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Abstract A planar shape S is a k-fold tile if there is an indexed family T of planar shapes congruent

to S that is a k-fold tiling: any point in R2 that is not on the boundary of any shape in T is covered by

exactly k shapes in T . Since a 1-fold tile is clearly a k-fold tile for any positive integer k, the subjects

of our research are nontrivial k-fold tiles, that is, plane shapes with property “not a 1-fold tile, but a

k(≥ 2)-fold tile.” In this paper, we prove some interesting properties about nontrivial k-fold tiles. First,

we show that, for any integer k ≥ 2, there exists a polyomino with property “not an h-fold tile for any

positive integer h < k, but a k-fold tile.” We also find, for any integer k ≥ 2, polyominoes with the

minimum number of cells among ones that are nontrivial k-fold tiles. Next, we prove that, for any integer

k = 5 or k ≥ 7, there exists a convex lattice polygon that is a nontrivial k-fold tile whose area is k, and

for k = 2 and k = 3, no such convex lattice polygon exists.
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1. Introduction

1.1.What are k-fold tilings?

An infinite family of plane shapes T is called a tiling if the shapes in T cover the whole
plane without gaps or overlaps. A tiling T is called monohedral [5] if any two shapes
belonging to T are congruent. If a tiling T is monohedral, the unique shape in the tiling
T (up to congruence) is called a tile. In this paper, we consider only monohedral tilings,
which have a great deal of classic and recent research (see Section 1.2).

As extensions of the conventional tilings and tiles, we study k-fold tilings, which cover
the plane with multiplicity k, and k-fold tiles belonging to it. Although the strict defi-
nition of a k-fold tile will be described later, intuitively it means that an infinitely large
family of copies of the shape (translations, rotations, and reflections are allowed) covers
the whole plane such that the shapes overlap exactly k times at almost every point in
it. As an example, consider the regular hexagon with a chipped right triangle as shown
in Fig. 1. This shape is an 11-fold tile because, by overlapping 12 appropriately rotated
or reflexed copies of it, we can obtain the regular hexagon with multiplicity 11, and by
arranging them in the hexagonal tiling shown in Fig. 2, we obtain an 11-fold tiling.

Figure 1. An 11-fold tile of the
chipped regular hexagon.

Figure 2. An 11-fold tiling with the regu-
lar hexagons with multiplicity 11.

Note that this shape is not a tile: we cannot fill the π/6 deficit angle in the chip in any
way. Since we can obtain a k-fold tiling by piling up k sheets of a tiling, it is trivial to
consider constructing a k-fold tiling with (1-fold) tiles. Hence we are interested in plane
shapes with the property “not a tile, but a k(≥ 2)-fold tile.” We call a plane shape having
this property a nontrivial k-fold tile. That is, the chipped regular hexagon in Fig. 1 is a
nontrivial 11-fold tile.

1.2. Background on tilings

We recall some known results on simple (k = 1) tiling as follows:

Theorem 1.1 ([4]). Any triangle and any quadrilateral is a tile.

Theorem 1.2 ([17]). For any integer n ≥ 7, any convex n-gon is not a tile.

Theorem 1.3 ([9, 21]). Let the lengths of the sides of a convex hexagon H be denoted
by a, b, . . . , f , consecutively, and its angles between a and b, b and c, . . . , f and a by
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A, B, . . . , F , respectively. H is a tile if and only if it is at least one of the following three
types.

(i) A+B + C = 2π, a = d,

(ii) A+B +D = 2π, a = d, c = e,

(iii) A = C = E =
2

3
π, a = b, c = d, e = f.

Theorem 1.4 ([9, 14, 21, 22, 24]). Let the lengths of the sides of a convex pentagon P be
denoted by a, b, . . . , e, consecutively, and its angles between a and b, b and c, . . . , e and
a by A, B, . . . , E, respectively. P is a tile if it is at least one of the following 15 types.

(i) A+B + C = 2π,

(ii) A+B +D = 2π, a = d,

(iii) A = C = D =
2

3
π, a = b, d = c+ e,

(iv) A = C =
π

2
, a = b, c = d,

(v) A =
π

3
, C =

2

3
π, a = b, c = d,

(vi) A+B +D = 2π, A = 2C, a = b = e, c = d,

(vii) 2B + C = 2D +A = 2π, a = b = c = d,

(viii) 2A+B = 2D + C = 2π, a = b = c = d,

(ix) 2E +B = 2D + C = 2π, a = b = c = d,

(x) E =
π

2
, A+D = 2B −D = π, 2C +D = 2π, a = e = b+ d,

(xi) A =
π

2
, C + E = π, 2B + C = 2π, d = e = 2a+ c,

(xii) A =
π

2
, C + E = π, 2B + C = 2π, 2a = d = c+ e,

(xiii) A = C =
π

2
, 2B +D = 2E +D = 2π, e = 2c = 2d,

(xiv) A =
π

2
, 2B + C = 2π, C + E = π, 2a = 2c = d = e,

(xv) A =
π

3
, B =

3

4
π, C =

7

12
π, D =

π

2
, E =

5

6
π, a = 2b = 2d = 2e.

In 2017, Rao [20] claimed that Theorem 1.4 is true even if “if” is replaced with “only if,”
that is, there are only the 15 types of tiles of convex pentagons mentioned in Theorem 1.4.
This was shown by using a computer, and it seems that it has not been fully verified at
this time.

On polyominoes, the following facts are known.

Theorem 1.5 ([4]). For any positive integer n ≤ 6, any n-omino is a tile.

Theorem 1.6 ([4]). A heptomino is a tile if and only if it is not any of those four listed
in Fig. 3.

