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Abstract

This paper focuses on space efficient representations of rooted trees that permit basic naviga-

tion in constant time. While most of the previous work has focused on binary trees, we turn our

attention to trees of higher degree. We consider both cardinal trees (or k-ary tries), where each

node has k slots, labelled {1, . . . , k}, each of which may have a reference to a child, and ordinal

trees, where the children of each node are simply ordered. Our representations use a number

of bits close to the information theoretic lower bound and support operations in constant time.

For ordinal trees we support the operations of finding the degree, parent, ith child and subtree

size. For cardinal trees the structure also supports finding the child labeled i of a given node

apart from the ordinal tree operations. These representations also provide a mapping from the

n nodes of the tree onto the integers {1, . . . , n}, giving unique labels to the nodes of the tree.

This labelling can be used to store satellite information with the nodes efficiently.

1 Introduction

Trees are a fundamental structure in computing. They are used in almost every aspect of modeling

and representation for explicit computation. Their specific uses include searching for keys, main-

taining directories, primary search structures for graphs, and representations of parsing—to name
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just a few. Explicit storage of trees, with a pointer per child as well as other structural information,

is often taken as a given, but can account for the dominant storage cost.

This cost can be prohibitive. For example, suffix trees on binary alphabets (which are indeed

binary trees) were developed for the purpose of indexing large files to permit full text search. That

is, a suffix tree permits searches in time bounded by the length of the input query, and in that

sense is independent of the size of the database. However, assuming our query phrases start at the

beginning of words and that words of text are on average 5 or 6 characters in length, we have an

index of about 3 times the size of the text. That the index contains a reference to each word of

the text accounts for less than a third of this overhead. Most of the index cost is in storing its tree

structure. Indeed this is the main reason for the proposal [14, 19] of simply storing an array of

references to positions in the text rather than the valuable but costly structure of the tree.

These and many other applications deal with large static trees. The representation of a tree

is required to provide a mapping from the n nodes to {1, . . . , n}. Any information that needs to

be stored for the application (e.g., the location of a word in the database) is found through this

mapping. The suffix tree applications used binary trees, though trees of higher degree, for example

degree 256 for text or 4 for DNA sequences, might be better. Trees of higher degree, i.e. greater

than 2, are the focus of this paper.

Starting with Jacobson [16, 17] some attention has been focused on succinct representation

of trees—that is, on representations requiring close to the information theoretic number of bits

necessary to represent objects from the given class, but on which a reasonable class of primitive

operations can be performed quickly. Such a claim requires a clarification of the model of com-

putation. The information theoretic lower bound on space is simply the logarithm to the base 2

(denoted lg) of the number of objects in the class. The number of binary (cardinal) trees on n nodes

is Cn ≡
(2n+1

n

)

/(2n + 1) [15]; lg Cn = 2n − Θ(lg n). Jacobson’s goal was to navigate around the

tree with each step involving the examination of only O(lg n) bits of the representation. As a con-

sequence, the bits he inspects are not necessarily close together. If one views a word as a sequence

of lg(n+1) consecutive bits, his methods can be shown to involve inspecting Θ(lg lg(n+1)) words.

We adopt the model of a random access machine with a lg(n+1) (or so) bit word. Basic operations

include the usual arithmetics and shifts. Fredman and Willard [12, 13] call this a transdichotomous

model because the dichotomy between the machine model and the problem size is crossed in a

reasonable manner.

Clark and Munro [6, 7] followed the model used here and modified Jacobson’s approach to
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achieve constant time navigation. They also demonstrated the feasibility of using succinct repre-

sentations of binary trees as suffix trees for large-scale full-text searches. Their work emphasized

the importance of the subtree size operation, which indicates the number of matches to a query

without having to list all the matches. As a consequence, their implementation was ultimately

based on a different, 3n bit representation that included subtree size but not the ability to move

from child to parent. Munro and Raman [24] essentially closed the issue for binary trees by achiev-

ing a space bound of 2n+o(n) bits, while supporting the operations of finding the parent, left child,

right child, and subtree size in constant time. Recently, Munro et al. [26] have given a dynamic

binary tree representation taking the same amount of space.

Trees of higher degree are not as well studied. There are essentially two forms to study, which

we call ordinal trees and cardinal trees. An ordinal tree is a rooted tree of arbitrary degree in which

the children of each node are ordered, hence we speak of the ith child. The one-to-one mapping

between these trees and binary trees is a well known undergraduate example [20, p. 333], and so

about 2n bits are necessary for representation of such a tree. Jacobson [16, 17] gave a 2n + o(n)

bit structure to represent ordinal trees and efficiently support queries for the degree, parent or

ith child of a node. The improvement of Clark and Munro [7] leads to constant execution for

these operations. However, determining the size of a subtree essentially requires a traversal of the

subtree. In contrast, Munro and Raman [24] implement parent and subtree size in constant time,

but take Θ(i) time to find the ith child, and Θ(d) time to find the degree d of a given node. Their

representation was augmented by Chiang et al. [5] to support the degree operation in O(1) time.

The structure presented here performs all four operations in constant time, in the same optimal

space bound of 2n + o(n) bits.

