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Abstract. Network creation games have been studied in many different
settings recently. These games are motivated by social networks in which
selfish agents want to construct a connection graph among themselves.
Each node wants to minimize its average or maximum distance to the
others, without paying much to construct the network. Many general-
izations have been considered, including non-uniform interests between
nodes, general graphs of allowable edges, bounded budget agents, etc. In
all of these settings, there is no known constant bound on the price of
anarchy. In fact, in many cases, the price of anarchy can be very large,
namely, a constant power of the number of agents. This means that we
have no control on the behavior of network when agents act selfishly.
On the other hand, the price of stability in all these models is constant,
which means that there is chance that agents act selfishly and we end
up with a reasonable social cost.
In this paper, we show how to use an advertising campaign (as introduced
in SODA 2009 [2]) to find such efficient equilibria. More formally, we
present advertising strategies such that, if an α fraction of the agents
agree to cooperate in the campaign, the social cost would be at most
O(1/α) times the optimum cost. This is the first constant bound on the
price of anarchy that interestingly can be adapted to different settings.
We also generalize our method to work in cases that α is not known
in advance. Also, we do not need to assume that the cooperating agents
spend all their budget in the campaign; even a small fraction (β fraction)
would give us a constant price of anarchy.
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1 Introduction

In network creation games, nodes construct an underlying graph in order to
have short routing paths among themselves. So each node incurs two types of
costs, network design cost which is the amount of the contribution of the node
in constructing the network, and network usage cost which is the sum of the
distances to all other nodes. Nodes act selfishly, and everyone wants to minimize



its own cost, i.e. the network design cost plus the usage cost. The social cost in
these games is equal to sum of the costs of all nodes.

To study the behaviour of social networks, we try to understand how large
the social cost can be in presence of selfish agents. Nash Equilibria are the
stable networks in which every agent is acting selfishly. More formally, in a Nash
Equilibria every agent has no incentive to change her strategy assuming all other
agents keep the same strategies. In this setting, the price of anarchy is the worst
ratio of the social cost of Nash Equilibria and the optimal social cost of the
network which can be designed by a central authority. The price of anarchy is
introduced by Koutsoupias and Papadimitriou in [9, 11], and is used to measure
the behaviour of the games and networks with selfish agents. The small values
of price anarchy shows that allowing agents to be selfish does not increase the
social cost a lot. On the other hand, large values of price of anarchy means
that the selfish behaviour of agents can lead the whole game (network) to stable
situations with large social cost in comparison with the optimal cases.

Model In a network creation game, there is a set of selfish nodes. Every node can
construct an undirected1 edge to any other node at a fixed given cost. Each node
also incurs a usage cost related to its distance to the other nodes. So the usage
cost of a node is the sum of its distances to all other nodes. Clearly every node is
trying to minimize its own total cost, i.e. usage cost plus the construction cost.

In another variant of network creation games, called (n, k)-uniform bounded
budget connection game, we have n nodes in the graph, and each node can
construct k edges to other nodes. So every node only have the usage cost, but
its budget to build edges is limited.

The advertising campaign scenario can be applied to different game theoretic
situations. In this scenarios, we can encourage people using a public service
advertising to follow a specific strategy. We can design the strategy to improve
the social cost.

In our model, we find an advertising strategy to reduce the price of anarchy,
and control the behaviour of selfish nodes. We do not need everyone to help us to
achieve a small price of anarchy. We assume that α fraction of people are willing
to follow our strategy, and each of them agrees to spend β fraction of its budget
in the campaign. Formally, we assume that every node accepts to contribute in
the campaign with probability α. We call these users receptive users as used in
the literature [2]. Every receptive person is willing to use βk of its edges for the
campaign. At first we assume that α and β are some known parameters, and we
present an strategy that leads the network to an equilibrium with small price
of anarchy. Then we adapt our strategies to work in cases that α and β are not
known in advance. To get constant bounds on the price of anarchy, we assume
that k is greater than c log n

αβ for some sufficiently large constant c.