1.3. Previous results on k-fold tilings

If all shapes in a k-fold tiling T = {T1, T2, T3, . . .} are translates of T1, then T is called
a k-fold translative tiling, and T1 is called a k-fold translative tile. In particular, if the
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Figure 3. The heptominoes that are not tiles.

translative vectors of Ti form a lattice Λ = {a1v1 + a2v2 | a1, a2 ∈ Z} in R2 (where
v1,v2 ∈ R2 are linearly independent vectors), then T is called a k-fold lattice tiling, and
T1 is called a k-fold lattice tile. These terms are defined in the references [26, 30].

The origin of the study of multiple tilings is the one by Furtwängler [3] in 1936. He
considered trivial multiple lattice tilings in the Euclidean space as a generalization of
what is called Minkowski’s conjecture (see Zong’s survey [28]). As far as we know, Marley
[15, 16] first did the study focusing on nontrivial multiple translative tilings in R2. He
discovered nontrivial 5-, 6-, and 35-fold (lattice) tiles of the convex 8-, 10-, and 12-gons,
respectively. Recently, Yang and Zong [27] gave a characterization of all convex k-fold
translative tiles in R2 for any k = 2, 3, 4, 5. Specifically, for any k = 2, 3, 4, they are
classified as either parallelograms or centrally symmetric hexagons (this is also true for
k = 1 [8]), and for k = 5, they are classified as either parallelograms, centrally symmetric
hexagons, two classes of octagons, or one class of decagons.

Although there is various research on multiple translative tilings in the Euclidean space
other than those mentioned above (for example, [1, 6, 7, 10, 12, 13, 26]), there seems to
be no research on multiple tilings that also allow rotations and reflections. The subjects
of our research are such nontrivial multiple tilings.

1.4. Our contribution

In this paper, we mainly consider polyominoes and convex unit-lattice polygons as
basic plane shapes and present the following results. First we show that, for any integer
k ≥ 2, there is a polyomino whose minimum tile-fold number is k. Second we find, for
any integer k ≥ 2, polyominoes with the minimum number of cells among ones that are
nontrivial k-fold tiles. Last, we prove that, for any integer k = 5 or k ≥ 7, there is a
convex unit-lattice polygon (see Definition 27) that is a nontrivial k-fold tile whose area
is k, and for k = 2 and k = 3, there is no such convex unit-lattice polygon. We also find
that, for k = 4, such a convex unit-lattice polygon must be a certain pentagon, if any.

2. Preliminaries

Let N+ be the set of positive integers and N+
0 be the set of nonnegative integers.

2.1. k-fold tiles

We give the formal definition of k-fold tiles.

Definition 2.1. Let T be an indexed family of Ti: {Ti | i ∈ N+} where Ti is a closed and
bounded set on the Euclidean plane R2, and for any i, j ∈ N+, Ti and Tj are congruent.
T is a k-fold tiling if for any point (x, y) ∈ R2 that is not included in the boundary of
any Ti, there exist exactly k ∈ N+ distinct i such that (x, y) ∈ Ti. A 1-fold tiling may be
simply called a tiling. In a tilling, each copy of the tile is sometimes referred as a piece.
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Definition 2.2. The shape belonging to a k-fold tiling is called a k-fold tile. A 1-fold
tile may be simply called a tile.

Hereafter, we refer to the Euclidean plane as the plane.

Definition 2.3. If a plane shape P is a k(∈ N+)-fold tile, then k is a tile-fold number
of P . The set of tile-fold numbers of P is denoted by TFN(P ). If an integer k satisfies
that k ∈ TFN(P ) and h /∈ TFN(P ) for every positive integer h < k, then we call k the
minimum tile-fold number of P , and it is denoted by τ•(P ) [30].

The following facts are trivial.

Observation 2.4. For any plane shape P , if h, k ∈ TFN(P ), then h+ k ∈ TFN(P ).

Observation 2.5. For any plane shape P , if k ∈ TFN(P ), then for any ℓ ∈ N+, kℓ ∈
TFN(P ).

The following lemma holds as an extension of the above observations.

Lemma 2.6. For any plane shape P and any coprime integers h, k ≥ 2, if h, k ∈ TFN(P ),
then for any integer ℓ ≥ (h− 1)(k − 1), ℓ ∈ TFN(P ).

Lemma 2.6 is derived from the following lemma.

Lemma 2.7 ([23]). For any coprime a, b ∈ N+ and any integer n ≥ (a− 1)(b− 1), there
exists x, y ∈ N+

0 such that n = ax+ by.

Proof of Lemma 2.6. Clear from Observations 2.4, 2.5, and Lemma 2.7.

For a plane shape P , let τ(P ) and τ∗(P ) be the minimum integer k such that P
is a k-fold translative tile and is a k-fold lattice tile, respectively, as with τ•(P ). For
convenience, we define τ•(P ) = ∞, τ(P ) = ∞, and τ∗(P ) = ∞ if P is not any multiple,
multiple translative, and multiple lattice tile, respectively. For any plane shape P , the
following inequality clearly holds:

τ•(P ) ≤ τ(P ) ≤ τ∗(P ). (2.1)

These definitions and Inequality (2.1) are given in [30].

2.2. Polyominoes

A polyomino is a plane shape formed by joining one or more congruent squares edge
to edge. For example, the four shapes listed in Fig. 4 are all polyominoes. Each square is
called a cell. A polyomino with exactly n cells is called an n-omino. See Chapter 14 of
the reference [5] for the strict definition. We can prove the following lemma.

Figure 4. Examples of polyominoes.

Lemma 2.8. For any positive integer k, any k-omino is a k-fold lattice tile.
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Proof. Let us divide the plane into the cells by the unit grid. Along them, we arbitrarily
arrange a k-omino P on the plane, and consider a family of k-ominoes {P + z | z ∈ Z2}.
Then, each of the k cells composing the k-omino overlaps one of the cells on the plane
exactly once. Since this happens in any cell on the plane, k-ominoes cover the plane with
multiplicity k.

