
Reconfiguration of
List Edge-Colorings in a Graph

Takehiro Ito1, Marcin Kamiński2, and Erik D. Demaine3

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan.

2 Department of Computer Science, Université Libre de Bruxelles,
CP 212, Bvd. du Triomphe, 1050 Bruxelles, Belgium.

3 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA.

takehiro@ecei.tohoku.ac.jp, marcin.kaminski@ulb.ac.be, edemaine@mit.edu

Abstract. We study the problem of reconfiguring one list edge-coloring
of a graph into another list edge-coloring by changing one edge color
at a time, while at all times maintaining a list edge-coloring, given a
list of allowed colors for each edge. First we show that this problem is
PSPACE-complete, even for planar graphs of maximum degree 3 and
just six colors. Then we consider the problem restricted to trees. We
show that any list edge-coloring can be transformed into any other under
the sufficient condition that the number of allowed colors for each edge
is strictly larger than the degrees of both its endpoints. This sufficient
condition is best possible in some sense. Our proof yields a polynomial-
time algorithm that finds a transformation between two given list edge-
colorings of a tree with n vertices using O(n2) recolor steps. This worst-
case bound is tight: we give an infinite family of instances on paths that
satisfy our sufficient condition and whose reconfiguration requires Ω(n2)
recolor steps.

1 Introduction

Reconfiguration problems arise when we wish to find a step-by-step transforma-
tion between two feasible solutions of a problem such that all intermediate results
are also feasible. Recently, Ito et al. [8] proposed a framework of reconfiguration
problems, and gave complexity and approximability results for reconfiguration
problems derived from several well-known problems, such as independent set,
clique, matching, etc. In this paper, we study a reconfiguration problem for
list edge-colorings of a graph.

An (ordinary) edge-coloring of a graph G is an assignment of colors from a
color set C to each edge of G so that every two adjacent edges receive different
colors. In list edge-coloring, each edge e of G has a set L(e) of colors, called
the list of e. Then, an edge-coloring f of G is called an L-edge-coloring of G if
f(e) ∈ L(e) for each edge e, where f(e) denotes the color assigned to e by f .
Fig. 1 illustrates three L-edge-colorings of the same graph with the same list L;

Fig. 1. A sequence of L-edge-colorings of a graph.

the color assigned to each edge is surrounded by a box in the list. Clearly, an
edge-coloring is an L-edge-coloring for which L(e) is the same color set C for
every edge e of G, and hence list edge-coloring is a generalization of edge-coloring.

Suppose now that we are given two L-edge-colorings of a graph G (e.g., the
leftmost and rightmost ones in Fig. 1), and we are asked whether we can trans-
form one into the other via L-edge-colorings of G such that each differs from
the previous one in only one edge color assignment. We call this problem the
list edge-coloring reconfiguration problem. For the particular instance
of Fig. 1, the answer is “yes,” as illustrated in Fig. 1, where the edge whose color
assignment was changed from the previous one is depicted by a thick line. One
can imagine a variety of practical scenarios where an edge-coloring (e.g., repre-
senting a feasible schedule) needs to be changed (to use a newly found better
solution or to satisfy new side constraints) by individual color changes (prevent-
ing the need for any coordination) while maintaining feasibility (so that nothing
breaks during the transformation). Reconfiguration problems are also interesting
in general because they provide a new perspective and deeper understanding of
the solution space and of heuristics that navigate that space.

Reconfiguration problems have been studied extensively in recent literature
[1, 3, 4, 6–8], in particular for (ordinary) vertex-colorings. For a positive integer
k, a k-vertex-coloring of a graph is an assignment of colors from {c1, c2, . . . , ck}
to each vertex so that every two adjacent vertices receive different colors. Then,
the k-vertex-coloring reconfiguration problem is defined analogously.
Bonsma and Cereceda [1] proved that k-vertex-coloring reconfiguration
is PSPACE-complete for k ≥ 4, while Cereceda et al. [4] proved that k-vertex-
coloring reconfiguration is solvable in polynomial time for 1 ≤ k ≤ 3.
Edge-coloring in a graph G can be reduced to vertex-coloring in the “line graph”
of G. However, by this reduction, we can solve only a few instances of list edge-
coloring reconfiguration; all edges e of G must have the same list L(e) = C
of size |C| ≤ 3 although any edge-coloring of G requires at least ∆(G) colors,
where ∆(G) is the maximum degree of G. Furthermore, the reduction does not
work the other way, so we do not obtain any complexity results.