Previous Work Fabrikant et al. introduced the network creation games [6]. They
studied the price of anarchy in these games, and achieved the first non-trivial

1 One can get the same results using the same techniques and maintaining two ingoing
and outgoing trees from the root for directed graphs as well.



bounds on it. They studied the structure of Nash Equilibria, and conjectured
that only trees can be stable graphs in this model. Later, Abers et al. came
up with an interesting class of stable graphs, and disproved the tree conjecture
[1]. They also presented better upper bounds on the price of anarchy. They
proved that the price of anarchy can not be more than O(n1/3) in general, and
in some cases they gained a constant upper bound on the price of anarchy. Corbo
and Parkes in [3] considered a slightly different model called bilateral network
formation games, and studied the price of anarchy in this model. They were able
to prove a O(

√
c) upper bound on the price of anarchy where c is the cost of

constructing one edge in their model. Since c can be as large as n, this bound is
also as large as n to the power of a constant.

Demaine et al. studied the sizes of neighborhood sets in the stable graphs,
and with a recursive technique, they presented the first sub-polynomial bounds
on the price of anarchy [5]. They also studied a variant of these games called
cooperative network creation games, and they were able to achieve the first
poly-logarithmic upper bounds on the price of anarchy [4]. This result actually
shows that the diameter of stable graphs is poly-logarithmic which implies the
small-world phenomenon in these games. For more details about the small world
phenomenon, we refer to Kleinberg’s works [7, 8].

Laoutaris et al. studied the network creation games in the bounded budget
model [10]. They claimed that in many practical settings a selfish agent can not
build an arbitrary number of edges to other nodes even if there is an incentive
for the node in building the edge. In this model, every node has a limited amount
of budget, and according to the limit, each node can build up to a given number
of edges. They call these games uniform bounded budget connection games,
they achieve sub-linear both upper and lower bounds on the price of anarchy

in these games. They prove that the price of anarchy is between Ω(
√

n/k
log

k
(n) ),

and O(
√

n
log

k
(n) ) where n and k are respectively the number of nodes, and the

maximum number of edges that each node can have in these games. Although
this is an interesting model in the sense that each node has a limited number of
edges, the price of anarchy can be very large in these games.

In many games including network creation, selfish routing, fair cost sharing,
etc, the cost of a stable graph can vary in a large range. In other words, we have
both low cost and high cost Nash Equilibria. Balcan et al. claim that in such
games one can hope to lead the game to low cost Equilibria using a public service
advertising service [2]. They study the price of anarchy using some advertising
strategies. In some cases like fair cost sharing, they present advertising strategies
that reduces the price of anarchy to a constant number, and in some other games
like scheduling games, they show that there exists no useful advertising strategy.

Our Results At first we prove a tight upper bound in the uniform bounded

budget games. We prove that the price of anarchy is O(
√

n/k
log

k
(n) ). According to

the lower bound in [10], this is a tight result, and shows that the price of anarchy

is in fact Θ(
√

n/k
log

k
(n)).



Since the uniform games have a very large price of anarchy, we try to find
advertising strategies to reduce the price of anarchy to a constant number in
uniform bounded budget games. This way we can be sure that the degree of
each node is bounded, so no one is overwhelmed in the network. On the other
hand, we also know that the price of anarchy is small, so the behavior of these
games is under control.

Formally, we present an advertising strategy that leads the game to Equilibria
with price of anarchy at most O(1/α) where α is the fraction of nodes that
follow our strategy. We do not assume that everyone is willing to contribute in
our strategy, and even if α is very small, we still get small price of anarchy. We
also do not assume that every node that contributes in our strategy is willing to
spend all its k edges as we say. We just use βk edges of a player that contributes
in the advertising strategy where 0 < β < 1 can be a small constant.

In Section 3, we present an advertising strategy that knows the values of α
and β in advance. Then in Section 4, we adapt our strategy to work in cases
that these two parameters are not given in the input, and we should find out
about their values as well.

2 A Tight Upper Bound for Price of Anarchy in Uniform

Games

Here we show that the price of anarchy can not be more than O(
√

n/k
log

k
(n) ) in

the (n, k)-uniform BBC game2. According to the Ω(
√

n/k
log

k
(n) ) lower bound for

the price of anarchy presented in [10], this is the best upper bound that can be
achieved in this game. This means that setting any limit on the budget of each
node implies very large values of price of anarchy.

