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Abstract. We study an extensive class of movement minimization prob-
lems which arise from many practical scenarios but so far have little
theoretical study. In general, these problems involve planning the co-
ordinated motion of a collection of agents (representing robots, people,
map labels, network messages, etc.) to achieve a global property in the
network while minimizing the maximum or average movement (expended
energy). The only previous theoretical results about this class of prob-
lems are about approximation, and mainly negative: many movement
problems of interest have polynomial inapproximability. Given that the
number of mobile agents is typically much smaller than the complexity of
the environment, we turn to fixed-parameter tractability. We character-
ize the boundary between tractable and intractable movement problems
in a very general set up: it turns out the complexity of the problem funda-
mentally depends on the treewidth of the minimal configurations. Thus
the complexity of a particular problem can be determined by answering
a purely combinatorial question. Using our general tools, we determine
the complexity of several concrete problems and fortunately show that
many movement problems of interest can be solved efficiently.

1 Introduction

In many applications, we have a relatively small number of mobile agents (e.g., a
team of autonomous robots or people) moving cooperatively in a vast terrain or
complex building to achieve some task. The number of cooperative agents is often
small because of their expense: only small groups of people (e.g., emergency re-
sponse or SWAT teams) can effectively cooperate, and autonomous mobile robots
are currently quite expensive (in contrast to, e.g., immobile sensors). Nonethe-
less, an accurate model of the immense/intricate environment they traverse, and
their ability to communicate or otherwise interact (say, by limited-range wire-
less radios or walkie-talkies), is complicated and results in a large problem input.
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Thus, to compute the most energy-efficient motion in such a scenario, we allow
the running time to be relatively large (exponential) in the number of agents, but
it must be small (polynomial or even linear) in the complexity of the environ-
ment. This set up motivates the study of fixed-parameter tractability (FPT) [10]
for minimizing movement, with running time f(k) · nO(1) for some function f ,
parameterized by the number k of mobile agents.

A movement minimization problem is defined by a class of target configura-
tions that we wish the mobile agents to form and a movement objective function.
For example, we may wish to move the agents to form a connected network (for
communication), an independent set (either dispersing robots or placing map
labels), or another topology. See Section 5 for more formal examples of problems
and how our theory applies to them.

In the general formulation of the movement problem, we are given an arbi-
trary metric defining feasible motion, a graph defining “connectivity” (possibly
according to the infinite Euclidean plane), and a desired property of the con-
nectivity among the agents defined by a class G of graphs. We view the agents
as “pebbles” located at vertices of the connectivity graph (and we use the two
terms interchangeably). Our goal is to move the agents so that they induce a
subgraph of the connectivity graph that possesses the desired property, that is,
belongs to the class G. There are three natural measures of agent motion that
we might want to minimize: the total amount of motion, the maximum motion
of any agent, and the number of moved agents. To obtain further generality and
to model a wider range of problems, we augment this model with additional
features: the agents have types, desired solutions can require certain types of
agents, multiple agents can be located at the same vertex, and the cost of the
movement can be different (even nonmetric) for the different agents.

To what level of generality can we solve these movement problems? Several
versions have been studied from an approximation algorithms perspective in
SODA 2007 [7] and FOCS 2008 [8], in addition to various specific problems
considered less formally in practical scenarios [2,4,5,9,12,13,14]. Unfortunately,
most forms of the movement problem are NP-complete, and furthermore are
often hard to approximate even within polynomial factors [7]. Nonetheless, the
problems are of significant practical interest, and the motion must be kept small
in order to minimize energy consumption. Fortunately, as motivated above, the
number of mobile agents is often small. Thus we have a natural context for
considering fixed-parameter algorithms, i.e., algorithms with running time f(k) ·
nO(1), where parameter k is the number of mobile agents.