In this paper, we give three results for list edge-coloring reconfigu-
ration. The first is to show that the problem is PSPACE-complete, even for
planar graphs of maximum degree 3 and just six colors. The second is to give
a sufficient condition for which there exists a transformation between any two
L-edge-colorings of a tree. Specifically, for a tree T , we prove that any two L-edge-
colorings of T can be transformed into each other if |L(e)| ≥ max{d(v), d(w)}+1

for each edge e = vw of T , where d(v) and d(w) are the degrees of the end-
points v and w of e, respectively. Our proof for the sufficient condition yields a
polynomial-time algorithm that finds a transformation between given two L-
edge-colorings of T via O(n2) intermediate L-edge-colorings, where n is the
number of vertices in T . On the other hand, as the third result, we give an
infinite family of instances on paths that satisfy our sufficient condition and
whose transformation requires Ω(n2) intermediate L-edge-colorings.

Our sufficient condition for trees was motivated by several results on the
well-known “list coloring conjecture” [9]: it is conjectured that any graph G
has an L-edge-coloring if |L(e)| ≥ χ′(G) for each edge e, where χ′(G) is the
chromatic index of G, that is, the minimum number of colors required for
an ordinary edge-coloring of G. This conjecture has not been proved yet, but
some results are known for restricted classes of graphs [2, 5, 9]. In particular,
Borodin et al. [2] proved that any bipartite graph G has an L-edge-coloring if
|L(e)| ≥ max{d(v), d(w)} for each edge e = vw. Because any tree is a bipartite
graph, one might think that it would be straightforward to extend their result
[2] to our sufficient condition. However, this is not the case, because the focus
of reconfiguration problems is not the existence (as in the previous work) but
the reachability between two feasible solutions; there must exist a transformation
between any two L-edge-colorings if our sufficient condition holds.

Finally we remark that our sufficient condition is best possible in some sense.
Consider a star K1,n−1 in which each edge e has the same list L(e) = C of size
|C| = n− 1. Then, |L(e)| = max{d(v), d(w)} for all edges e = vw, and it is easy
to see that there is no transformation between any two L-edge-colorings of the
star.

2 PSPACE-completeness

Before proving PSPACE-completeness, we introduce some terms and define the
problem more formally. In Section 1, we have defined an L-edge-coloring of a
graph G = (V,E) with a list L. We say that two L-edge-colorings f and f ′ of
G are adjacent if |{e ∈ E : f(e) 6= f ′(e)}| = 1, that is, f ′ can be obtained
from f by changing the color assignment of a single edge e; the edge e is said
to be recolored between f and f ′. A reconfiguration sequence between two L-
edge-colorings f0 and ft of G is a sequence of L-edge-colorings f0, f1, . . . , ft of
G such that fi−1 and fi are adjacent for i = 1, 2, . . . , t. We also say that two L-
edge-colorings f and f ′ are connected if there exists a reconfiguration sequence
between f and f ′. Clearly, any two adjacent L-edge-colorings are connected.
Then, the list edge-coloring reconfiguration problem is to determine
whether given two L-edge-colorings of a graph G are connected. The length of a
reconfiguration sequence is the number of L-edge-colorings in the sequence, and
hence the length of the reconfiguration sequence in Fig. 1 is 3.

The main result of this section is the following theorem.

Theorem 1. List edge-coloring reconfiguration is PSPACE-complete
for planar graphs of maximum degree 3 whose lists are chosen from six colors.

Fig. 2. (a) A configuration of an NCL machine, (b) NCL And vertex, and (c)
NCL Or vertex.