By a cardinal tree (or trie) of degree k, we mean a rooted tree in which each node has k positions

for an edge to a child. Each node has up to k children and each child of a given node is labeled by a

unique integer from the set {1, 2, . . . , k}. A binary tree is a cardinal tree of degree 2. Since there are

Ck
n ≡

(kn+1
n

)

/(kn+1) cardinal trees of degree k [15], lg Ck
n = (k lg k− (k−1) lg(k−1))n−O(lg(kn))

bits is a lower bound on the space required to store a representation of an arbitrary k-ary cardinal

tree, for fixed k and n increasing. If k is viewed as a (slowly-growing) function of n, then this bound

approaches (lg k +lg e)n bits. Our techniques answer queries asking for parent, the child with label

i and subtree size in constant time. The structure requires (dlg ke + 2)n + o(n) + O(lg lg k) bits.

This can be written to more closely resemble the lower bound as (dlg ke+dlg ee)n+o(n)+O(lg lg k)

bits.
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Our result is related to, but more precise in terms of model than, that of [8]. More recently,

building on the results of this paper, some of us have given a representation of k-ary that supports

all the above operations except the subtree size operation in O(1) time, but uses lg C k
n + o(n+lg k)

bits [29].

The rest of this paper is organized as follows. Section 2 describes previous encodings of ordinal

trees. These techniques are combined in Section 3 to achieve an ordinal tree encoding supporting

all the desired operations in constant time. Section 4 extends this structure to support cardinal

trees. Finally, in Section 5, we tune our results to the particular case of degree 4, the size of the

alphabet describing DNA sequences.

2 Previous Work

First we outline two ordinal tree representations that use 2n + o(n) bits, but do not support all of

the desired operations in constant time.

2.1 Jacobson’s Ordinal Tree Encoding

Jacobson’s [16] encoding of ordinal trees represents a node of degree d as a string of d 1s followed

by a 0, which we denote 1d0. Thus the degree of a node is represented by a simple binary prefix

code, obtained from terminating the unary encoding with a 0. These prefix codes are then written

in a level-order traversal of the entire tree. This method is known as the level-order unary degree

sequence representation (which we abbreviate to LOUDS), an example of which is given in Fig. 1(b).

Using auxiliary structures for the so-called rank and select operations (see Section 2.1.1), LOUDS

supports, in constant time, finding the parent, the ith child, and the degree of any node.

Every node in the tree, except the root node, is a child of another node, and therefore has a 1

associated with it in the bit-string. The number of 0s in the bit-string is equal to the number of

nodes in the tree, because the description of every node (including the root node) ends with a 0.

Jacobson introduced the idea of a ‘superroot’ node which simply prefixes the representation with a

1. This satisfies the idea of having ‘one 1 per node’, thus making the total length of the bit-string

2n. Unfortunately, the LOUDS representation is illsuited to computing the subtree size, because

in a level-order encoding, the information dealing with any subtree is likely to spread throughout

the encoding.
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2.1.1 Rank and Select

The operations performed on Jacobson’s tree representation require the use of two auxiliary struc-

tures: the rank and select structures [6, 17, 23, 24]. These structures support the following oper-

ations, which are used extensively, either directly or implicitly, in all subsequent work, including

this paper:

Rank: rank1(j) returns the number of 1s up to and including position j in an n bit string. One

can support this operation in O(1) time by augmenting the bit string with an auxiliary

o(n) bit structure [17, 23]. rank0(j) is the analogous function counting the 0s.

Select: select1(j) returns the position of the jth 1. It also requires an auxiliary o(n) bit struc-

ture [17]. Jacobson’s method takes more than constant time, but inspects only O(lg n)

bits. The modification by Munro [23] reduces this to Θ(1) time, on RAM with word-size

Θ(lg n) bits. select0(j) is the analogous function locating a 0.

The auxiliary structures for rank [6, 17] are constructed as follows:

• Conceptually break the array into blocks of length
⌈

(lg n)2
⌉

. Keep a table containing the

number of 1s up to the last position in each block.

• Conceptually break each block into sub-blocks of length
⌈

1
2 lg n

⌉

. Keep a table containing the

number of 1s within the block up to the last position in each sub-block.

• Keep a table giving the number of 1s up to every possible position in every possible distinct

sub-block. Since there are only O(
√

n) distinct possible sub-blocks and O(lg n) positions, this

takes O(
√

n lg n lg lg n) = o(n) bits of space.

A rank query, then, is simply the sum of three values, one from each table. For select, the

approach is a bit more complicated, though similar in spirit [6, 25].

Traversals on Jacobson’s encoding are performed using rank and select as follows. To compute

the degree of a node given the position in the bit-string, p, at which its description begins, simply

determine the number of 1s up to the next 0. This can be done using rank0 and select0 by taking

select0(rank0(p) + 1) − p. To find the parent of p, select1(rank0(p) + 1) turns out to find the 1 in

the description of the parent of p that corresponds to p. Thus, searching backwards to the previous

zero (using rank0 and select0 operations) finds the bit before the beginning of the description of

the parent. Note that the ‘+1’ term is because of the superroot. Inverting this formula, the ith
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(a) The Ordinal Tree
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(c) Munro and Raman’s Balanced Parentheses

Representation
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dcba t uol m ne h pqi j r vw f k s x yz g

Third subtree of ‘a’First subtree of ‘a’

Second subtree of ‘a’
(a leaf)

(d) Our DFUDS Representation

Figure 1: Three encodings of an ordinal tree

child is computed by select0(rank1(p + i− 1)− 1). Of course, we must first check that i is at most

the degree of the node.