2 Main Results

We develop general efficient fixed-parameter algorithms for a broad family of
movement problems. Furthermore, we show our results are tight by characteriz-
ing, in a very general setting, the line between fixed-parameter tractability and
intractability. It turns out that the notion of treewidth plays an important role
in defining this boundary line. Specifically we show that, for problems closed



under edge addition (i.e., adding an edge to the connectivity graph cannot de-
stroy a solution), the complexity of the problem depends solely on whether the
edge-deletion minimal graphs of the property have bounded treewidth. If they all
have bounded treewidth, we show how to solve a very general formulation of the
problem with an efficient fixed-parameter algorithm. If they have unbounded
treewidth, we show that even very simple questions are W[1]-hard, meaning
there is no efficient fixed-parameter algorithm under the standard parameter-
ized complexity assumption FPT 6= W[1]. In Section 5, we use these results to
characterize the complexity of several concrete problems.

Our results apply to a more general model of agents, which in particular lets
us capture facility-location types of problems where the number of facilities can
be arbitrary large (not a fixed parameter). Such problems arise, e.g., in organizing
a small team within a large infrastructure of wired network hubs or mobile
satellites. The general model we consider divides the agents into three types—
client, facility, and obnoxious agents—and the parameter is just the number of
clients, which can be much smaller than the total number of agents. The clients
can require collocated or nearby facility agents, among a potentially large set of
facility agents, which themselves are mobile. Intuitively, facilities provide some
service needed by clients. Clients can also require at most a certain number
(e.g., zero) of collocated obnoxious agents (again among a potentially large,
mobile set), which can represent dangerous or undesirable resources. In other
words, adding facility agents or removing obnoxious agents does not affect a
solution. More generally, there can be many different subtypes of client, facility,
and obnoxious agents, and we may require a particular pattern of these types.

Formally, our results are as follows. A movement problem specifies a multicol-
ored graph property : an (infinite) set G of desired configurations, each specifying a
desired subgraph and how that subgraph should be populated by different types
of agents (a multicolored graph). In this way, we can specify different types of
client agents that need to interact in a particular way, or need particular types of
nearby facility agents. The goal of the movement problem is to move the agents
into a configuration containing at most ` vertices that contain all k client agents
and induce a “good” target pattern: either the induced multicolored graph is in
the set G or it is better than some multicolored graph G ∈ G, i.e., contains more
facility agents and fewer obnoxious agents at each vertex.

A mild technical condition that we require is that the multicolored graph
property G is regular : for every fixed numbers k and `, there are only finitely
many graphs in G with at most ` vertices and at most k client agents (as we do
not bound the number of obnoxious and facility agents here, this is a nontrivial
restriction). In other words, there should be only finitely many minimal ways to
satisfy a bounded number of clients in a bounded subgraph. For example, the
propery requiring that the number of facility agents is not less than the number
of obnoxious agents is not a regular property. Note that this restriction does not
say that there is only a finite number of good configurations: as mentioned in the
previous paragraph, we allow configurations having any number of extra facility
vertices. Furthermore, our main algorithmic result considers properties that are



closed under edge addition; this is certainly true for properties that model some
notion of connectivity.

Theorem 1. If G is a regular multicolored graph property that is closed un-
der edge addition, and if the edge-deletion minimal graphs in G have bounded
treewidth, then the movement problem can be solved in f(k, `) · nO(1) time, as-
suming that the movement cost function is the same on any two agents of the
same obnoxious type that are initially located on the same vertex.

Here the movement cost function is an arbitrary (polynomially computable)
function for each agent specifying the nonnegative integer cost of moving that
agent to each vertex in the graph. This definition allows nonmetric terrains,
agents of different speeds, immobile agents, regions impassable by certain agents,
etc. In the movement problem, we are given an initial configuration (a multicol-
ored graph), and we wish to minimize the total cost of all movement subject to
reaching one of the desired target configurations in G with at most ` vertices,
where both ` and the number k of client agents are parameters. This problem
in particular captures the variations of minimizing the maximum movement and
minimizing the number of moved agents. For the latter, we simply specify a
movement cost function for each agent of 0 to remain stationary and 1 to make
any move. For the former, we can binary search on the maximum movement cost
τ , and modify the movement cost function to jump to ∞ whenever exceeding τ .

Our main algorithm uses several tools from fixed-parameter tractability, color
coding, and graph structure theory, in particular treewidth. This combination
of techniques seems interesting in its own right.

We prove a matching hardness result for Theorem 1: if the edge-deletion min-
imal graphs in G have unbounded treewidth, then it is hard to answer even some
very simple questions. Thus treewidth plays an essential role in the complexity
of the problem, which is not apparent at first sight.

