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1 Introduction

In computational origami, one of the most remark-
able problems asks if every convex polyhedron has an
edge-unfolding to a simple and nonoverlapping poly-
gon [3, Open Problem 21.1]. Here, an edge-unfolding
is a set of edges of the polyhedron such that cutting
along these edges unfolds the polyhedron.

There are several evidences for/against the con-
jecture (see [3, Sections 22.2 and 22.3]); however, it
is far from to be settled. As an evidence for this con-
jecture, it is known that any convex polyhedron P is
edge-unfoldable if P is a prismoid or a dome; how-
ever, they form a quite limited set of convex polyhe-
dra. On the other hand, as an evidence against this
conjecture, there are several edge-ununfoldable non-
convex polyhedra. In this context, a key property of
a polyhedron is topological convexity ; a polyhedron
P is topologically convex iff there is a convex polyhe-
dron P ′ such that the graph induced by its vertices
and edges is isomorphic to the one induced by P .
In fact, if we do not restrict to topologically convex
polyhedra, it is easy to make an edge-ununfoldable
polyhedron with 7 faces: take a tetrahedron and add
a tetrahedral bump in the middle of one of its faces.

Research on small edge-ununfoldable nonconvex
polyhedra gives us insight of the open problem. In
[5], Grünbaum gives a polyhedron with 13 vertices
and 13 faces that is not edge-unfoldable. We sharpen
such edge-unfoldability of nonconvex polyhedra:

Theorem 1.1 (1) There exists a topologically con-
vex polyhedron with 7 vertices and 6 faces that is not
edge-unfoldable. (2) There exists a topologically con-
vex polyhedron with 6 vertices and 7 faces that is not
edge-unfoldable. (3) Any polyhedron with less than 6
vertices or 6 faces is edge-unfoldable.

That is, we give much smaller edge-ununfoldable

polyhedra, and we also prove that they are optimal
with respect to the number of faces and vertices, re-
spectively. Note that they are not only topologically
convex, but also all their faces are simple polygons
(or simply connected and no holes).

2 Edge-ununfoldable polyhedra

In order to prove Theorem 1.1(1), we show a poly-
hedron P with 7 vertices and 6 faces s.t. any edge-
unfolding of P causes an overlapping. It is as shown
in Figure 1: P has an apex G, and the base of P
consists of one triangle ABF and one concave pen-
tagon BCDEF . The side of P consists of 2 trian-
gles CDG and EDG and 2 concave quadrilaterals
ABCG and AFEG. We make P symmetric to its
mirror image across the plane AGD. The key prop-
erties of the polyhedron P are the following; (a) to-
tal angle around D > 360◦, (b) total angle around
G > 360◦, (c) ∠CBF + ∠CBA > 360◦, and (d)
∠ABF + ∠CBA > 300◦ and BF < BC.

Let G = (V, E) be the graph induced by P . Then
any edge-unfolding of P induces a spanning tree T of
G. Let T be any spanning tree of G. We show that
any edge-unfolding given by T produces overlapping.
Since T is a tree, it has at least 2 leaves. However,
from the properties (a)-(c), none of B,F,D,G can
be a leaf since overlapping occurs at leaves. On the
other hand, vertices A,C,E cannot be three leaves
since we cannot have any spanning tree T that con-
tains the edge BF with 3 leaves A,C,E. Thus T
has only 2 leaves, i.e., T is a Hamilton path of G.
In most cases, ABCG overlaps with CBFED at ver-
tex B by (c). The other case is shown in Figure 2.
Thus the polyhedron P in Figure 1 has no edge-
unfolding without overlapping. In order to prove
Theorem 1.1(2), we show a polyhedron P with 6 ver-
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Figure 1: An edge-ununfoldable polyhedron with
7 vertices and 6 faces.
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Figure 2: An edge-unfolding that causes overlap-
ping.

Figure 3: An edge-ununfoldable polyhedron with 6
vertices and 7 faces.

tices and 7 faces s.t. any edge-unfolding of P causes
an overlapping. This polyhedron is composed of a
quadrilateral ABCD concave at C, connected to 2
apices E and F as in Figure 3. This polyhedron is de-
signed to have the following properties: (a) ∠BCE >
∠BCD, and (b) ∠AEB + ∠BEC + ∠CEF > 2π.
Property (a) forces that edges BC and CD must be
cut, otherwise triangle BCE would overlap quadri-
lateral ABCD. Because A,B,D are the only vertices
with positive curvature, two leaves of the spanning
tree exist either on A, B, or D. If B and D are
both leaves, then, the only route to A is through path
CFEA. However, corner FEA would create an over-
lapping vertex by condition (b). If A and D are the
only two leaves, the tree is a path AEFDCB. Now
this again contains corner AEF , thus the unfolding
overlaps by (b).

3 Edge-unfoldable polyhedra with
less than 6 vertices or 6 faces

In order to prove Theorem 1.1(3),we first recall that
DiBiase established that all convex polyhedra with 4,
5, or 6 vertices can be edge-unfolded [4]. Based on
this result, there are only two cases to be considered;
P is (a) a nonconvex square pyramid (with 5 faces
and 5 vertices), or (b) a nonconvex polyhedron that
consists of 6 triangles and 5 vertices with degree se-
quence 3,3,4,4,4. The proof that these two polyhedra
are edge-unfoldable is omitted here.

4 Concluding remarks
We investigated minimal edge-ununfoldable polyhe-
dra. We show two edge-ununfoldable polyhedra; one
has 6 faces and 7 vertices, and the other has 7 faces
and 6 vertices. They are optimal with respect to the
number of faces and vertices for topologically convex
polyhedra. Grünbaum shows an edge-ununfoldable
convex faced polyhedron with 13 faces and 13 vertices
[5], and Bern et al. give an edge-ununfoldable trian-
gular faced polyhedron with 36 faces and 20 vertices
[1]. Improving these upper bounds and/or showing
lower bounds are future work.
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