2.2 Balanced Parentheses Representation

The binary tree encoding of Munro and Raman [24] is based on the isomorphism with ordinal trees,

reinterpreted as balanced strings of parentheses. Our work is based upon theirs and we also find it

more convenient to express the rank and select operations in terms of operating on parentheses. We

therefore equate: rankopen(j) ≡ rank1(j), rankclose(j) ≡ rank0(j), selectopen(j) ≡ select1(j) and

selectclose(j) ≡ select0(j). The following operations, defined on strings of balanced parentheses,

can be performed in constant time [24]:
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findclose(i): find the position of the close parenthesis matching the open parenthesis in position i.

findopen(i): find the position of the open parenthesis that matches the closing parenthesis in

position i.

excess(i): find the difference between the number of open and closing parentheses before position

i.

enclose(i): given a parenthesis pair whose open parenthesis is in position i, return the position of

the open parenthesis corresponding to the closest matching parenthesis pair enclosing i.

The balanced parenthesis representation is derived from a depth-first traversal of the tree,

writing a left (open) parenthesis on the way down, and writing a right (close) parenthesis on the

way up. In this encoding of ordinal trees as balanced strings of parentheses, the key point is that

the nodes of a subtree are stored contiguously. The size of the subtree, then, is implicitly given by

the begin and end points of the encoding. Using the findopen(i) and findclose(i) operations, one

can determine the subtree size by taking half the difference between the positions of the left and

right parentheses that enclose the description for the subtree of the node. The parent of a node is

also given in constant time using the enclose() operation. An example of this encoding is given in

Fig. 1(c).

The problem with this representation is that finding the ith child takes Θ(i) time. However, it

provides an intuitive method of finding the size of any subtree. Indeed, we will use the balanced

parenthesis structure in the next section for our ordinal tree representation.

3 Our Ordinal Tree Representation

Munro and Raman’s representation is able to give the size of the subtree because the representation

is created in depth-first order, and so each subtree is described as a contiguous balanced string of

parentheses. Jacobson’s representation allows access to the ith child in constant time because there

is a simple relationship between a node and its children based on rank and select.

To combine the virtues of these two methods, we write the unary degree sequence of each node

but in a depth-first traversal of the tree, creating what we call a depth-first unary degree sequence

representation (DFUDS). The representation of each node contains essentially the same information

as in LOUDS, written in a different order. This creates a string of parentheses which is almost

balanced; there is one unmatched closing parenthesis. We will add an artificial opening parenthesis
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at the beginning of the string to match the closing parenthesis (like Jacobson’s superroot). We use

the redefinitions of rank and select in terms of strings of parentheses and the operations described

in Section 2.2. An example of our encoding is given in Fig. 1(d).

Theorem 3.1 The DFUDS representation of an ordinal tree on n nodes is a string of balanced

parentheses, of length 2n, for n > 0.

Proof: The validity of the construction follows by induction and the following observations:

1. If the root has no children, then the representation is ‘()’ (of length 2).

2. Assume that the method produces p strings, R1, R2, . . . , Rp, of balanced parentheses for p

different trees, whose total length is 2n − 2. We must prove that the method will produce a

string of balanced parentheses of length 2n when all p ‘subtrees’ are made children of a single

root node (note that it would not make sense for any of these trees to be null, as they would

not be included as ‘children’ of the new root node).

By definition, we start the representation, Rn, of the new tree with a leading ‘(’ followed by

p ‘(’s and a single ‘)’ representing that the root has p children. So far, Rn is ‘((p)’ meaning

that there are p ‘(’s which have to be matched.

Next, for each i from 1 to p, strip the leading (artificial) ‘(’ from Ri, and append the remainder

of Ri to Rn. First, note that Rn gives the DFUDS representation of the new tree. Because

R1, . . . , Rp were strings of balanced parentheses, we stripped the leading ‘(’ from each, and

appended them to a string starting with p unmatched ‘(’, the string is balanced. The total

length of the representation can be easily seen to be 2n. 2

3.1 Operations

This section details how the navigation operations are performed on this representation. This leads

to our main result for ordinal trees.

Theorem 3.2 There is a 2n + o(n) bit representation of an n node ordinal tree, that provides a

mapping from the nodes of the tree to {1, . . . , n} and permits finding the degree, parent, ith child

and subtree size in constant time.

Proof: We describe procedures for performing the operations on the DFUDS representation of

the ordinal tree. A node (with degree d) is referred to by the position of the first of the (d + 1)
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parentheses that represent it. This gives a numbering of the nodes using integers from 1 to 2n,

which is easily converted to a number from 1 to n by means of a rankclose operation.

Degree. The degree of a node is equal to the number of opening parentheses that are listed before

the next closing parenthesis, starting from the beginning of the description of the current node.

This can be found using the rankclose and selectclose operations. More precisely, the degree of a

node p is given by the expression

selectclose(rankclose(p) + 1) − p. (1)

ith Child. From the beginning of the description of the current node:

• Find the degree d of the current node. If i > d, then child i cannot be present; abort.

• Jump forward d − i positions. This places us at the left parenthesis whose matching right

parenthesis immediately precedes the description of the subtree rooted at child i.

• Find the right parenthesis that matches the left parenthesis at the current position. The

encoding of the child begins after this position.

More precisely, assuming that the node p has at least i children, the description of its ith child is

a sequence of parentheses beginning at position

findclose(selectclose(rankclose(p) + 1) − i) + 1. (2)

Parent. From the beginning of the description of the current node:

• Find the opening parenthesis that matches the closing parenthesis that comes before the

current node. (If the parenthesis before the current node is an opening parenthesis, we are

at the root of the tree, which has no parent, so we abort.) We are now within the description

of the parent node.