2.3. Fold bands

We introduce the following notion of fold bands, which will be useful later in some
discussions.

Definition 2.9. Consider n ∈ N+ and m1,m2, . . . ,mn ∈ N+
0 . An infinite horizontal strip

of width 1 and multiplicity m1 as shown in Fig. 5 is called an m1-fold band. A series of
m1, m2, . . . , mn-fold bands as shown in Fig. 6 is called an (m1,m2, . . . ,mn)-fold band.
If m1 = m2 = · · · = mn = m, then an (m1,m2, . . . ,mn)-fold band may be also called an
n × m-fold band. If n is clear from the context, an n × m-fold band may be called an
m-fold band for simplicity.

Figure 5. An m1-fold band.

Figure 6. An (m1,m2, . . . ,mn)-fold band.

If we cut the fold band in Fig. 6 with the vertical line, the cross-section of it looks as
Fig. 7 from the side. (We add an explanation for this representation by using an example
as follows. Fig. 8 is a 3D-mode illustration of a (4, 2, 5, 1)-fold band. Looking at the
cross-section of Fig. 8 from the left, we have the view as Fig. 9. We will represent Fig. 9
as Fig. 10.) We call such a figure (like Fig. 7) a cross-section representation of a fold
band.

Figure 7. The cross-section representation of the (m1,m2, . . . ,mn)-fold band.

3. Multifold tiles on polyominoes

In this chapter, we consider nontrivial k-fold tiles on polyominoes.
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Figure 8. A 3D-mode illustration of a (4, 2, 5, 1)-fold band.

Figure 9. View of Fig. 8 from
the left.

Figure 10. The cross-section represen-
tation of the (4, 2, 5, 1)-fold band.

3.1. The minimum tile-fold number of polyominoes

A plane shape shown in Fig. 11 is called a holed-p-I (an analogous shape is presented in
[16], although only multiple translative tilings are considered there), where p is an integer
greater than or equal to 2. (The name comes from that the p-omino consisting of p cells
arranged straightly is called p-I.) A closed curve composed of a rectilinear polygonal line
AB protruding from the left side and a line segment AB (and its interior) is called a bump
part, and a closed curve composed of a rectilinear polygonal line CD congruent to AB
and a line segment CD is called a hole part. We assume that the bump part (and the hole
part) does not have any line or rotational symmetry. We also assume that the polygonal
line AB can be exactly overlapped with the polygonal line CD by translating it in the
horizontal direction. As long as these conditions are all satisfied, the shape of the bump
part (and the hole part) can be arbitrary. Note that if the length of every edge is rational,
we can regard it as a polyomino (by changing the unit of length).

Figure 11. A holed-p-I.

Theorem 3.1. For any integer k ≥ 2, there exists a polyomino P that satisfies τ•(P ) = k.

Note that if we consider only multiple translative tilings, it is not difficult to show that
a holed-p-I with any shape of the bump (and hole) part is a p-fold tile. It is shown as
follows.

Lemma 3.2. For any holed-p-I P , τ•(P ) ≤ τ(P ) = τ∗(P ) = p.

Proof. For any holed-p-I, a p-fold lattice tiling is easily obtained by using the method
used in the proof of Lemma 2.8 as follows. We consider a tilling such that the hole part of
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each piece is completely filled with the bump part of another piece. Then, these (infinite
number of) pieces make a p-fold band (see Fig. 12). By arranging copies of this band, we
can obtain a ∞× p-fold band, which is a p-fold tiling (see Fig. 13). Since this is a p-fold
lattice folding and it is clear that there is no way to decrease the fold-number from p for
any multifold translative folding, τ•(P ) ≤ τ(P ) = τ∗(P ) = p holds for any hold-p-I P .

Figure 12. A p-fold band with the holed-p-I.
Figure 13. A p-fold tiling with
p-fold bands.

We call this tiling a regular lattice tiling with holed-p-Is. From Lemma 3.2, the upper
bound for Theorem 3.1 (τ•(P ) ≤ p) is clear. However, it is not easy to show that a given
holed-p-I is not a p′-fold tile for any p′ < p. We will show that there is a holed-p-I having
this condition, i.e., the holed-p-I shown in Fig. 14 is not a p′-fold tile for any p′ < p. We
prepare some lemmas before showing the proof. Note that a = 22p+1 − 2. From here to
the end of this section, let p be an arbitrary integer greater than or equal to 2.

Figure 14. The holed-p-I in the proof of Theorem 3.1.

Fact 3.3. Consider any cell edge e on the boundary of the holed-p-I. Then there is a
square with the side length of 22p−1 that is contained in the holed-p-I and one of whose
sides includes e.

Proof. Clear from Fig. 14.

We positively orient the boundary of the holed-p-I as illustrated by the arrows in
Fig. 15, i.e., if you walk along the boundary following the direction, you can see the inside
(resp., outside) of the holed-p-I on your left (resp., right) side.
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Figure 15. The oriented boundary and red edges.

Notice 3.4. We orient every piece in a tiling according to the above rule, i.e., even for a
piece that is a reflection of the original holed-p-I, the direction of the boundary is made by
the way mentioned above, i.e., if you walk along the boundary following the direction, you
can see the inside (resp., outside) of the (reflected) holed-p-I on your left (resp., right)
side (see Fig. 16).

Figure 16. The reflection of Fig. 15 and the orientation of the boundary.

The red-colored edges shown in Fig. 15 are denoted by e1, e2, . . . , e2p−1 in order from
the top, and we call them red edges. For any red edge ei (1 ≤ i ≤ 2p− 1), there is a cell
attaching ei from the left-hand side (i.e., above in Fig. 15) but there is no cell attaching
ei from the right-hand side (i.e., below in Fig. 15), and hence there is a difference in the
multiplicity 1 between the left and right of ei. We call this a gap caused by (a red edge)
ei.