We prove that the diameter of any stable graph in this model is bounded by
O(

√

n logk (n)/k).

Lemma 1. The diameter of any stable graph in (n, k)-uniform game is at most
O(

√

n logk (n)/k).

Proof. We just need to show that there is a vertex v whose distance to any
other vertex is at most O(

√

n logk (n)/k). Let G be a stable graph. Define g
to be c logk (n) for a sufficiently large constant c ≥ 1. Delete all edges that are
contained in a cycle of length at most g. Let G′ be the remaining graph. Clearly
G′ has no cycle of length at most g. We claim that G′ has a vertex with degree
at most k/2. If all degrees are at least k/2, we have at least (k/2)g/2 walks with
length g/2 starting from an arbitrary vertex u. The endpoint of these walks
are different. Otherwise we would find two walks with length g/2 starting from
u and ending at the same vertex, we can also find a cycle of length at most
2(g/2) = g in the remaining graph which is a contradiction. So there are at
least (k/2)g/2 different endpoints for these walks. On the other hand there are

2 Bounded Budget Connection game



at most n vertices in the graph. For any k, there is a sufficiently large value of
c for which (k/2)g/2 is greater than n which is a contradiction.

So there is a vertex v with degree at most k/2 in G′. This means that v has
at least k/2 edges like e1, e2, · · · , ek/2 each of which is contained in a cycle of
length at most g. For each vertex u 6= v in G consider a shortest path from v to
u in graph G. So we have n − 1 shortest paths, and each of these paths might
use at most one of these k/2 edges. So there is an edge ei that is used in at most

n
k/2 = 2n/k paths. If vertex v deletes edge ei, its distance to at most 2n/k other

vertices might increase by at most g − 1 because edge ei is contained in a cycle
of length at most g. So the cost of v is increased by at most 2ng/k.

Now let d be the maximum distance from v in the stable graph G. Assume
that d is the distance between v and v′. If v deletes edge ei, and adds edge (v, v′)
its cost increases by at most 2ng/k, and decreases by at least (d/3)2 = d2/9.
To see this, we just need to consider the shortest path from v to v′, there are
at least d/3 vertices whose distance to v is at least 2d/3 now, and by adding
edge (v, v′) their distances to v would be at most d/3. So the cost of v decreases
by at least d2/9 by adding edge (v, v′). Since we are in a stable graph, 2ng/k
should be at least d2/9. This means that d is at most O(

√

ng/k). Note that g
is c logk (n), and this completes the proof.

Theorem 1. The price of anarchy in a (n, k)-uniform BBC game is at most

O(
√

n/k
log

k
(n) ).

Proof. Using Lemma 1, we know that the diameter of any stable graph in this
model is bounded by O(

√

n logk (n)/k). As mentioned in the proof of Theorem
3 in [10], the average distance in the optimum solution is at least Ω(logk (n)).
This shows that the price of anarchy in these uniform games is not more than
O(
√

n log
k

(n)/k)

Ω(log
k

(n)) ≤ O(
√

n/k
log

k
(n) ).

3 How the Public Service Advertising affects the price of

anarchy

In this section we present strategies that lead the network to stable graphs with
low social costs. We assume that every node follows our strategy with probability
α. We call these follower nodes receptive nodes because of their interest in the
advertised strategy. We also do not ask a person to spend all its budget in our
strategy. A receptive node just has to spend βk edges in our strategy (0 < β < 1),
and can use the rest of its edges arbitrarily. At first we assume that α and β are
some given parameters in advance. In Section 4, we change our strategies to be
adaptive and work when these parameters are not revealed in advance.

The advertising strategy is as follows. Define k′ to be αβ
c log (n)k for a sufficiently

large constant c, i.e. c ≥ 5 would work. We assume that k′ > 1. We partition the

nodes into l ≤ logk′ (n) sets S1, S2, · · · , Sl such that |S1| = βk/2, and |Si+1|
|Si|

= k′

for each 1 ≤ i < l. Note that the only important properties of these sets are



their sizes. For example, we can set S1 to be the nodes 1, 2, · · · , |S1|, set S2 to
be the nodes |S1| + 1, · · · , |S1| + |S2|, and so on.