• To find the beginning of the description of the parent node, jump backwards to the first

preceding closing parenthesis and the description of the parent node is after this closing

parenthesis. If there are no closing parentheses before the given position, then the parent is

the root of the tree (and its description starts at the beginning of the representation of the

tree).

More precisely, the description of the parent of a node p is a sequence of parentheses beginning at

position

selectclose(rankclose(findopen(p − 1))) + 1. (3)
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Note that, this is correct even when the parent is the root node, because rankclose(i) returns 0 if

there are no closing parentheses up to position i in the string, and selectclose(0) returns 0.

Subtree Size. From the beginning of the description for the current node, the number of items in

the subtree of the current node is equal to the number of open parentheses in the string of balanced

parentheses that describes the subtree. If the current node is a leaf, then the answer is trivial.

Otherwise, the algorithm is as follows:

• Find the innermost set of parentheses that enclose the current position.

• The subtree size is the difference between the number of open parentheses up to the closing

parentheses of those found above, and those before the current position.

Equivalently, the size of the subtree rooted at node p is

rankopen(findclose(enclose(p))) − rankopen(p) + 2. (4)

Alternatively, we can find the subtree size as half the number of characters in the string which

describes the subtree, or

(findclose(enclose(p)) − p) /2 + 1. (5)

2

Next we use this data structure as a component to represent cardinal trees.

4 Our Cardinal Tree Encoding

A simple cardinal tree encoding can be obtained by a slight modification to a binary tree encoding

by Jacobson [16, 17]. The modified encoding for k-ary trees simply encodes a node by k bits, where

the ith bit specifies whether child i is present. We call this the bitmap representation of a node.

It can be applied to any tree ordering such as level order or, for our present purposes, depth-first

order. An example of this encoding, for k = 4, is given in Fig. 2.

This encoding has the major disadvantage of taking kn bits, far from the lower bound of roughly

(lg k + lg e)n. This section describes our method for essentially achieving ‘the lower bound with

ceilings added’, i.e., (dlg ke+dlg ee)n+o(n+lg k) bits. We use as a component the succinct encoding

of ordinal trees from the previous section, which takes the dlg een = 2n (+o(n)) term of the storage

bound. The remaining storage allows us to use, for each node, ‘essentially’ ddlg ke bits to encode
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Figure 2: Generalized Jacobson Encoding of a 4-ary Tree: 1111 1111 1111 1011 1110 1101 1001

0000 0011 0000 1111 0010 1111 1001 1101 1100 0011 1101 1011 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000—200 bits.

which children are present, where d is the number of children of that node (the qualification in the

space bound is clarified below).

The ordinal tree representation in Section 3 gives, in constant time, four of the five major

operations we wish to perform on cardinal trees: subtree size, ith child, parent and the degree. In a

cardinal tree, we also want to perform the operation ‘go to the child with label j’ as opposed to ‘go

to the ith child’. This can be done by storing additional information at each node, which encodes

the labels of the present children, and efficiently supports finding the ordinal number of the child

with a given cardinal label. More precisely, when asked for the child with label j, we determine

whether it exists, and if so how many children are listed before child j, i.e., its rank r among the

children of the parent node. The desired child is thus the rth child of the node, which can be found

in constant time using the ordinal tree structure.

This leads us to define the dictionaries with rank problem, which is to represent a subset S of

a finite universe U so that the following operation can be supported in O(1) worst-case time:

rank(x): Given x ∈ U , return −1 if x 6∈ S and |{y ∈ S|y < x}| otherwise.

Note that if U is a range of integers, the rank1 operation on the characteristic vector of S is related

to rank above: rank1 and rank are similar on the 1s, but rank returns an uninteresting value on

the 0s. However, the data structure for rank must use no more than O(|S| log |U |) bits. Under

this constraint, one cannot support rank1 in O(1) time, as we would be solving the fixed-universe

predecessor problem, to which stronger lower bounds apply [1]. Thus, the weaker functionality of

rank is essential. In our application of cardinal k-ary tree encoding, U = {0, . . . , k − 1} is the set

of child positions of a node, and the size of S is the degree d of the node.
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If k ≤ (1 − ε) lg n for some constant ε > 0, there is a simple solution for this problem. As

the ordinal tree representation gives us the number of children, d, of a given node, we only need

to distinguish the set of labels stored at this node from among the
(k
d

)

possible subsets of size d

from {0, . . . , k − 1}. Hence, we represent the set of labels implicitly as a b = dlg
(k
d

)

e-bit number

which gives the index of this set in some fixed enumeration of all possible subsets of size d from

{0, . . . , k − 1}. Since b ≤ ddlg ke, we can store this number in a field of ddlg ke bits, filling the field

out with leading zeros if need be. We answer rank queries by using this b-bit number together with

the argument to the rank query to index into a pre-computed table that contains the answer to the

query. The pre-computed table, which is common to all nodes in the tree, has O(k2b) entries of

O(lg k) bits each. Since b ≤ k ≤ (1 − ε) lg n, the table is of size o(n) bits; equally, the index into

this table also fits in a word of lg n bits. This approach is easily extended to the case k = O(lg n),

but larger values of k need more work; this is the focus of the rest of this section.

4.1 Static Dictionary with Rank

A dictionary with rank is a generalization of a static dictionary, which only supports (yes/no)

membership queries on S. The most space-efficient static dictionary is due to Pagh [27] and

requires dlg
(k
d

)

e+ o(d)+O(lg lg k) = d lg k−d lg d+O(d+lg lg k) bits of space. Pagh’s approach is

based on minimal perfect hashing [11, 22, 31] and does not maintain the ordering of elements of S.