Let T be an arbitrary p-fold tiling with the holed-p-Is. Consider a T ∈ T and e that
is one of the red edges of T . In the tiling T , the gap caused by e must be filled up by one
or more tiles in T . We call this situation that the gap is eliminated by the tile or tiles,
and the tiles used for eliminating a gap is called the supplements of the gap. The set of
supplements of the gap caused by e is denoted by sup(e). Let ce be a cell (in T ) one of
whose edge is e. For a T ′ ∈ sup(e), there is at least one edge f (of a cell, say cf ) in T ′

such that f is on the boundary of T ′, ce and cf touch each other with e and f , and the
interior of ce and the interior of cf never overlap each other (and hence the direction of
e and f are opposite, see Notice 3.4). See Fig. 17 for examples. Note that f may not be
on the boundary of the bump part. The set of such fs is denoted by supedge(e).
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Figure 17. Examples of the relation between e and f : Broken-line boxes
are cells ce and cf .

Lemma 3.5. Let T be an m-fold tiling with the holed-p-Is for an integer m ≥ 1 and let
T be a tile in T . Consider two arbitrary distinct red edges, ei and ej, of T . If there is a
tile T ′ such that T ′ ∈ sup(ei) ∩ sup(ej), then T ′ ∈ sup(eh) for every red edge eh of T .

Proof. The positional relationship of arbitrarily chosen two distinct red edges ei and
ej (1 ≤ i < j ≤ 2p− 1) is as shown in Fig. 18, i.e., the vertical distance is 2j − 2i and the
horizontal distance is j − i. For any pair of fi ∈ supedge(ei) and fj ∈ supedge(ej), the
positional relationship of them must be as shown in Fig. 19, i.e., the vertical distance is
2j − 2i and the horizontal distance is greater than j − i − 1 and shorter than j − i + 1.
By seeing Figs. 15 and 16 (the latter is the reflection of Fig. 15), we can observe that
there is no pair of edges with the positional relationship in Fig. 19 except for the 2p− 1
green-colored edges shown in Fig. 15 (note that 2j−2i is even and 2 ≤ 2j−2i ≤ 22p−1−2).

Figure 18. The positional relation-
ship of two red edges.

Figure 19. The positional relation-
ship of two edges that eliminate gaps
caused by the edges in Fig. 18.

Now only the 2p− 1 green-colored edges in Fig. 15 leave the possibility. Let them be
denoted by e′1, e

′
2, . . . , e

′
2p−1 in the same way as the red edges, and we call them green

edges. Thus we assume that fi = e′i′ and fj = e′j′ , where 1 ≤ i′ < j′ ≤ 2p − 1. The
following equation must hold:

2j − 2i = 2j
′
− 2i

′
. (3.1)

If we assume that i < i′, then since j − i, j′ − i, and i′ − i are all positive integers,
2i(2j−i − 2j

′−i + 2i
′−i − 1) ̸= 0, and this contradicts Equation (3.1). From symmetry, if

we assume that i′ < i, then it also contradicts Equation (3.1), and hence i = i′. From

Equation (3.1) it follows that 2j = 2j
′
and clearly j = j′. Therefore, e′i and e′j must be

arranged correspondingly to ei and ej , respectively, which proves the statement.

Lemma 3.6. If an m(∈ N+)-fold tiling T by the holed-p-I includes a piece whose hole
part is not completely filled with a bump part of any piece, then there is a region that is
covered by at least p pieces.
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Proof. For T ∈ T , if
∩2p−1

i=1 sup(ei) ̸= ∅, where e1, . . ., e2p−1 are red edges of T , then T is
called semi-translatively covered. First, we assume that all T ∈ T are semi-translatively
covered. In this case, the tiling is the regular lattice tiling or a tiling very close to the
regular lattice tiling. Even for the latter case, it is clear that most of points (concretely,
inner points of any hold-p-I that are at least p distance far from the bump part and the
hole part of the holed-p-I) are covered by at least p tiles.

Second, we assume that there is a T0 ∈ T such that
∩2p−1

i=1 sup(ei) = ∅, where e1, . . .,
e2p−1 are red edges of T0. From Lemma 3.5, every T ′ ∈ T is included in at most one
of sup(ei) (i ∈ {1, . . . , 2p − 1}). For i ∈ {1, . . . , 2p − 1}, sup(ei) = {T i

1, . . . , T
i
ni
}, where

ni = |sup(ei)|. Assume that T0 is placed on the plane as shown in Fig. 20. Let c0 and c1
be the yellow-colored and blue-colored cells shown in Fig. 20, respectively. We show that
at least p pieces overlap at c0 or c1.

Figure 20. T0, c0, and c1.

Based on T0, we set the 2-dimensional Cartesian coordinate system with the x-axis
in the horizontally leftward direction and the y-axis in the vertically downward direction
such that the center of the cell with the red edge e1 as the upper horizontal side is located
at (1, 1) as shown in Fig. 20. Let a cell whose center coordinates are (i, j) ∈ Z2 be denoted
by cell (i, j). According to this system, c0 and c1 are represented by (1, 22p−1 − 1) and
(2p − 1, 22p−1 − 1), respectively. To construct an m-fold tiling that includes T0, it is
necessary to eliminate all gaps caused by the 2p− 1 red edges, e1, . . ., e2p−1, of T0. From
Fact 3.3, each sup(ei) = {T i

1, . . . , T
i
ni
} clearly covers at least one of c0 or c1. Since T0 has

2p− 1 red edges, c0 or c1 is covered by at least p pieces.

Proof of Theorem 3.1. Consider the holed-p-I shown in Fig. 14 and an m(∈ N+)-fold
tiling with it. If there is a piece whose hole part is not completely filled with a bump part
of any piece, then m ≥ p from Lemma 3.6. Thus we assume that the hole part of any
piece is completely filled with the bump part of another piece. In this case clearly the
tiling must be the regular lattice tiling, and thus m ≥ p. From the above discussion it
follows that τ•(P ) ≥ p for the holed-p-I P . Considering Lemma 3.2, we obtain τ•(P ) = p.