Theorem 2. If G is any (possibly regular) multicolored graph property that is
closed under edge addition, and for every w ≥ 1, there is an edge-deletion mini-
mal graph Gw ∈ G with treewidth at least w and at least one client agent on each
vertex (but no other type of agent), then the movement problem is W[1]-hard
with the combined parameter (k, `), already in the special case where each agent
is allowed to move at most one step.

3 Further Results

In addition to our general classification, we present many additional fixed-
parameter results. These results capture situations where the general classifica-
tion cannot be applied directly, or the general results apply but problem-specific
approaches enable more efficient algorithms. Specifically, we consider situations
where the graphs are more specific (e.g., almost planar), the property is not
closed under edge addition, or the number of client agents is not bounded. Our
aim is to demonstrate that there are many problem variants that can be explored



and that there is a vast array of algorithmic techniques that become relevant
when studying movement problems. In particular, the fast set convolution algo-
rithm of Björklund et al., results from algorithmic graph minor theory, Cour-
celle’s Theorem, bidimensionality, Canny’s Roadmap Algorithm, and a result of
Khot and Raman all find uses in this framework.

Planar graphs and H-minor-free graphs. Our general characterization
makes no assumptions on the connectivity structure: it is an arbitrary graph.
However, significantly stronger results can be achieved if we have some restriction
on the connectivity graph. For example, many road networks, fiber networks, and
building floorplans can be accurately represented by planar graphs. We show
that, for planar graphs, the fixed-parameter algorithms of Theorem 1 work even
if we remove the requirement that G is closed under edge addition.

In many cases, approximation and fixed-parameter tractability results for pla-
nar graphs generalize to arbitrary surfaces, to bounded local treewidth graphs,
and to H-minor-free graph classes. These generalizations are made possible by
the algorithmic consequences of the Graph Minor Theorem [6]. To obtain max-
imum generality, we state the result on planar graphs generalized to arbitrary
H-minor-free classes:

Theorem 3. If G is a regular multicolored graph property, then for every fixed
graph H, the movement problem can be solved on H-minor-free graphs in f(k, `)·
nO(1) time, assuming that the movement cost function is the same on any two
agents of the same obnoxious type that are initially located on the same vertex.

One possible application scenario where these generalizations of planar
graphs play a role is the following. The terrain is a multi-level building, where
the connectivity graph is planar on each level, and there are at most d connec-
tions between two adjacent levels. Now the graph is Kd+1-free for d ≥ 4 (as a
Kd+1 minor would be contained on one level). Thus, for every fixed value of d,
Theorem 3 applies for such connectivity graphs.

We also consider two specific problems in the context of planar graphs.
Bidimensionality. We consider parameterizing by the sum of all movement,

instead of the number of pebbles, for the problem of DISPERSION (see Sec-
tion 5). This parameterization is likely hard in general, but we show that it
becomes fixed-parameter tractable in planar graphs, even in linear time (for ev-
ery fixed maximum sum k). The proof uses a combination of bidimensionality
theory, parameter-treewidth bounds, grid-minor theorems, Courcelle’s Theorem,
and monadic second-order logic.

Planar STEINER CONNECTIVITY. In the STEINER CONNECTIVITY
problem (see Section 5), the goal is to connect one type of agents (“terminals”)
using another type of agents (“connectors”). Our general characterization shows
that this problem is fixed-parameter tractable if the numbers of both types of
agents are bounded. The problem becomes W[1]-hard if only the number of
connector agents is bounded and the number of terminal pebbles is unbounded.
On the other hand, we show that this version of the problem is fixed-parameter
tractable for planar graphs, using problem-specific techniques.



Geometric graphs. In some of the applications, the environment can be
naturally modeled by the infinite geometric graph defined by Euclidean space,
where vertices correspond to points and edges connect two vertices that are
within a fixed distance of each other, say 1. In this case, we develop efficient
algorithms in a very general setting, even though the graph is infinite:

Theorem 4. If G is any regular graph property, then the movement problem
can be solved in Euclidean d-space up to multiplicative error 1 + ε in f(k, d) ·
nO(1) lg(1/ε) time, where k is the total number of agents (including facility and
obnoxious agents).