We begin by noting that one can add ddlg de bits of explicit rank information to Pagh’s approach,

giving a dictionary with rank that takes d lg k + O(d + lg lg k) bits. In turn, we then show how to

remove the additional terms and arrive at a dictionary with rank that requires d dlg ke bits. As it is

known that Ω(lg lg k) bits are needed to represent minimal perfect hash functions [22], we cannot

remove the lg lg k term in the space bound for a single node using this approach. However, as the

k-ary tree representation requires the storage of several dictionaries (one for each node), we share

components of the hash functions across dictionaries. This reduces the space bound to d lg k+O(d)

bits per node, plus shared information that adds up to o(n) + O(lg lg k) bits over all nodes. The

space per node is improved to ddlg ke bits by storing the rank information approximately and

reconstructing the exact values during a query.

A common extension to the dictionary problem is that every element of the set S is associated

with satellite data from a set V . A membership query ‘x ∈ S?’ should then return the satellite

data associated with x if x ∈ S. In what follows, if f is a mapping from a finite set X to a finite

totally ordered set Y , by ||f ||, we mean max{f(x) : x ∈ X}, and for integer m ≥ 1, [m] denotes
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the set {1, . . . ,m}. For y ≥ x ≥ 1, and z ≥ 1, c > 0, let gc(x, y, z) = x(lg y − lg x + lg z + c). If

x, y, z are all positive powers of 2, gc represents a ‘nearly’ space-optimal cost of storing x keys from

[y] with satellite information from [z].

The following lemma will be used in Theorem 4.1 to augment a dictionary supporting just mem-

bership (along with some satellite information) to also support the rank operation with little extra

space. The main trick is to explicitly store some partial rank information as satellite information

(except for a sparse number of elements for whom the full rank information is implicitly stored).

This saves a linear number of bits.

Lemma 4.1 Let N,M be integers such that M ≥ N ≥ 1, and let A ⊆ [M ] with |A| = N . Suppose

there is a constant c > 0 such that a dictionary for an arbitrary A′ ⊆ A, |A′| ≥ N/2, along with

satellite information from [s] for any s ≥ 1 can be stored using at most gc(|A′|,M, s) bits to support

membership queries on A′ in O(1) time. Then there is a dictionary with rank that stores A using

at most N dlg Me bits that supports rank() queries in O(1) time.

Proof: Suppose without loss of generality that N ≥ 2c+4 (otherwise just list A explicitly). Let

x0 < . . . < xN−1 be the elements of set A. Let 4 ≤ r ≤ N be an integer and let N ′ = N − dN/re.
We write down r using dlg Ne bits and explicitly write down the keys B = {x0, xr, x2r, . . .} in

sorted order using (N − N ′) dlg Me bits. Finally we store A′ = A \ B in the assumed dictionary,

where the key xi ∈ A′ is stored along with satellite information i mod r. Note that |A′| = N ′ ≥ N/2.

To answer rank(x) queries, we do a binary search to find the predecessor of x in B. If x ∈ B

we are done, as x’s rank in A is easily calculated. Otherwise, we locate x in the dictionary for A ′,

and if x is found, we take the associated satellite data and x’s rank in B, and thereby calculate its

rank in A.

We choose r =
⌊

N/2c+2
⌋

, and note that r ≥ 4. The set A′ together with its satellite information

is stored in at most N ′(lg M−lg N ′+lg N−(c+2)+c) ≤ N ′(lg M−1) bits (recall that lg N ≤ lg N ′+

1). Adding in the dlg Ne bits that represent r, this is still less than N ′ dlg Me bits, since N ≥ 4.

Thus, the overall data structure takes at most N dlg Me bits as desired. Since |B| = dN/re = O(2c),

the binary search on B takes O(c) = O(1) time, and all other operations on this data structure

also take O(1) time. 2

Theorem 4.1 Let N,M ≥ 1 be integers, let S ⊆ [M ] be a set of size n ≤ N . Suppose we have

access to two functions hS , qS : [M ] 7→ IN, satisfying the following conditions:
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1. hS is 1-1 on S.

2. hS and qS can be evaluated in O(1) time and from hS(x) and qS(x) one can uniquely recon-

struct x in O(1) time.

3. ||hS || is O(N 2) if n >
√

lg N and ||hS || is (lg N)O(1) otherwise.

4. dlg ||hS ||e + dlg ||qS ||e is lg M + O(1).

Then we can represent S using n dlg Me bits plus a precomputed table of size o(
√

N) bits that

depends only upon ||hS ||, if n ≤
√

lg N . Assuming a word size of at least lg max{M,N} bits, and

that ||hS || and ||qS || are known, we can support rank in O(1) time.

Proof: Let n0 be a sufficiently large constant, to be determined later. Depending upon the value

of n, we apply one of three approaches. If n ≤ n0, we explicitly write down the elements of S. If

n >
√

lg N , we represent hS(S) using a perfect hash function; since n is not too small, the space for

the hash function can be seen to be O(n) bits. Finally, in the intermediate range we represent hS(S)

implicitly and operate upon it by table lookup (cf. the paragraph before the start of Section 4.1)

In both the latter cases, additive O(n) terms are hidden by using Lemma 4.1.

Case I (n0 ≤ n <
√

lg N): We begin by showing that any T ⊆ S, |T | ≥ |S|/2, can be stored

along with satellite data from [`] in at most gc(|T |,M, `) bits for some constant c > 1 and for any

integer `.