Corollary 3.7. For any integer k ≥ 2, there exists a polyomino P that satisfies τ•(P ) =
τ(P ) = τ∗(P ) = k.

Proof. Clear from Inequality (2.1), Theorem 3.1, and that the way of the multiple tiling
shown in the proof of Theorem 3.1 is a multiple lattice tiling.
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Note that one can show Theorem 3.1 by using a polyomino with no hole. For example,
let us construct the “indented”-p-I by cutting the (2p−1)×22p−1 rectangle under the hole
part out of the holed-p-I and attaching it to under the bump part as shown in Fig. 21.
This change does not affect the proof of Theorem 3.1.

Figure 21. The “indented”-p-I.

3.2. The lower bound of the number of cells

Next, we focus our attention on the number of cells of a polyomino.

Definition 3.8. If an n(∈ N+)-omino P is a nontrivial k(∈ N+)-fold tile and there is no
n′-omino that is a nontrivial k-fold tile for any positive integer n′ < n, then n is called
the minimum size of nontrivial k-fold-tile polyomino and P is called a minimum-sized
nontrivial k-fold-tile polyomino.

We show the following theorem.

Theorem 3.9. For any integer k ≥ 2, the minimum size of nontrivial k-fold-tile poly-
omino is 7, and the heptominoes C7, F7, and X7 listed in Fig. 3 are all minimum-sized
nontrivial k-fold-tile polyominoes. Furthermore, the heptomino G7 in Fig. 3 is also a
minimum-sized nontrivial k-fold-tile polyomino for every k ≥ 2 except for k = 3, 5.

Note that it is only open whether G7 is a k-fold tile for k = 3, 5. We show some lemmas
used for proving this theorem. First, we consider overlapping a heptomino in a diagonal
direction. We consider an operation of repeating the process to translate a heptomino in
the rightward and downward (leftward and upward) directions by 1 and to overlap them
(see Fig. 22). We call this operation Operation I. The multiplicity of each cell of Fig. 22 is
shown in Fig. 23. Moreover, by rotating it 180 degrees, we obtain the arrangement shown
in Fig. 24. We call each of these arrangements a diagonal (1, 2, 1, 1, 1, 1)-fold band.
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Figure 22. Operation I
of F7.

Figure 23. The multi-
plicity of each cell of
Fig. 22.

Figure 24. The 180 de-
gree rotation of Fig. 23.

Such diagonal fold bands similarly construct a k-fold tiling as normal fold bands.
Therefore, unless otherwise required, hereafter we also simply call them fold bands. In
addition, by either or both of rotating F7 90 degrees clockwise and reflecting it in a
vertical line before applying Operation I to it, we obtain a (1, 2, 1, 1, 1, 1)-fold band again
or a (1, 2, 2, 2)-fold band. Similarly, by applying Operation I to C7, F7, X7, and G7,
we obtain the (diagonal) fold bands as shown in Table 1. Note that we do not have to
consider reflecting each of C7, X7, and G7 before applying the operation since they all
have line symmetry.

Table 1. The fold bands obtained by Operation I.

Heptomino Obtained fold bands
C7 (1, 2, 1, 1, 1, 1)
F7 (1, 2, 1, 1, 1, 1), (1, 2, 2, 2)
X7 (1, 2, 1, 2, 1), (2, 2, 1, 2)
G7 (1, 2, 2, 2), (1, 2, 1, 2, 1)

In Operation I, we considered overlapping a heptomino with the slope −1. We next
consider overlapping it with the slope −1/2, that is, an operation of repeating the process
to translate a heptomino in the rightward and downward (leftward and upward) directions
by 2 and 1, respectively, and to overlap them. We call this operation Operation II. We
also call an arrangement obtained by this operation a diagonal fold band or simply a fold
band as above. As with Operation I, by applying Operation II to C7, F7, X7, and G7, we
obtain the (diagonal) fold bands as shown in Table 2.

Table 2. The fold bands obtained by Operation II.

Heptomino Obtained fold bands
C7 (1, 1, 1, 0, 1, 0, 1, 0, 1, 1), (1, 0, 1, 1, 2, 1, 1)
F7 (1, 0, 1, 1, 1, 0, 1, 1, 1), (1, 1, 2, 1, 1, 1), (1, 0, 1, 0, 2, 2, 1), (1, 0, 1, 0, 1, 1, 1, 2)
X7 (1, 0, 1, 1, 1, 1, 2), (1, 0, 2, 1, 1, 1, 1)
G7 (1, 1, 2, 0, 2, 1), (1, 1, 1, 0, 2, 1, 1)

Lemma 3.10. The four heptominoes listed in Fig. 3 are all 2-fold tiles.
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Proof. By applying Operation I to each of F7 and G7, we obtain a (1, 2, 2, 2)-fold band,
and by combining two pieces of it, we obtain a (2, 2, 2, 1+1, 2, 2, 2)-fold band. By applying
Operation I to C7, we obtain a (1, 2, 1, 1, 1, 1)-fold band, and by combining two pieces of
it, we obtain a (1, 2, 1 + 1, 1 + 1, 1 + 1, 1 + 1, 2, 1)-fold band, or a (1, 2, 2, 2, 2, 2, 2, 1)-fold
band. By applying Operation II to X7, we obtain a (1, 0, 1, 1, 1, 1, 2)-fold band, and by
combining two pieces of it, we obtain a (1, 0 + 2, 1 + 1, 1 + 1, 1 + 1, 1 + 1, 2 + 0, 1)-fold
band, or a (1, 2, 2, 2, 2, 2, 2, 1)-fold band. Clearly, for each of the four heptominoes listed
in Fig. 3, a 2-fold tiling can be obtained from these fold bands.