We ask nodes in the first set S1 to construct edges to all other nodes in
set S1. So every receptive node in set S1 uses βk/2 − 1 edges to get directly
connected to all other nodes in S1. For i > 1, we ask each node in set Si to pick
c log (n)/2α nodes randomly from set Si−1 and construct edges to them. Note
that c log (n)/2α is at most βk/2 because k′ is greater than one, and it is also
equal to αβk/c log (n).

On the other hand nodes in set Si−1 receive some incoming edges from set
Si. We do not assume that every such an edge is accepted by nodes in set Si−1.
For example if a non-receptive node receives an edge, the node might delete the
edge, i.e. the node is not interested in our strategy or it is a malicious player.
This assumption just makes our work harder because we have to find a way to
take care of deleted edges.

Even if the node in set Si−1 is receptive we might have a problem. Assume
that the node receives more than βk/2 edges from set Si, it might delete some
edges. Because a receptive node is not necessarily willing to contribute in the
strategy with more than βk edges. So the node might get overwhelmed by the
nodes in lower set. In these cases we just do not rely on these edges in our
analysis. So we assume that if a receptive node receives at most βk/2 edges from
the nodes of the lower set, it does not delete these edges. This assumption is
true because we are basically asking a receptive node in set Si to handle at most
βk/2 edges from the set Si+1, and build c log (n)/2α ≤ βk/2 edges to the nodes
of set Si−1 which is at most βk edges in total.

Lemma 2. The edges built in the above strategy form a hierarchical tree shaped
subgraph with logk′ (n) levels. The diameter of this subgraph is at most 2 logk′ n,
and every receptive node is contained in this subgraph with high probability3.

Proof. We just need to prove that every receptive node v in set Si gets connected
to a receptive node v′ in set Si−1, and node v′ does not delete the edge (v, v′), i.e.
node v′ does not get overwhelmed. Node v picks c log (n)/2α random nodes in
set Si−1. There are c log (n)/2 receptive nodes among these nodes in expectation
because every node is receptive with probability α. Using Chernoff bound, we
can say that there are at least log (n) receptive nodes among them with high
probability (note that c is sufficiently large).

So every receptive vertex v in level i is connected to at least log (n) receptive
nodes in set i−1 unless they delete their incoming edges because they have been
overwhelmed. Now we prove that every node is overwhelmed in this structure
with probability at most 1/2.

Each node in set Si is receptive with probability α. Each receptive node makes
c log (n)/2α edges to the nodes in set Si−1 randomly. So the expected number

of incoming edges from set Si to a node in set Si−1 is equal to α|Si|(c log (n)/2α)
|Si−1|

.

We also know that |Si|
|Si−1|

is equal to k′ = αβ
c log (n)k. We conclude that every node

3 probability 1 − 1/nc for some large constant c



u in set Si−1 receives αβk/2 edges in expectation. Using Markov inequality, we
can say that a node can be overwhelmed with probability at most α/2 < 1/2.

So every node v ∈ Si is connected to at least log (n) receptive nodes in
set Si−1. Each of them is overwhelmed with probability at most 1/2. Since the
overwhelming events for different nodes are negatively correlated, we can say
that with high probability node v is connected to at least one receptive node
in set Si−1 that is not overwhelmed. This is sufficient to see that with high
probability, each receptive node has a path of length at most l to some receptive
node in set S1, where l is the number of levels. Since receptive nodes in set S1

makes direct edges to all other nodes in set S1 (and to themselves as well), they
form a complete graph. We conclude that the diameter of all receptive nodes is
at most 2l = 2 logk′ (n) with high probability.

Now we can bound the diameter of the whole graph (not only the subgraph
of receptive nodes).

Lemma 3. The diameter of a stable graph after running the advertisement
strategy is at most O(logk′ (n)/α).

Proof. Using Lemma 2, we know that with high probability the diameter of
receptive nodes is at most 2l. There are αn receptive nodes in expectation, and
with high probability the number of them is not less than αn/2.