Let T = {x1, . . . , xn′}. As hS is 1–1 on T , let π be the permutation such that yi = hS(xπ(i)),

for i = 1, . . . , n′ and y1 < y2 < . . . < yn′ . The data structure consists of the following three

components:

1. An implicit representation of the set T ′ = {y1, . . . , yn′};

2. An array sat of size n′ such that sat[i] contains the satellite information associated with xπ(i);

3. An array Q of size n′ such that Q[i] = qS(xπ(i)), i.e, Q[i] is the quotient corresponding to yi.

Given a query key x, we first find the index i such that yi = hS(x), if such an i exists. Since

the size of the representation of T ′ is
⌈

lg
(||hS ||

n′

)

⌉

= O(n′ lg ||hS ||) = o(lg N), one can use this

representation to index into a table of size o(
√

N) and accomplish this in O(1) time. If no such i

exists, then x 6∈ T . If such an i exists, then xπ(i) is the only candidate for a match in T . Next, we

reconstruct this key from yi and Q[i], and if it matches we return sat[i].
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The size of the representation of T is
⌈

lg
(||hS||

n′

)

⌉

+ n′(dlg ||qS ||e + dlg `e); since lg
(||hS||

n′

)

=

n′(lg ||hS || − lg n′)+O(n′), and dlg ||hS ||e+ dlg ||qS ||e is lg M +O(1) by assumption, the space used

is n′(lg M − lg n′ + lg `) + O(n′), which is expressible as gc(|T |,M, `) bits for some constant c > 0,

as required.

Now, by applying Lemma 4.1, we can represent S using n dlg Me bits and support rank queries

in O(1) time.

Case II (n ≥
√

lg N): We again show that any T ⊆ S, |T | ≥ |S|/2 can be stored along with

satellite data from [`] in at most gc′(|T |,M, `) bits for some constant c′ > 0. Again, let T =

{x1, . . . , xn′} and T ′ = {hS(x) | x ∈ T}. Our approach is essentially as above, except that we use

observations from [27] in place of item (1) in Case I to store T ′ (see Remark 2 after proof).

Recall that a function f : [||hS ||] → [n′] is said to be perfect for T ′ if it is 1-1 on T ′. Schmidt

and Siegel [31] have shown that such a function f can be represented in O(n′ + lg lg ||hS ||) =

O(n + lg lg N) = O(n) bits, and can be evaluated in O(1) time for any argument in its range. For

i ∈ [n′] we let f−1(i) denote the unique y ∈ T ′ such that f(y) = i. A first cut at the data structure

consists of:

1. A function f as above;

2. An array Y of size n′ such that Y [i] contains f−1(i);

3. An array sat of size n′ such that sat[i] contains the satellite information associated with

f−1(i) and

4. An array Q of size n′ such that Q[i] = qS(f−1(i)).

As observed by Pagh [27, Proposition 2.2] we can save space by storing not the full key f −1(i) in

location Y [i], but only the quotient information that distinguishes it from the part of [||hS ||] that

is mapped to i under f (Knuth [21, p. 525] attributes the general concept to Butler Lampson). By

doing this, we can store Y in n′(lg ||hS || − lg n′) + O(n′) bits and still support membership queries

in T ′ in O(1) time.

Given a query key x, we determine if hS(x) ∈ T ′ by calculating i = f(hS(x)) and inspecting

Y [i]. If so, we determine if x ∈ T by inspecting Q[i], and if so, we return sat[i]. The size of the

representation of T is clearly n′(lg M − lg n′ + lg `) + O(n′) = gc′(|T |,M, `) bits, as desired. Again,

by Lemma 4.1, we can represent S using n dlg Me bits and support rank queries in O(1) time.
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Case III (n < n0): We write down the elements of S in sorted order, using n dlg Me bits. Note

that n0 can be chosen to be 2max{c,c′}+3. 2

Remarks:

1. The function hS is essentially a ‘range reduction’ commonly used in perfect hashing. Indeed,

the first two steps of the FKS scheme [11] show the existence of the function hS with range

of O(|S|2) and qS(x) is simply the quotient information required to recover x given hS(x).

However, for a small set S, the space to represent the function hS can become dominant.

The solution to this is to use the same function for several small sets. This is why hS has

a relaxed range of O((lg N)c), rather than the minimum range of O(lg N). We get to these

details in the next lemma.

2. The argument for Case II could be shorter if we could use [27, Theorem 6.1], and store the

qS() values as additional satellite data. Unfortunately, the condition s = mO(1) at the start

of [27, Section 6] may not hold in our case.

Lemma 4.2 Let N,M ≥ 1 be integers, and let 0 < i1 < i2 < . . . < is < N be a sequence of

integers. Let Si1 , Si2 , . . . , Sis all be subsets of [M ] such that
∑s

j=1 |Sij | ≤ N . Then there exist

functions hSij
and qSij

for j = 1, . . . , s that satisfy the conditions of Theorem 4.1, and that can be

represented in o(N) + O(lg lg M) bits.

Proof: Let nij = |Sij | and let S∗ = ∪s
j=1Sij . We first define a function f , which is a ‘global’

range reduction.

If M ≤ N2 define f as f(x) = x. Otherwise, if M > N 2, then we find a hash function f given

by f(x) = (ax mod p) mod N 2 for some prime p ≤ N 2 lg M and 1 ≤ a ≤ p − 1 which maps S∗

bijectively into the set [N 2]. The existence of such a function is guaranteed by FKS [11]. Let a−1

be the inverse of a modulo p, i.e. the unique integer x, 1 ≤ x ≤ p− 1 such that ax mod p = 1. The

function f , along with a−1 is represented using O(lg N + lg lg M) bits.