Lemma 3.11. The heptominoes C7, F7, and X7 listed in Fig. 3 are all 3-fold tiles.

Proof. By applying Operation I to each of C7 and F7, we obtain a (1, 2, 1, 1, 1, 1)-fold
band, and by combining six pieces of it, we obtain a (1, 1, 1+ 1, 1+ 1, 2+ 1, 1+ 1+ 1, 2+
1, 1 + 1 + 1, 1 + 2, 2 + 1, 1 + 1 + 1, 1 + 2, 1 + 1 + 1, 1 + 2, 1 + 1, 1 + 1, 1, 1)-fold band, or
a (1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1)-fold band. A 3-fold tiling can be obtained by
combining an infinite number of copies of it. The cross-section of it is shown in Fig. 25.

Figure 25. The cross-section representation of a 3-fold tiling with
(1, 2, 1, 1, 1, 1)-fold bands.

By applying Operation I to X7, we obtain both a (2, 2, 1, 2)-fold band and a (1, 2, 1, 2, 1)-
fold band, and by combining two pieces of the former and four pieces of the latter, we
obtain a (1, 2+1, 1+2, 2+1, 1+2, 1+2, 2+1, 1+2, 2+1, 2+1, 1+2, 1+2, 2+1, 1+2, 2)-fold
band, or a (1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2)-fold band. A 3-fold tiling can be obtained
by combining an infinite number of copies of it. The cross-section of it is shown in Fig. 26.

Figure 26. The cross-section representation of a 3-fold tiling with
(2, 2, 1, 2)-fold bands and (1, 2, 1, 2, 1)-fold bands.

Proof of Theorem 3.9. From Lemmas 3.10 and 3.11, it follows that C7, F7, and X7 are
all 2-fold tiles and 3-fold tiles. Therefore, from Lemma 2.6, these heptominoes are all
k-fold tiles for any integer k ≥ (2 − 1)(3 − 1) = 2. From this and Theorems 1.5 and
1.6, they are minimum-sized nontrivial k-fold-tile polyominoes for every k ≥ 2. Similarly,
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from Lemmas 2.6, 2.8, and 3.10 and Theorems 1.5 and 1.6, it is also proven that G7 is a
minimum-sized nontrivial k-fold-tile polyomino for every k ≥ 2 except for k = 3, 5.

4. Multifold tiles on convex unit-lattice polygons

In this chapter, we consider nontrivial k-fold tiles on convex unit-lattice polygons.

Definition 4.1. A simple polygon whose all vertices lie in Z2 is called a unit-lattice
polygon.

For example, the four shapes listed in Fig. 27 are all unit-lattice polygons. In 2012,

Figure 27. Examples of unit-lattice polygons.

Gravin et al. [7] presented a convex unit-lattice octagon O7 shown in Fig. 28 as a simple
example of a nontrivial 7-fold (lattice) tile. This can be confirmed by considering {O7+z |
z ∈ Z2} as in the proof of Lemma 2.8. Since O7 is centrally symmetric, each triangle that
occurs from the division of O7 by the unit grid can combine with another triangle by a
translation to constitute a cell. From this and the fact that the area of O7 is 7, they cover
the plane with multiplicity 7. However, by Theorem 1.2, it is not a tile and is therefore
a non-trivial 7-fold tile.

Theorem 4.2. For any integer k = 5 or k ≥ 7, there exists a convex unit-lattice polygon
that is

(i) a nontrivial k-fold tile,
(ii) of area k, and
(iii) a hexagon if k = 5 or 8; an octagon otherwise.

Definition 4.3 ([2]). A map φ : R2 → R2 : p 7→ Ap+ b with A ∈ GL2(Z) and b ∈ Z2 is
called a Z-affine transformation. Two convex unit-lattice polygons P and P ′ are said to
be equivalent if there exists a Z-affine transformation φ such that φ(P ) = P ′.

Theorem 4.4. For k = 2 and k = 3, there does not exist any convex unit-lattice polygon
that satisfies both conditions (i) and (ii) in Theorem 4.2. Furthermore, for k = 4, if there
exists such a convex unit-lattice polygon, then it is equivalent to the pentagon (5,2,6)-b
shown in Fig 40.

Note that it is open whether there is a convex unit-lattice polygon that satisfies both
conditions (i) and (ii) in Theorem 4.2 for k = 4, 6. First, we show some lemmas and prove
Theorem 4.2.

Lemma 4.5. For any integer k = 7 or k ≥ 9, there exists a convex unit-lattice octagon
of area k that is a nontrivial k-fold (lattice) tile.
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Figure 28. O7. Figure 29. O9. Figure 30. O11.

Proof. From Theorem 1.2, any convex octagon is not a tile. As with O7, convex unit-
lattice octagons O9 and O11 shown in Figs. 29 and 30 are 9- and 11-fold lattice tiles,
respectively. We now consider adding three cells to each of O7, O9, and O11 repeatedly
while keeping the property of being a centrally symmetric convex unit-lattice octagon.
Then it is clear that an octagon that was originally a k-fold lattice tile becomes a (k+3)-
fold lattice tile after the addition as shown in Fig. 31.

Figure 31. A nontrivial k-fold (lattice) tile of convex unit-lattice oc-
tagon for any integer k = 7 or k ≥ 9.

Figure 32. H5. Figure 33. H8.

Lemma 4.6. For k = 5 or 8, there exists a convex unit-lattice hexagon of area k that is
a nontrivial k-fold tile.

Proof. It is clear from Theorem 1.3 that hexagons H5 and H8 are not tiles. Let us make
the pair of H5 by overlapping them as shown in Fig. 34. We also make the pair of H8

in a similar way as shown in Fig. 35. Each number in Figs. 34 and 35 indicates the
multiplicity.