The main tool for proving this theorem is Canny’s Roadmap Algorithm for
motion planning in Euclidean space [3], which lets us manipulate bounded-size
semi-algebraic sets.

Hereditary properties. In addition to properties closed under edge ad-
dition, we investigate another general class of properties, hereditary properties,
where if some G ∈ G, then every induced subgraph of G is also in the property
G. For example, independence (having no edges) is such a property. We prove
another general hardness result for hereditary properties:

Theorem 5. Let G be a hereditary property where each vertex has exactly one
client pebble and there are no other type of pebbles. If the maximum clique size
is bounded in G, then the movement problem is W[1]-hard with the combined
parameter (k, `), already in the special case where each agent is allowed to move
at most one step in the graph.

The proof of Theorem 5 uses a hardness result by Khot and Raman [11]
on the parameterized complexity of finding induced subgraphs with hereditary
properties. The theorem in particular establishes W[1]-hardness of DISPERSION
(moving to an independent set); see Section 5.

Improving CONNECTIVITY with fast subset convolution. Finally,
we optimize one particularly practical problem, CONNECTIVITY: moving the
agents so that they form a connected subgraph. Our general characterization im-
plies that this problem is fixed-parameter tractable. Using the recent algorithm
of Björklund et al. [1] for fast subset convolution in the min-sum semiring, we
design a more efficient algorithm for this problem: the exponential factor of the
running time is only O(2k).

In summary, our results form a systematic study of the movement problem,
using powerful tools to classify the complexity of the different variants. Our
algorithms are general, so may not be optimal for any specific version of the
problem, but they nonetheless characterize which problems are tractable, and
lead the way for future investigation into more efficient algorithms for practical
special cases.

4 Model and Definitions

In this section, we make precise the model described in the Introduction and
introduce some additional notation.



Definition 1. We fix three finite sets of colors: Cm (main colors), Cf (facility
colors), Co (obnoxious colors).

Definition 2. A multicolored graph is a graph with a multiset of colored pebbles
assigned to each vertex (a vertex can be assigned multiple pebbles with the same
color). We denote by nG(c, v) the number of pebbles with color c at vertex v in
G. A multicolored graph property is a (possibly infinite) recursively enumerable
set G of multicolored graphs. A graph property G is regular if for every fixed
k, ` there is only a finite number of graphs in G with at most ` vertices and at
most k main pebbles and there is an algorithm that, given k and `, enumerates
these graphs. A graph property G is hereditary if, for every G ∈ G, every induced
subgraph of G is also in G. A graph property G is closed under edge addition if
whenever G is in G and G′ is obtained from G by connecting two nonadjacent
vertices, then G′ is also in G. A graph G ∈ G is edge-deletion minimal if there
is no graph G′ ∈ G that can obtained from G by edge deletions.

Definition 3. Let G1 and G2 be two multicolored graphs whose underlying
graphs are isomorphic. G2 dominates G1 if there is an isomorphism φ : V (G1) →
V (G2) such that, for every v ∈ V (G1),

1. for every c ∈ Cm, vertices v and φ(v) have the same number of pebbles with
color c;

2. for every c ∈ Cf , vertex φ(v) has at least as many pebbles with color c as v;
and

3. for every c ∈ Co, vertex φ(v) has at most as many pebbles with color c as
vertex v.

Definition 4. For every set G of multicolored graphs, the movement problem
has the following inputs:

1. a multicolored graph G(V,E), P is the set of pebbles, k is the number of
main pebbles;

2. a movement cost function cp : V → Z+ for each pebble p ∈ P ;
3. integer `, the maximum solution size; and
4. integer C, the maximum cost.

The task is to find a movement plan m : P → V such that

1. the total cost
∑

p∈P cp(m(p)) of the moves is at most C; and
2. after the movements, there is a set S of at most ` vertices such that S

contains all the main pebbles and the multicolored graph G[S] dominates
some graph in G.

By using different movement cost functions, we can express various goals:

1. if cp(v) is the distance of p from v, then we have to minimize the sum of
movements,

2. if cp(v) = 0 if v is at distance at most d from p and ∞ otherwise, then we
have to find a solution where p moves at most d steps,



3. if cp(v) = 0 if v is the initial location of p and cp(v) = 1 for every other
vertex, then we have to minimize the number of pebbles that move.