In order to prove Theorem 1, we give a reduction from Nondeterministic
Constraint Logic (NCL) [7]. An NCL “machine” is specified by a constraint
graph: an undirected graph together with an assignment of weights from {1, 2}
to each edge of the graph. A configuration of this machine is an orientation
(direction) of the edges such that the sum of weights of incoming edges at each
vertex is at least 2. Fig. 2(a) illustrates a configuration of an NCL machine,
where each weight-2 edge is depicted by a thick line and each weight-1 edge by
a thin line. A move from one configuration is simply the reversal of a single edge
which results in another (feasible) configuration. Given an NCL machine and its
two configurations, it is PSPACE-complete to determine whether there exists a
sequence of moves which transforms one configuration into the other [7].

In fact, the problem remains PSPACE-complete even for And/Or constraint
graphs, which consist only of two types of vertices, called “NCL And vertices”
and “NCL Or vertices.” A vertex of degree 3 is called an NCL And vertex if
its three incident edges have weights 1, 1 and 2. (See Fig. 2(b).) An NCL And
vertex behaves as a logical And, in the following sense: the weight-2 edge can
be directed outward if and only if both weight-1 edges are directed inward. Note
that, however, the weight-2 edge is not necessarily directed outward even when
both weight-1 edges are directed inward. A vertex of degree 3 is called an NCL
Or vertex if its three incident edges have weights 2, 2 and 2. (See Fig. 2(c).)
An NCL Or vertex behaves as a logical Or: one of the three edges can be
directed outward if and only if at least one of the other two edges is directed
inward. It should be noted that, although it is natural to think of NCL And
and Or vertices as having inputs and outputs, there is nothing enforcing this
interpretation; especially for NCL Or vertices, the choice of input and output is
entirely arbitrary since NCL Or vertices are symmetric. From now on, we call
an And/Or constraint graph simply an NCL machine.

Proof of Theorem 1.
It is easy to see that list edge-coloring reconfiguration can be solved

in (most conveniently, nondeterministic [10]) polynomial space. Therefore, in
the remainder of this section, we show that the problem is PSPACE-hard by
giving a reduction from NCL. This reduction involves constructing two types
of gadgets which correspond to NCL And and Or vertices. We call an edge
of an NCL machine an NCL edge, and say simply an edge of a graph for list
edge-coloring reconfiguration.

Assume in our reduction that the color c1 corresponds to “directed inward,”
and that both colors c2 and c3 correspond to “directed outward.” Consider an

Fig. 3. (a) an NCL edge uv and (b) its corresponding edges ux and xv of a
graph with lists L(ux) = {c1, c2} and L(xv) = {c1, c3}.

NCL edge uv directed from u to v. (See Fig. 3(a).) Then, the NCL edge is directed
outward for u, but is directed inward for v. However, in list edge-coloring, each
edge can receive only one color, of course. Therefore, we need to split one NCL
edge uv into two edges ux and xv of a graph with lists L(ux) = {c1, c2} and
L(xv) = {c1, c3}, as illustrated in Fig. 3(b). It is easy to see that one of ux and
xv can be colored with c1 if and only if the other edge is colored with either c2

or c3. This property represents that an NCL half-edge can be directed inward if
and only if the other half is directed outward.

Fig. 4 illustrates three kinds of “And gadgets,” each of which corresponds
to an NCL And vertex; two edges uxx and uyy correspond to two weight-1
NCL half-edges, and the edge uzz corresponds to a weight-2 NCL half-edge.
Since NCL And and Or vertices are connected together into an arbitrary NCL
machine, there should be eight kinds of And gadgets according to the choice of
lists {c1, c2} and {c1, c3} for three edges uxx, uyy and uzz. However, since the
two weight-1 NCL edges are symmetric, it suffices to consider these three kinds:
all the three edges have the same list, as in Fig. 4(a); uzz has a different list from
the other two edges, as in Fig. 4(b); and one of uxx and uyy has a different list
from the other two edges, as in Fig. 4(c).