Figure 34. The pair of H5. Figure 35. The pair of H8.

By arranging pairs of H5 on the plane in a manner of a tiling with hexagons, each of
which is constituted by the 2-fold part of it, we obtain a (. . . , 3, 2, 3, 2, . . .)-fold band as
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shown in Fig. 36. By combining two (. . . , 3, 2, 3, 2, . . .)-fold bands, we obtain a (. . . , 3 +
2, 2 + 3, 3 + 2, 2 + 3, . . .)-fold band, or a 5-fold tiling. Similarly, by arranging pairs of H8,
we obtain a (. . . , 3, 3, 2, 3, 3, 2, . . .)-fold band as shown in Fig. 37. By combining three
(. . . , 3, 3, 2, 3, 3, 2, . . .)-fold bands, we obtain a (. . . , 3 + 2 + 3, 3 + 3 + 2, 2 + 3 + 3, 3 + 2 +
3, 3 + 3 + 2, 2 + 3 + 3, . . .)-fold band, or an 8-fold tiling. The cross-section representation
of it is shown in Fig. 38.

Figure 36. The arrangement of
H5.

Figure 37. The arrangement of H8.

Figure 38. The cross-section representation of an 8-fold tiling with
(. . . , 3, 3, 2, 3, 3, 2, . . .)-fold bands.

Therefore, H5 and H8 are convex unit-lattice hexagons of area k that are nontrivial
k-fold tiles for k = 5 and k = 8, respectively.

Proof of Theorem 4.2. Clear from Lemmas 4.5 and 4.6.

Next, we prove Theorem 4.4. Any Z-affine transformation maps Z2 bijectively onto
itself. We call points lying in Z2 unit-lattice points. For a unit-lattice polygon P , let
v = v(P ), b = b(P ), i = i(P ), and a = a(P ) be the number of vertices of P , the number
of unit-lattice points on the boundary of P , the number of interior unit-lattice points
of P , and the area of P , respectively. It is known that Z-affine transformations map
convex unit-lattice polygons to convex unit-lattice polygons and preserve values v, b, i,
and a. We show some known theorems on unit-lattice polygons and prove a lemma as a
preparation.

Theorem 4.7 ([18]). For any unit-lattice polygon,

a = i+ b/2− 1. (4.1)



18 Thai J. Math. Vol. xx (20xx) /K. Chida et al.

Theorem 4.8 ([11, 19]). Every convex unit-lattice polygon satisfying i = 0 is equivalent
to one of the following polygons:

(i) A triangle with vertices (0, 0), (n, 0), and (0, 1), where n is any positive integer.
(ii) A trapezoid with vertices (0, 0), (n, 0), (m, 1), and (0, 1), where n and m are
any positive integers that satisfy n ≥ m.

(iii) The triangle with vertices (0, 0), (2, 0), and (0, 2).

Theorem 4.9 ([11, 19]). Every convex unit-lattice polygon satisfying both i = 1 and v ≥ 5
is equivalent to exactly one of the four polygons shown in Fig 39.

Figure 39. The four polygons in Theorem 4.9 (each polygon is named
after (v, i, b)).

Theorem 4.10 ([25]). Every convex unit-lattice polygon satisfying both i = 2 and v ≥ 5
is equivalent to exactly one of the 21 polygons shown in Fig 40.

Figure 40. The 21 polygons in Theorem 4.10 (each polygon is named
after (v, i, b)).

Lemma 4.11. If P is a convex unit-lattice pentagon of Type (i) in Theorem 1.4, then
for any Z-affine transformation φ, φ(P ) is also a convex unit-lattice pentagon of Type
(i) in Theorem 1.4. Additionally, if H is a convex unit-lattice hexagon of Type (i) in
Theorem 1.3, then for any Z-affine transformation φ, φ(H) is also a convex unit-lattice
hexagon of Type (i) in Theorem 1.3.

Proof. A convex pentagon is Type (i) in Theorem 1.4 if and only if it has at least one
pair of parallel sides. A convex hexagon is Type (i) in Theorem 1.3 if and only if it has
at least one pair of parallel opposite sides of equal length. Since any non-singular affine
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transformation in R2 preserves both parallelism and the ratio of lengths of two parallel
line segments, the statement is proved.

Proof of Theorem 4.4. From Theorem 1.1, we can assume that b ≥ v ≥ 5. From Theo-
rem 4.8, every convex unit-lattice polygon without interior unit-lattice points has three
or four vertices. Hence we can also assume that i ≥ 1. Then we can observe that there
is no pair of integers (i, b) that satisfies Equation (4.1) with a = 2. From Equation (4.1)
and a = 3 or 4, it follows that

(i, b) =

{
(1, 6), (a = 3)

(1, 8), (2, 6). (a = 4)
(4.2)

From Theorem 4.9, every convex unit-lattice polygon satisfying both v ≥ 5 and (i, b) =
(1, 6) is equivalent to either of the polygons (5,1,6) and (6,1,6) in Fig. 39, and there is
no convex unit-lattice polygon satisfying both v ≥ 5 and (i, b) = (1, 8). Moreover, from
Theorem 4.10, every convex unit-lattice polygon satisfying both v ≥ 5 and (i, b) = (2, 6)
is equivalent to any one of the polygons (5,2,6)-a, (5,2,6)-b, (5,2,6)-c, (5,2,6)-d, (6,2,6)-a,
and (6,2,6)-b in Fig. 40. The pentagons (5,1,6), (5,2,6)-a, (5,2,6)-c, and (5,2,6)-d are all
Type (i) in Theorem 1.4, and the hexagons (6,1,6), (6,2,6)-a, and (6,2,6)-b are all Type
(i) in Theorem 1.3. Hence from Lemma 4.11, any polygon excepting (5,2,6)-b appeared
above is a tile.