Of course, we can express combinations of these goals or the different pebbles
can have different movement graphs, etc. The formulation is very flexible.

5 Sample Problems of Interest

To illustrate the generality of our model and characterization, we define several
specific movement problems similar to those mentioned informally in the In-
troduction, and determine their fixed-parameter tractability using Theorems 1
and 2. Using these tools, if a movement problem can be modeled with colored
pebbles and the target patterns are closed under adding edges, then the com-
plexity of the problem can be determined by solving the (sometimes nontrivial)
combinatorial question of whether the minimal configurations have bounded
treewidth. The minimal configurations are those pebbled graphs that are ac-
ceptable solutions, but removing any edge makes them unacceptable.
Example: CONNECTIVITY. Move the pebbles (agents) so that they are
connected and on distinct vertices. The parameter is the number k of pebbles.
Now there is only one, main color of pebbles, and G contains all connected
graphs with exactly one pebble on each vertex. Clearly, G is closed under edge
addition and the edge-deletion minimal graphs are trees. Trees have treewidth 1,
hence by Theorem 1, this movement problem is fixed-parameter tractable for
any movement cost function. The variant of the problem where it is not required
that the pebbles are on distinct vertices is also FPT: in this case, G contains all
connected graphs with at least one pebble on each vertex. �

Example: GRID. Move the k pebbles so that they form a b
√

kc×b
√

kc square
grid. The parameter is the number k of pebbles. Again there is only one, main
color of pebbles, and G contains all graphs containing a spanning square grid
subgraph with exactly one pebble on each vertex. Clearly, G is closed under edge
addition and the edge-deletion minimal graphs are grids, which have arbitrarily
large treewidth. Thus Theorem 2 implies that it is W[1]-hard, parameterized by
(k, `), to decide whether there is a solution where each pebble moves at most
one step. �

Example: s-t CONNECTIVITY (few pebbles). Move the pebbles to form
a path of pebbled vertices between fixed vertices s and t. The parameter is the
number k of pebbles. Now there are two main colors of pebbles, call them red
and blue, and G consists of all graphs containing exactly two red pebbles and a
path between them using only vertices with blue pebbles. We reduce s-t CON-
NECTIVITY to this movement problem by putting red pebbles at s and t, and
giving them an infinite movement cost to any other vertices. Clearly, G is closed
under edge addition and the edge-deletion minimal graphs are paths. Paths have
treewidth 1, so by Theorem 1, this problem is fixed-parameter tractable. �

In the next example, we show that a much more general version of s-t CON-
NECTIVITY is FPT: instead of parameterizing by the number k of pebbles,



we can parameterize by the maximum length L of the path. Thus we can have
arbitrarily many pebbles that might form the path, as long as the formed path
itself is small.
Example: s-t CONNECTIVITY (bounded length). Move the pebbles to
form a path of pebbled vertices of length at most L between fixed vertices s
and t. The parameter is the length L. Now we define one main color of pebbles,
red, and one facility color of pebbles, blue, and we define G as in the previous
example. Again by Theorem 1, this problem is fixed-parameter tractable in the
combined parameter (k, `); in the example, we have k = 2 and ` = L + 1. �

Example: STEINER CONNECTIVITY. Connect the red pebbles (rep-
resenting terminals) by moving the blue pebbles to form a Steiner tree. The
parameter is the number of red pebbles plus the number of blue pebbles in the
solution Steiner tree. This is simply a generalization of s-t CONNECTIVITY to
more than two red pebbles. Again by Theorem 1 the problem is fixed-parameter
tractable (the edge-deletion minimal graphs are trees), even when the number
of blue pebbles is very large. �

Example: 2-CONNECTIVITY. Move the pebbles so that they induce a 2-
connected graph and the pebbles are on distinct vertices. The parameter is the
number k of pebbles. Now G contains all 2-connected graphs and clearly G is
closed under edge addition. The edge-deletion minimal graphs have unbounded
treewidth: subdividing every edge of a clique gives an edge-deletion-minimal 2-
connected graph. Thus by Theorem 2, it is W[1]-hard to decide whether there
is a solution where each pebble moves at most one step. �

Example: s-t d-CONNECTIVITY. Move the pebbles so that there are d
vertex-disjoint paths using pebbled vertices between two fixed vertices s and t.
The parameter is the total length L of the solution paths. Now we use one main
color, red, and one facility color, blue, and Gd consists of all graphs containing
two vertices with a red pebble on each, and having d vertex-disjoint paths be-
tween these two vertices, with blue pebbles on each path vertex. In the input
instance, there are red pebbles on s and t, and the cost of moving them is infinite.
Clearly, Gd is closed under edge addition and the edge-deletion minimal graphs
are series-parallel (as they consist of d internally vertex disjoint paths connect-
ing two vertices), which have treewidth 2. Hence, by Theorem 1, this movement
problem is fixed-parameter tractable with respect to L, for every fixed d. Again
the number of blue pebbles can be arbitrarily large. �

The previous example shows that s-t d-CONNECTIVITY is FPT for every
fixed value of d. Furthermore, we can show that the problem remains FPT even
if d appears as part of the input.
Example: s-t d-CONNECTIVITY (unbounded version). Move the peb-
bles so that there are d vertex-disjoint paths using pebbled vertices between two
fixed vertices s and t, where d is a number given in the input. The parameter is
the total length L of the solution paths. First, if d is larger than the bound on the
total length of the paths, then there is no solution. Otherwise, we can assume d
is a fixed parameter. Now we use two main colors, red and green, and one facility



color, blue. A graph G is in G if the blue pebbles form d vertex-disjoint paths
between two vertices containing red pebbles, where d is the number of green
pebbles in G. Thus we use green pebbles to “label” a graph G in G according to
what level of connectivity it attains. Again G is closed under edge addition and
the edge-deletion minimal graphs are series-parallel, which have treewidth 2, so
by Theorem 1, the movement problem is fixed-parameter tractable with respect
to k := 2 and ` := L. In the initial configuration, we put red pebbles on s and
t with infinite movement cost, and we place d green pebbles arbitrarily in the
graph. The target configuration we obtain will have exactly d green pebbles, and
thus d vertex-disjoint paths, because these are main pebbles. �

We can also consider the edge-disjoint version of s-t connectivity. We need
the following combinatorial lemma to characterize the minimal graphs:

Lemma 6. Let G be a connected graph and assume that there are d edge-disjoint
paths between vertices s and t in G, but for any edge e ∈ E(G), there are at most
d− 1 edge-disjoint paths between s and t in G \ e. Then the treewidth of G is at
most O(d2).

Example: s-t d-EDGE-CONNECTIVITY. Move the pebbles so that there
are d edge-disjoint paths of pebbled vertices between s and t. The parameter
is the total length L of the paths. Now we use one main color, red, and one
facility color, blue, and Gd contains all graphs containing two vertices with a
red pebble on each and having d edge-disjoint paths between these two vertices,
with blue pebbles on each path vertex. By Lemma 6, the edge-deletion minimal
graphs have treewidth O(d2). Hence, by Theorem 1, the movement problem is
fixed-parameter tractable with respect to L. �

The previous example shows that s-t d-EDGE-CONNECTIVITY is FPT for
every fixed value of d. Somewhat surprisingly, unlike in the vertex-disjoint case,
the problem becomes hard if d is part of the input:
Example: s-t d-EDGE-CONNECTIVITY (unbounded version). Move
the pebbles so that there are d edge-disjoint paths of pebbled vertices between
s and t, where d is a number given in the input. We use three main colors:
red, green, and blue. A graph G is in G if the blue pebbles form d edge-disjoint
paths between two vertices containing red pebbles, where d is the number of
green pebbles in G. We show that G contains edge-deletion minimal graphs of
arbitrary large treewidth, so by Theorem 2, it is W[1]-hard to decide whether
there is a solution where each of the k pebbles move at most one step each.
Assume d is even and let G be a graph consisting of vertices s, t, and d vertex-
disjoint paths between s and t such that vertices pi,1, . . . , pi,d are the internal
vertices of the ith path. Now for every odd i and odd j, identify vertices pi,j

and pi+1,j , and for every even i < d and even j, identify pi,j and pi+1,j . There
are d edge-disjoint s-t paths in this graph, but there are at most d − 1 such
paths after the deletion of every edge. (It is easy to see that every edge is in an
s-t cut of exactly d edges.) Thus G is an edge-deletion minimal member of G.
Furthermore, if for every odd i and odd j, we contract the edge pi,jpi,j+1, then
we get a d/2× d/2 grid, so the treewidth is Ω(d). �



Example: FACILITY LOCATION (collocation version). Move client and
facility pebbles so that each client pebble is collocated with at least one facility
pebble and the client pebbles are at distinct locations. The parameter is the
number of client pebbles. We use one main color, red, for the clients, and one
facility color, blue, for the facilities, and G contains all graphs in which every
vertex contains exactly one red and one blue pebble. The edge-deletion minimal
graphs in G have no edges, so have treewidth 0. By Theorem 1, the movement
problem is fixed-parameter tractable parameterized by the number of main peb-
bles, i.e., the number of clients. The number of facilities can be unbounded,
which is useful, e.g., to organize a small team within a large infrastructure of
wired network hubs or mobile satellites. �

Example: FACILITY LOCATION (distance-d version). Move client and
facility pebbles so that each client pebble is within distance at most d from at
least one facility pebble and the client pebbles are at distinct locations. Now we
use two main colors, red and green, and one facility color, blue. Let G contain
all graphs that contain some number d of green pebbles and each red pebble is
at distance at most d from some blue pebble. Given a graph with k client (red)
pebbles and some number of facility (blue) pebbles, we add d dummy green
pebbles and ask whether there is a solution on ` := k(d + 1) + d vertices. If we
move the pebbles so that each red pebble is at distance d from some blue pebble,
then there are k(d + 1) + d vertices that contain all d of the green pebbles and
induce a graph in G. We claim that the edge-deletion minimal graphs in G are
forests, and hence have treewidth 1. Consider an edge-deletion minimal graph
G ∈ G, and for each vertex v without a blue pebble, select an edge uv that
goes to a neighbor u that is closer to some blue pebble than v. If an edge is not
selected in this process, then it can be removed (it does not change the distance
to the blue pebbles), so by the minimality of G, every edge is selected. Each
connected component contains at least one blue pebble. This means that, in
each connected component, the number of selected edges is strictly smaller than
the number of vertices, i.e., each component is a tree. Thus, by Theorem 1, the
movement problem is FPT. �

On the other hand, FACILITY LOCATION becomes W[2]-hard if the param-
eter is the number of facilities, while the number of clients can be unbounded. We
cannot obtain this result using Theorem 2 because, in this setting, the parameter
is the number of facility pebbles.

Theorem 7. For every fixed d ≥ 0, FACILITY LOCATION (distance d ver-
sion) is W[2]-hard parameterized by the number of facilities, even if each pebble
is allowed to move at most one step in the graph.

Example: MATCHING. Move the pebbles so that the pebbles are on distinct
vertices and there is a perfect matching in the graph induced by the pebbles.
The parameter is the number of pebbles. Now there is just one, main pebble
color, and G contains all graphs that have a perfect matching. The edge-deletion
minimal graphs are perfect matchings, so they have treewidth 1. By Theorem 1,
the movement problem is FPT. �



Example: SEPARATION. Move client pebbles (say, representing population)
and/or obnoxious pebbles (say, representing power plants) so that each client
pebble is collocated with at most o obnoxious pebbles. The parameter is the
number of client pebbles. Here G contains all graphs with the desired bounds,
so the edge-deletion minimal graphs have no edges, which have treewidth 0. By
Theorem 1, the movement problem is fixed-parameter tractable. As in previous
examples, we can make o an input to the problem. �

Example: DISPERSION. Move the pebbles to distinct vertices and such that
no two pebbles are adjacent. The parameter is the number k of pebbles. Here G
contains all independent sets with exactly one pebble on each vertex. Because
G is hereditary and the maximum clique size is 1, Theorem 5 implies that the
movement problem is W[1]-hard, even in the case when each pebble is allowed
to move at most one step. �
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