Note that choosing hSij
= f suffices if nij ≥ √

lg N , but if Sij is small, i.e., nij <
√

lg N

we need to reduce the range even further. We form N/ lg N groups of sets, where the `th group

consists of the sets {Sij |` dlg Ne + 1 ≤ ij < (` + 1) dlg N}e. Let S` be the union of all elements

in the small sets in the `th group. For the `th group, find a prime p` such that the the function

g`(x) = f(x) mod p` is 1-1 on the set f(S`). Such a p` whose value is at most O(|S`|2 lg N) exists,

since ||f || is O(N 2) [11, 31]. Since |S`| ≤ (lg N)3/2 we can represent p` using O(lg lg N) bits.
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We store these primes, indexed by their group number in a separate table. Each prime is stored

in a field of b = Θ(lg lg N) bits. If S` is empty (i.e. there is no small set in the `-th group) then the

table contains a string of b 0s in the entry corresponding to that group. The total space required

by this table is o(N) bits. For a small set Sij the function hSij
which is required by Theorem 4.1

is defined by hSij
(x) = g`(f(x)) if Sij belongs to the `-th group.

Next we go on to describe the functions qS required in Theorem 4.1. To recover the original

element x from g`(x), we need to store the following ‘quotient’ value:

q`(x) =
(

(x div p)
⌈

p/N2
⌉

+
(

(ax mod p) div N 2
)) ⌈

N2/p`

⌉

+ f(x) div p`.

From g`(x), q`(x) and using p and p` (and a−1, if needed) one can obtain x in constant time.

Observe that lg ||hSij
|| + lg ||qSij

|| ≤ lg M + 4, which satisfies the hypothesis of Theorem 4.1. 2

Theorem 4.2 Let S1, S2, . . . , Ss all contained in [k] be given sets with Si containing di elements,

such that
∑s

i=1 di = n. Then this collection of sets can be represented using n dlg ke+o(n)+O(lg lg k)

bits, supporting rank(x, Si)operations in constant time. Here rank(x, Si) returns the rank of the

element x in set Si, if x ∈ Si and returns −1 otherwise. We assume that we have access to a

constant time oracle which returns the starting position of the representation of each dictionary.

Proof: This follows almost immediately from Theorem 4.1, applied with N = n and M = k. The

first thing to note is that there are only polylogarithmically many tables for operations on small

sets, thus the space required by all tables put together is o(n). The second thing is that in order to

easily find the start of the representation of a set Si, the representations of all sets Si would need

to be padded out to precisely |Si| dlg ke bits if necessary. 2

4.2 Putting things together

To summarize, the construction of the representation of a k-ary cardinal tree is a two-stage process;

see Figure 3 for an example. First we store the representation of the ordinal tree (the cardinal tree

without the labels), and any auxiliary structures required for those operations, in 2n + o(n) bits.

Next, to facilitate an easy mapping from the ordinal representation to the cardinal information,

we traverse the tree in depth-first order (as in creating the ordinal-tree representation) and store

the child information in a separate array. Besides a global three words, each of d2 lg n + lg lg ke
bits (used for global range reduction), each child-information structure is written using d dlg ke
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Figure 3: Our cardinal tree encoding of the tree in Fig. 2

bits (using Theorem 4.2), and if less space than that is required, the structure is padded to fill

the entire d dlg ke bits. To find the child-information structure for a node starting at position p in

the ordinal tree encoding, we compute the number of open parentheses strictly before position p,

rankopen(p− 1), and look at position rankopen(p− 1) dlg ke in the child-information array. Thus we

have:

Theorem 4.3 There is an n(dlg ke + 2) + o(n) + O(lg lg k) bit representation of a k-ary cardinal

tree on n nodes that provides a mapping from the nodes of the tree to {1, . . . , n} and supports the

operations of finding the parent of a node, the child with label j and the size of the subtree rooted

at any node, in constant time.

Compared with the lower bound of approximately lg k + lg e bits per node, there is a difference

of 0.557305 + o(1) bits per node plus the effects of the ceiling on the lg k term.

5 Representations for Fixed k

The above structures are intended for situations in which k is very large and not viewed as a

constant. In most applications of cardinal trees (e.g., B-trees or tries over the Latin alphabet), k is

given a priori. It is a matter of ‘data structure engineering’ to decide what aspects of our solution

for ‘asymptotically large’ k are appropriate when k is 256 or 4. While it may be a matter of debate
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1111111 1111111 111110 00 00 00 1100 00 00 00 10000 00 00 1111111 00 1111111 00 00 00 00 011

00 1111111 00 00 00 00 111101 1100 00 00 111110 00 00 00 11101 00 00 1111110 10000 00 00

111110 00 00 00 111101 00 00 00—158 bits.

Figure 4: Prefix Encoding of the Tree in Figure 2.

as to the functional relationship between 256 and k, it is generally accepted that 4, the cardinality

of the alphabet describing genetic codes, is a (reasonably) small constant.