We denote by F(A; cx, cy, cz) the set of all L-edge-colorings f of an And
gadget A such that f(uxx) = cx, f(uyy) = cy and f(uzz) = cz. Since a triple
(cx, cy, cz) defines the direction of the three corresponding NCL half-edges, all
the L-edge-colorings in F(A; cx, cy, cz) correspond to the same configuration
of the NCL And vertex. We now check that the three kinds of And gadgets
satisfy the same constraints as an NCL And vertex; we check this property by
enumerating all possible L-edge-colorings of the And gadgets. For example, in
the And gadget A of Fig. 4(a), uzz can be colored with c2 (directed outward)
if and only if both uxx and uyy are colored with c1 (directed inward); in other

Fig. 4. Three kinds of And gadgets.

words, |F(A; cx, cy, c2)| ≥ 1 if and only if cx = cy = c1. In addition, every And
gadget A satisfies the following two properties:

(i) For a triple (cx, cy, cz), if |F(A; cx, cy, cz)| ≥ 2, then any two L-edge-
colorings f and f ′ in F(A; cx, cy, cz) are “internally connected,” that is,
there exists a reconfiguration sequence between f and f ′ such that all
L-edge-colorings in the sequence belong to F(A; cx, cy, cz); and

(ii) For every two triples (cx, cy, cz) and (c′x, c′y, c′z) which differ in a single
coordinate, if |F(A; cx, cy, cz)| ≥ 1 and |F(A; c′x, c′y, c′z)| ≥ 1, then there
exist two L-edge-colorings f and f ′ such that f and f ′ are adjacent, f ∈
F(A; cx, cy, cz) and f ′ ∈ F(A; c′x, c′y, c′z).

Then, it is easy to see that the reversal of a single NCL half-edge in an NCL
And vertex can be simulated by a reconfiguration sequence between two L-edge-
colorings each of which is chosen arbitrarily from the set F(A; cx, cy, cz), where
(cx, cy, cz) corresponds to the direction of the three NCL half-edges.

Fig. 5 illustrates two kinds of “Or gadgets,” each of which corresponds to
an NCL Or vertex; three edges uxx, uyy and uzz correspond to three weight-2
NCL half-edges. Since an NCL Or vertex is entirely symmetric, it suffices to
consider these two kinds: all the three edges have the same list, as in Fig. 5(a);
and one edge has a different list from the other two edges, as in Fig. 5(b). Then,
similarly as And gadgets, it is easy to see that both kinds of Or gadgets satisfy
the same constraints as an NCL Or vertex, and that the reversal of a single NCL
half-edge in an NCL Or vertex can be simulated by a reconfiguration sequence
between corresponding two L-edge-colorings.

Given NCL machine, we construct a corresponding graph G with a list L
by connecting the vertices x, y and z of And or Or gadgets. Then, an L-edge-
coloring of G corresponds to a configuration of the NCL machine. On the other
hand, every configuration of the NCL machine can be mapped to at least one
(in general, to exponentially many) L-edge-colorings of G. We can choose an
arbitrary one for each of given two configurations, because each And gadget
satisfies Property (i) above and each Or gadget does the counterpart. It is now
easy to see that there is a sequence of moves which transforms one configuration
into the other if and only if there is a reconfiguration sequence between the two
L-edge-colorings of G. Since NCL remains PSPACE-complete even if an NCL
machine is planar [7], G is a planar graph of maximum degree 3. Furthermore,
each list L(e) is a subset of {c1, c2, . . . , c6}. ut

Fig. 5. Two kinds of Or gadgets.

3 Trees

Since list edge-coloring reconfiguration is PSPACE-complete, it is rather
unlikely that the problem can be solved in polynomial time for general graphs.
However, in Section 3.1, we give a sufficient condition for which any two L-edge-
colorings of a tree T are connected; our sufficient condition can be checked in
polynomial time. Moreover, our proof yields a polynomial-time algorithm that
finds a reconfiguration sequence of length O(n2) between given two L-edge-
colorings, where n is the number of vertices in T . In Section 3.2, we then give
an infinite family of instances on paths that satisfy our sufficient condition and
whose reconfiguration sequence requires length Ω(n2).

