
on a separate elevated road throwing bananas into
clause gadgets. The roads pass above each other
so each player can observe the other player set the
variables. This way, we get the alternating behav-
ior while setting variables. The path Player 1 takes
is slightly shorter than Player 2’s path. If Player
1 can get through the clauses without hitting any
bananas, they will win. If Player 1 runs over any
bananas and slips, Player 2 will be able to win.

The clause gadget is a road that splits into one
road per literal, as in the NP-hardness proof. The
literals of existentially-quantified variables are ini-
tially blocked by a banana; literals of universally-
quantified variables are initially empty.

Player 1’s variable gadgets are the same as in the
NP-hardness proof; each gadget forks to make the
player choose between setting z; or x; to true, then
passes by all the clauses containing that literal so
the player can shoot a shell down to remove the
banana from that literal instance.

Player 2’s variable gadgets have the same struc-
ture, but the player instead sets literals to false by
shooting bananas (picked up from item boxes in
the clause) down into literal instances in the clause
gadgets. The same clearing gadget from the NP-
hardness proof is used to prevent either player from
carrying a shell or banana past a variable gadget.

The elevated roads have appropriate space-filling
padding to ensure one player has set their variables
before the next player must make a choice. This
padding is oriented such that each player can ob-
serve the other player’s variable choices before hav-
ing to make their own. Neither player can delay
making a choice when it is their turn to set a vari-
able because slowing down to do so allows the other
player to win by continuing anyway.

After all variables have been set, Player 1 drives
through the clause gadgets while Player 2 drives
along a space-filling road slightly longer than the
road through the clause gadgets. If all clauses are
satisfied (have at least one literal branch without a
banana), Player 1 passes unobstructed; otherwise,
Player 1 must drive through at least one banana
and slip, which causes Player 1 to slow down. In
this case, Player 2 wins.

4 Conclusion

In practice, players in Mario Kart generally make
forward progress on the track, other than short
aberrations caused by attacks. This assumption
implies a polynomial bound on the length of so-
lutions, which in turn implies that our results
are tight: time trial is NP-complete and racing
is PSPACE-complete. Without this assumption,
however, we only know containment in PSPACE
and EXPTIME, respectively, and it is plausible
that we could establish corresponding hardness.

References

[1] Greg Aloupis, Erik D. Demaine, Alan Guo, and
Giovanni Vi glietta. Classic Nintendo games are
(computationally) hard. Theoretical Computer
Science, 586:135-160, 2015.

[2] Sam England. The 7 top racing games of all
time. http://www.arnoldclark.com/newsroom/
015-the-7-top-racing-games-of-all-time, 2013.

[3] Michal Forisek. Computational complexity of
two-dimensional platform games. In Proceed-
ings of the 5th International Conference on Fun
with Algorithms, pages 214-227, 2010.

[4] Guinness World Records. Best-
selling racing videogame. http://www.
guinnessworldrecords.com/world-records/
best-selling-racing-video-game/, 2014.

[5] Giovanni Viglietta. Gaming is a hard job, but
someone has to do it! Theory of Computing
Systems, 54(4):595-621, 2014.

http://www.arnoldclark.com/newsroom/015-the-7-top-racing-games-of-all-time
http://www.arnoldclark.com/newsroom/015-the-7-top-racing-games-of-all-time
http://www.guinnessworldrecords.com/world-records/best-selling-racing-video-game/
http://www.guinnessworldrecords.com/world-records/best-selling-racing-video-game/
http://www.guinnessworldrecords.com/world-records/best-selling-racing-video-game/

	Introduction
	Time Trial is NP-Hard
	Racing is PSPACE-Hard
	Conclusion