A näıve encoding of a cardinal tree of degree 4 is to represent each node as three nodes in a

binary tree, resulting in an encoding that uses 6n + o(n) bits. Theorem 4.3 improves this bound to

4n + o(n) bits. Up to a ceiling and o(n) term, this matches the information theoretic lower bound

of (4 lg 4 − 3 lg 3)n = 3.24511 . . . bits. Simplifying and tuning our prior discussions, we show how

to obtain a more succinct encoding:

Corollary 5.1 There exists a
(

3 + 5
12

)

n + o(n) = 3.41667 . . . n + o(n) bit representation of a 4-

ary cardinal tree on n nodes that provides a mapping from the nodes of the tree to {1, . . . , n} and

supports the operations of finding the parent of a node, the child of a node with label j, and the size

of the subtree rooted at any node, all in constant time.

The basic idea is that some types of cardinal nodes are more common than other types in a

single tree. More precisely, there are 2k types of cardinal nodes, represented by a characteristic

vector of which children are present, but trees necessarily bias towards certain node types. For

example, assuming for the moment that there are no degree-one nodes, half of the nodes are leaves,

and hence half the nodes have type 00 · · · 0. Thus if we use fewer bits to represent leaves than other

nodes, we should be able to achieve an overall improved space bound.

To achieve this goal, we use a prefix code to encode nodes, that is, an assignment of bit-strings

to node types such that no bit-string is a prefix of another. The particular prefix code for k = 4 is

shown in Table 1.

The overall organization of the data structure is as follows. We first store a bit-string obtained

by concatenating the prefix codes of the nodes of the given 4-ary cardinal tree in depth-first order

of the tree (see Fig. 4 for an example). This requires at most (3 + 5/12)n bits. We augment

this bit-string with o(n) additional bits to allow the bit-string to act as an array, i.e., to permit

access to the ith element (prefix code) in constant time. This is done by combining Jacobson’s

technique for building an index into Huffman coded files [18] with the ideas used in improvong the
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Node Degree Node Code(s) Bits per Node

0 (leaf) 0000 00

1 0001 010

0010 011

0100 101
31

4

1000 1001

2 0011 10000

0101 10001

1001 1100

0110 1101
4 2

3
+1·2

2 = 31
3

1010 11100

1100 11101

3 0111 111100

1011 111101

1101 111110
6 1

4
+2·2

3 = 3 5
12

1110 1111110

4 1111 1111111 7+3·2
4 = 31

4

Table 1: Prefix Code for 4-ary Trees. The bits per node are calculated by including the cost of

representing any leaves in the subtree of the node, using the fact that d−1 leaves can be associated

to a node with degree d in a one-to-one manner. Note that these are set-to-set mappings of node

arrangements to codes; we permute the encodings so that the shorter code is chosen for more

frequently occurring nodes of a given degree.

time complexity of the select structure [6].

Let D be the balanced parenthesis sequence obtained by writing the degrees of nodes in unary

in the depth-first order of the tree, as in Section 3. We store the o(n) bit auxiliary structures

described in Section 3 that are used to support all the navigational operations on the tree, without

storing the sequence D itself. In order to run in O(1) time, the navigational operations need, in

addition to these auxiliary structures, access to a constant number of segments of O(lg n) bits from

D. Thus, if we can reconstruct a segment of D of length O(lg n) starting at a given position in

constant time, then we can support all the operations supported by the DFUDS representation in

O(1) time as well. Together with the prefix code sequence, we can support the operation of finding
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a child with a given label (this also follows from the fact that the maximum degree of a node is 4).

Thus, we now describe how to support the operation of finding a segment of D of length O(lg n)

starting at a given position in constant time, using the prefix code sequence. For this purpose, we

store the following auxiliary structures:

• an array A of size O(n/(lg n)2) that, for every position i ≤ n in D which is a multiple of

(lg n)2, stores: (a) the index j of the node, in the depth-first order of the tree, to which the

ith parenthesis in D corresponds (i.e., it appears in the unary degree representation of that

node), and (b) the offset of the position i from the beginning of the representation of the

corresponding node (which is a number between 0 and 4).

• an array B of size O(n/ lg n) that, for every position i ≤ n in D which is a multiple of (lg n)/2,

stores: (a) the value j mod (lg n)2 where j is the index of the node that corresponds to the ith

parenthesis in D, and (b) the offset of the position i from the beginning of the representation

of the corresponding node.

• a o(n) bit precomputed table that, for every possible sequence of ε lg n prefix codes (for

some ε < 1/8, as the longest prefix code is of length 7), stores the parenthesis sequence

corresponding to this, and also its length.

Now, to find a segment of length O(lg n) starting at position i in D, we first find, using A, an

index j and a value i′ ≤ (lg n)2 such that the index j corresponds to the position bi/(lg n)2c(lg n)2

in D, and (i − i′) is the number of parentheses in the prefix codes 1 to j − 1. Again, using B, we

find another index j ′ and a value i′′ ≤ (lg n)/2 such that the index j ′ corresponds to the position

b2i/ lg nc(lg n)/2 in D, and (i− i′′) is the number of number of parentheses in the prefix codes from

1 to j′. Now, by doing a linear scan from the j ′th prefix code (in the prefix code sequence) and

using the precomputed table, we can output the required sequence in constant time. Here we use

the fact that we can read (write) prefix codes (unary degree sequences) of O(lg n) nodes in O(1)

time.

6 Conclusion

We have given succinct representations for ordinal and cardinal trees that require space within a

lower-order term of the information theoretic lower bound in many cases, and are always within a

additive linear number of bits of the lower bound. Our representations support all basic navigational
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operations in constant time, and also support the subtree size operation in constant time. En route

we gave a representation of a static dictionary that supports membership and rank queries of present

elements in constant time.
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