3.1 Sufficient condition and algorithm

The main result of this subsection is the following theorem, whose sufficient
condition is best possible in some sense as we mentioned in Section 1.

Theorem 2. For a tree T with n vertices, any two L-edge-colorings f and f ′

of T are connected if |L(e)| ≥ max{d(v), d(w)} + 1 for each edge e = vw of T .
Moreover, there is a reconfiguration sequence of length O(n2) between f and f ′.

Since ∆(T) ≥ max{d(v), d(w)} for all edges vw of a tree T , Theorem 2 im-
mediately implies the following sufficient condition for which any two (ordinary)
edge-colorings of T are connected. Note that, for a positive integer k, a k-edge-
coloring of a tree T is an L-edge-coloring of T for which all edges e have the
same list L(e) = {c1, c2, . . . , ck}.

Corollary 1. For a tree T with n vertices, any two k-edge-colorings f and f ′ of
T are connected if k ≥ ∆(T) + 1. Moreover, there is a reconfiguration sequence
of length O(n2) between f and f ′.

It is obvious that the sufficient condition of Corollary 1 is also best possible in
some sense; consider a star K1,n−1 in Section 1.

In the remainder of this subsection, as a proof of Theorem 2, we give a
polynomial-time algorithm that finds a reconfiguration sequence of length O(n2)
between given two L-edge-colorings f0 and ft of a tree T if our condition holds.

We first give an outline of our algorithm. By the breadth-first search starting
from an arbitrary vertex r of degree 1, we order all edges e1, e2, . . . , en−1 of a
tree T . At the ith step, 1 ≤ i ≤ n− 1, the algorithm recolors ei from the current
color to its target color ft(ei), as follows. From the current L-edge-coloring f ,
we first obtain an L-edge-coloring f ′ of T such that

(i) there is no edge which is adjacent with ei and is colored with ft(ei); and
(ii) there exists a reconfiguration sequence between f and f ′ in which any of

the edges e1, e2, . . . , ei−1 is not recolored.
Then, we recolor ei to ft(ei). Therefore, ei is never recolored after the ith step,
while ei may be recolored before the ith step even if ei is colored with ft(ei). We
will show later that every edge of T can be recolored in such a way, and hence

Fig. 6. (a) Subtree Tu in the whole tree T and (b) inside of Tu.

we eventually obtain the target L-edge-coloring ft. We will also show later that
the algorithm recolors each edge ej with j ≥ i at most once in the ith step, and
hence we can recolor ei by recoloring at most n − i edges. Our algorithm thus
finds a reconfiguration sequence of total length

∑n−1
i=1 (n− i) = O(n2).

Suppose that we are given a tree T with a list L such that

|L(e)| ≥ max{d(v), d(w)}+ 1 (1)

for each edge e = vw in E(T). We choose an arbitrary vertex r of degree 1 as
the root of T , and regard T as a rooted tree. For a vertex u in V (T) \ {r}, let p
be the parent of u in T . We denote by Tu the subtree of T which is rooted at p
and is induced by p, u and all descendants of u in T . (See Fig. 6(a).) It should be
noted that Tu includes the edge eu = pu, but does not include the other edges
incident to p. Therefore, Tu consists of a single edge if u is a leaf of T . We always
denote by eu the edge which joins u and its parent p. For an internal vertex u
of T , let u1, u2, · · · , ul be the children of u ordered arbitrarily, as illustrated in
Fig. 6(b). Then, the subtree Tu consists of eu and the subtrees Tui , 1 ≤ i ≤ l.

For a vertex u of T , we denote by Lu = L|Tu the restriction of the list L
of T to the subtree Tu, that is, Lu(e) = L(e) for each edge e ∈ E(Tu). Clearly,
d(v, T) ≥ d(v, Tu) for each vertex v ∈ V (Tu), where d(v, T) and d(v, Tu) denote
the degrees of v in T and Tu, respectively. Therefore, for each edge e = vw in
E(Tu), by Eq. (1) we have

|Lu(e)| = |L(e)|
≥ max{d(v, T), d(w, T)}+ 1
≥ max{d(v, Tu), d(w, Tu)}+ 1.