The pentagon (5,2,6)-b, which left the possibility in the above proof, is not any type
of (i)–(xv) in Theorem 1.4. In fact, one can show that it is not a tile by examining local
tilings with them thoroughly. However, we do not know whether any pentagon equivalent
to (5,2,6)-b is not a tile. We also do not know whether the pentagon (5,2,6)-b or each
pentagon equivalent to (5,2,6)-b is a 4-fold tile.

In a similar way, pairs of integers (i, b) are determined for k = a = 6 as follows:

(i, b) = (1, 12), (2, 10), (3, 8), (4, 6). (4.3)

The assumption v ≥ 5 and Theorems 4.9 and 4.10 eliminate the possibilities of (i, b) =
(1, 12), (2, 10). For (i, b) = (3, 8), (4, 6), we can use Castryck’s result [2]. For every
1 ≤ g ≤ 30, he performed a computer calculation of all lattice polygons satisfying i = g
up to equivalence as a generalization of Theorems 4.9 and 4.10. The resulting data is
available on his website. According to this data, up to equivalence, there are a total of
14 convex unit-lattice polygons satisfying both v ≥ 5 and (i, b) = (3, 8), and 21 convex
unit-lattice polygons satisfying both v ≥ 5 and (i, b) = (4, 6). Moreover, we can use
Lemma 4.11 for the twelve of the former and 14 of the latter. By examining the remaining
nine polygons and polygons equivalent to them, it may be able to prove or disprove that
there is a convex unit-lattice polygon of area 6 that is a nontrivial 6-fold tile.

5. Conclusion

In this paper, we studied nontrivial multiple tilings with polyominoes and convex
unit-lattice polygons allowing translations, rotations, and reflections, and obtained four
theorems. The first one (Theorem 3.1) claims that for any integer k ≥ 2, there is a
polyomino whose minimum tile-fold number is k. The second one (Theorem 3.9) claims
that for any integer k ≥ 2, the heptominoes C7, F7, and X7 listed in Fig. 3 are all
minimum-sized nontrivial k-fold-tile polyominoes, and for any integer k ≥ 2 except for
k = 3, 5, the heptomino G7 listed in Fig. 3 is also minimum-sized nontrivial k-fold-tile
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polyomino. The third one (Theorem 4.2) claims that for any integer k = 5 or k ≥ 7,
there is a convex unit-lattice polygon that is a nontrivial k-fold tile whose area is k. The
last one (Theorem 4.4) claims that, for k = 2 and k = 3, there is no convex unit-lattice
polygon that is a nontrivial k-fold tile whose area is k, and for k = 4, such a convex
unit-lattice polygon must be equivalent to a certain pentagon, if any.

As future work, we have some unsolved parts for minimum-sized nontrivial k-fold-tile
polyominoes and nontrivial k-fold tiles of convex unit-lattice polygons whose area is k.
For the former, although Theorem 3.9 presented such polyominoes for any integer k ≥ 2,
it is still open whether G7 is a 3- or 5-fold tile. For the latter, although Theorems 4.2
and 4.4 clarified whether there is such a polygon for any integer k = 2, 3, 5 or k ≥ 7, it
is still open for k = 4 and 6; the pentagon and the nine polygons (and shapes equivalent
to them) leave the possibility, respectively. In particular, although one can show that the
pentagon is not a tile, we do not know whether any pentagon equivalent to it is not a
tile and whether each pentagon equivalent to it is a 4-fold tile. In addition, we can also
consider the following problems.

Open Problem 5.1. For any integer k ≥ 2, is there a polyomino whose minimum tile-
fold number is k and whose size (the number of cells) is bounded by a polynomial function
of k?

Open Problem 5.2. For any integer k ≥ 2, is there a polygon P that satisfies TFN(P ) =
{kℓ | ℓ ∈ N+}?

Open Problem 5.3. For any k = 2, 3, or 4, is there a convex polygon that is a nontrivial
k-fold tile?

Note that the size of the holed-k-I in the proof of Theorem 3.1 is O(k · 24k), which
is exponential. This polyomino may be a solution to Open Problem 5.2. Even if this is
true, we should confirm that its tile-fold numbers are only multiples of k. Also note that
a nontrivial 6-fold (lattice) tile of a convex polygon is already independently discovered
by Marley [15, 16] (as mentioned in Section 1.2) and Zong [29].
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[23] Z. Skupień, A generalization of Sylvester’s and Frobenius’ problems on numerical
semigroups, Acta Arith. 65 (1993) 353–366.

[24] R. Stein, A new pentagon tiler, Math. Mag. 58 (1985) 308.



22 Thai J. Math. Vol. xx (20xx) /K. Chida et al.

[25] X. Wei, R. Ding, Lattice polygons with two interior lattice points, Math. Notes 91
(2012) 868–877.

[26] Q. Yang, C. Zong, Multiple lattice tilings in Euclidean spaces, Canadian Math. Bull.
62 (2019) 923–929.

[27] Q. Yang, C. Zong, Characterization of the two-dimensional fivefold translative tiles,
Bull. Soc. Math. France 149 (2021) 119–153.

[28] C. Zong, What is known about unit cubes, Bull. Amer. Math. Soc. 42 (2005) 181–211.

[29] C. Zong, Characterization of the two-dimensional six-fold lattice tiles,
arXiv:1904.06911, 2019.

[30] C. Zong, Can you pave the plane with identical tiles?, Notices Amer. Math. Soc. 67
(2020) 635–646.


	Introduction
	What are k-fold tilings?
	Background on tilings
	Previous results on k-fold tilings
	Our contribution

	Preliminaries
	k-fold tiles
	Polyominoes
	Fold bands

	Multifold tiles on polyominoes
	The minimum tile-fold number of polyominoes
	The lower bound of the number of cells

	Multifold tiles on convex unit-lattice polygons
	Conclusion