The list Lu of Tu thus satisfies Eq. (1). For an L-edge-coloring f of T , we denote
by g = f |Tu the restriction of f to Tu, that is, g is an Lu-edge-coloring of Tu

such that g(e) = f(e) for each edge e in E(Tu). For an Lu-edge-coloring g of Tu,
an edge vw of Tu and its endpoint v, we define a subset Cav(g, vw, v) of Lu(vw),
as follows:

Cav(g, vw, v) = Lu(vw) \ {g(vx) : vx ∈ E(Tu)}. (2)

Then, Cav(g, vw, v) is the set of all colors in Lu(vw) available on v for vw.
Therefore, Cav(g, vw, v)∩Cav(g, vw,w) is the set of all colors in Lu(vw) available
for vw when we wish to recolor vw from g.

Algorithm.
We are now ready to describe our algorithm. Assume that all edges e1, e2, . . . ,

en−1 of a tree T are ordered by the breadth-first search starting from the root
r of T . At the ith step, 1 ≤ i ≤ n − 1, the algorithm recolors ei to its target
color ft(ei). Consider the ith step of the algorithm, and let f be the current
L-edge-coloring of T obtained by i− 1 steps of the algorithm; let f = f0 for the
first step, that is, ei = e1. Then, we wish to recolor ei = pp′ from f(ei) to ft(ei).
There are the following two cases to consider.

Case (a): ft(ei) ∈ Cav(f, ei, p) ∩ Cav(f, ei, p
′)

In this case, ft(ei) is available for ei, that is, there is no edge which is adjacent
with ei and is colored with ft(ei). We thus simply recolor ei from f(ei) to ft(ei),
and obtain an L-edge-coloring f ′ of T : for each edge e in E(T),

f ′(e) =
{

f(e) if e ∈ E(T) \ {ei};
ft(ei) if e = ei.

Case (b): ft(ei) /∈ Cav(f, ei, p) ∩ Cav(f, ei, p
′)

In this case, there are at most two edges pu and p′u′ which are colored with
ft(ei) and are sharing the endpoints p and p′ with ei, respectively.

If there is an edge pu which is colored with ft(ei) and is sharing p with ei,
then we recolor eu = pu to a different available color c, as follows. By Eqs. (1)
and (2) we have

|Cav(f, eu, p)| ≥
∣∣L(eu)

∣∣− ∣∣{f(px) : px ∈ E(T)}
∣∣

≥ max{d(p), d(u)}+ 1− d(p)
≥ 1.

Therefore, there exists at least one color c in L(eu) which is available on p for eu.
Clearly, c 6= f(ei) and c 6= ft(ei) since both colors are in {f(px) : px ∈ E(T)}. It
should be noted that c ∈ Cav(f, eu, u) does not necessarily hold: c is not always
available for eu. Let g = f |Tu be the restriction of f to Tu. Then, by using the
procedure Recolor (which is described in the next page), we recolor eu from
g(eu) (= f(eu)) to c without recoloring any edge in E(T)\E(Tu). More precisely,
we have the following lemma, whose proof is omitted due to the page limitation.

Lemma 1. Let T be a tree with a list L satisfying Eq. (1), and let f be an
L-edge-coloring of T . For a vertex u of T , let Lu = L|Tu and g = f |Tu be the
restrictions of L and f to the subtree Tu, respectively. Then, for an arbitrary
color c in Lu(eu) \ {g(eu)}, Recolor(Tu, g, c) returns a sequence RS of Lu-
edge-colorings g1, g2, . . . , gq of Tu which satisfies the following three properties:

(i) g and g1 are adjacent;
(ii) gk−1 and gk are adjacent for each k, 2 ≤ k ≤ q; and
(iii) gk(eu) = g(eu) for each k, 1 ≤ k ≤ q − 1, and gq(eu) = c.

Since c has been chosen from Cav(f, eu, p) and g is the restriction of f to Tu, by
Property (iii) of Lemma 1 we can easily extend each Lu-edge-coloring gk of Tu

Procedure 1 Recolor(Tu, g, c)
1: RS ⇐ ∅ {RS does not contain g}
2: if c ∈ Cav(g, eu, u) then {See also Fig. 6(b)}
3: {The color c is not assigned to any of the edges uu1, uu2, . . . , uul}
4: Recolor eu from g(eu) to c, and obtain an Lu-edge-coloring g′ of Tu

5: return {g′}
6: else {The color c is assigned to one of the edges uu1, uu2, . . . , uul}
7: Let ej = uuj be the edge such that g(ej) = c
8: Choose an arbitrary color c′ ∈ Cav(g, ej , u)
9: {Recolor ej to c′ via Lj-edge-colorings of Tuj , where Lj = Lu|Tuj}

10: RS ′ ⇐ Recolor(Tuj , g|Tuj , c
′)

11: for each Lj-edge-coloring hk in RS ′ (in the same order) do
12: {Extend an Lj-edge-coloring hk of Tuj to an Lu-edge-coloring gk of Tu}

13: Let gk(e) =
{

g(e) if e ∈ E(Tu) \ E(Tuj);
hk(e) if e ∈ E(Tuj)

14: RS ⇐ RS ∪ {gk}
15: end for
16: {ej is now colored with c′, and hence c is available for eu}
17: Recolor eu from g(eu) to c, and obtain an Lu-edge-coloring g′ of Tu

18: return RS ⇐ RS ∪ {g′}
19: end if

in RS to an L-edge-coloring fk of T , as follows: for each edge e in E(T),

fk(e) =
{

f(e) if e ∈ E(T) \ E(Tu);
gk(e) if e ∈ E(Tu).

Clearly, the sequence f, f1, f2, . . . , fq of L-edge-colorings of T is a reconfigura-
tion sequence which recolors eu from f(eu)

(
= ft(ei)

)
to c. Moreover, in the

reconfiguration sequence, any of the edges in E(T) \ E(Tu) is not recolored.
Similarly, if there is an edge p′u′ which is colored with ft(ei) and is sharing

the other endpoint p′ with ei, then we recolor p′u′ to a different color which is
available on p′ for p′u′ without recoloring any edge in E(T) \ E(Tu′).

Then, in the current L-edge-coloring of T , ft(ei) is available for ei. Therefore,
we can finally recolor ei from f(ei) to ft(ei).

Proof of Theorem 2.
Remember that all edges e1, e2, . . . , en−1 of a tree T are ordered by the

breadth-first search starting from the root r of T , and that the algorithm recolors
ei to its target color ft(ei) at the ith step, 1 ≤ i ≤ n− 1.

We first show that ei is never recolored after the ith step of the algorithm,
as in the following lemma. (The proof is omitted due to the page limitation.)

Lemma 2. The algorithm does not recolor any edge ej with j < i in the ith
step.

Using Lemma 1 we have shown that the algorithm can recolor ei to ft(ei) at
the ith step, and hence Lemma 2 implies that the algorithm terminates with
the target L-edge-coloring ft. Therefore, the algorithm finds a reconfiguration
sequence between given two L-edge-colorings f0 and ft of T if L satisfies Eq. (1).

We now estimate the length of a reconfiguration sequence found by our al-
gorithm. Clearly, the algorithm recolors an edge at most once in each step.
Therefore, by Lemma 2, at most n − i edges are recolored in the ith step. The
total length of the reconfiguration sequence is thus

∑n−1
i=1 (n− i) = O(n2). ut

3.2 Length of reconfiguration sequence

We showed in Section 3.1 that any two L-edge-colorings of a tree T are connected
via a reconfiguration sequence of length O(n2) if our sufficient condition holds.
In this subsection, we show that this worst-case bound on the length is tight: we
give an infinite family of instances on paths that satisfy our sufficient condition
and whose reconfiguration sequence requires length Ω(n2).

Consider a path P = {v0, v1, . . . , v3m+1} of 3m+1 edges in which every edge
e has the same list L(e) = {c1, c2, c3}. Clearly, the list L satisfies Eq. (1), and
hence any two L-edge-colorings of P are connected. We construct two L-edge-
colorings f0 and ft of P , as follows:

f0(vivi+1) =

 c3 if i ≡ 0 mod 3;
c2 if i ≡ 1 mod 3;
c1 if i ≡ 2 mod 3

(3)

for each edge vivi+1, 0 ≤ i ≤ 3m, and

ft(vivi+1) =

 c3 if i ≡ 0 mod 3;
c1 if i ≡ 1 mod 3;
c2 if i ≡ 2 mod 3

(4)

for each edge vivi+1, 0 ≤ i ≤ 3m. Then, we have the following theorem, whose
proof is omitted from this extended abstract.

Theorem 3. For a path P and its two L-edge-colorings f0 and ft defined above,
every reconfiguration sequence between f0 and ft requires length Ω(n2), where n
is the number of vertices in P .

4 Concluding Remarks

A reconfiguration sequence can be represented by a sequence of “recolor steps”
(e, c), where a pair (e, c) denotes one recolor step which recolors an edge e to some
color c ∈ L(e). Then, the algorithm in Section 3.1 can be easily implemented so
that it runs in time O(n2): we store and compute a sequence of recolor steps (e, c)
together with only the current L-edge-coloring of a tree T . On the other hand,
Theorem 3 suggests that it is difficult to improve the time-complexity O(n2) of
the algorithm if we wish to find an actual reconfiguration sequence explicitly.

One may expect that our sufficient condition for trees holds also for some
larger classes of graphs, such as bipartite graphs, bounded treewidth graphs,
etc. However, consider the following even-length cycle, which is bipartite and
whose treewidth is 2. For an even integer m, let C be the cycle of 3m edges
obtained by identifying the edge v0v1 with the edge v3mv3m+1 of P in Section
3.2, and let f0 and ft be L-edge-colorings of C defined similarly as in Eqs. (3)
and (4), respectively. Then, we cannot recolor any edge in the cycle, and hence
there is no reconfiguration sequence between f0 and ft even though |L(e)| =
max{d(v), d(w)}+ 1 holds for each edge e = vw.

Acknowledgments

We thank the Algorithms Research Group of Université Libre de Bruxelles, es-
pecially Jean Cardinal, Martin Demaine and Raphaël Jungers, for fruitful dis-
cussions.

References

1. Bonsma, P., Cereceda, L.: Finding paths between graph colourings:
PSPACE-completeness and superpolynomial distances. In: Kučera, L.,
Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 738–749. Springer, Hei-
delberg (2007)

2. Borodin, O.V., Kostochka, A.V., Woodall, D.R.: List edge and list total
colourings of multigraphs. J. Combinatorial Theory, Series B 71, 184–204
(1997)

3. Călinescu, G., Dumitrescu, A., Pach, J.: Reconfigurations in graphs and
grids. SIAM J. Discrete Mathematics 22, 124–138 (2008)

4. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-
colourings. In: Proc. of IWOCA 2008, pp. 182–196 (2008)

5. Fujino, T., Zhou, X., Nishizeki, T.: List edge-colorings of series-parallel
graphs. IEICE Trans. Fundamentals E86-A, 1034–1045 (2003)

6. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The con-
nectivity of Boolean satisfiability: computational and structural dichotomies.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4051, pp. 346–357. Springer, Heidelberg (2006)

7. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of
computation. Theoretical Computer Science 343, 72–96 (2005)

8. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M.,
Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. In:
Hong, S., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol.
5369, pp. 28–39. Springer, Heidelberg (2008)

9. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley-Interscience, New
York (1995)

10. Savitch, W.J.: Relationships between nondeterministic and deterministic
tape complexities. J. Computer and System Sciences 4, 177–192 (1970)