Consider a receptive vertex v. Let d be the maximum distance of other nodes
from v. We prove that d is O(l + log (n)/α).

Delete all edges in G that are contained in at least a cycle of length at most
l′ = l +2 logk (n)+1. Consider a non-receptive vertex u. We prove that if one of
the k edges of u is in a cycle of length at most l′, the distance from u to v is at
most l′/α. Let e be an edge owned by u which is in a cycle of length at most l′.
Let x be the distance between u and v. If vertex u deletes edge e, its distance to
other nodes increases by at most l′ × n. On the other hand, if u makes an edge
to vertex v, its distance to all receptive nodes decreases by at least x − 4l − 1
(before adding the edge its distances to receptive nodes were at least x− 2l, and
after that the distances are at most 2l + 1). So the total decrease in the cost of
u would be at least αn

2 (x−4l′−1) because there are at least αn
2 receptive nodes

with high probability. Since we are in a stable graph, αn
2 (x − 4l − 1) should not

be greater than l′ × n. So x is O(l′/α + l) = O(l′/α) in this case.

We call a vertex incomplete if at least one of its edges is deleted. As proved
above, each incomplete vertex is in distance at most O(l′/α) from v. We also
note that the remaining graph does not have a cycle of length at most l′. We
claim that each vertex is either incomplete or has distance at most l′ from one
of the incomplete vertices. So the distances of all vertices from v is at most
l′ +O(l′/α) = O(l′/α). Consider an incomplete vertex u, and all walks of length
l′/2 starting from u in the remaining graph. If one of these walks passes over an
incomplete vertex, the claim is proved. Otherwise we have kl′/2 walks starting
from the same vertex u. The endpoints of these walks are also different, otherwise
we find a cycle of length at most l′ in the remaining graph. So there are at least



kl′/2 > n different vertices in the graph which is a contradiction because l′ is
greater than 2 logk (n).

So the distances of all vertices from a receptive vertex v are at most O(l′/α) =
O((l + logk (n))/α). Note that l is equal to logk′ (n), and k′ is at most k. So the
diameter of the whole graph is simply at most O(logk′ (n)/α).

Theorem 2. The price of anarchy is at most O( log
k′ (n)

α log
k

(n) ) = O( log
k′ (k)
α ) using

the advertising strategy where k′ is αβ
c log (n)k for a constant c.

Proof. Using Lemma 3, the diameter of a stable graph is at most O(logk′ (n)/α).
On the other hand as mentioned in proof of Theorem 3 in [10], the average
distance in the optimal graph is at least Ω(logk (n)). Combining these two facts
completes the proof of this lemma.

Corollary 1. For k > Ω(log1+ε (n)), the price of anarchy is O(1/αε).

Proof. Note that α and β are some constant parameters. So k/k′ is O(log (n)).
Since k is at least Ω(log1+ε (n)), we can say that k is at most O(k′1/ε). This
shows that logk′ (k) is O(1/ε) which completes the proof.

Corollary 2. For k > Ω(log (n)), the price of anarchy is at most O(log log (k)/α).

Proof. One just need to set k′ to an appropriate constant. The rest is similar to
above.

4 How to deal with unknown α and β

In Section 3, we presented an advertising strategy that lead the network to some
equilibria with small price of anarchy given two parameters α and β. Here we try
to make our strategy adaptive for the cases that the parameters are not known
in advance, i.e. some times a lot of agents contribute in the campaign, and
sometimes a small fraction of them participate. So in these cases, we know that
α > ε fraction of agents are willing to spend β > ε′ fraction of their budget in the
campaign where ε and ε′ are two given lower bounds on these two parameters.
We note that these two lower bounds are two constants that can be very small.

Define m and m′ to be the two smallest integers such that ε > 1/2m and
ε′ > 1/2m′

. So there exists two integers i and j such that 1/2i ≤ α ≤ 1/2i−1,
and 1/2j ≤ β ≤ 1/2j−1 where 1 ≤ i ≤ m, and 1 ≤ j ≤ m′.

Note that we do not need to know the exact values of parameters α and β
in the advertising strategy, just an estimation would work. For example, if we
know two integers i and j such that 1/2i ≤ α ≤ 1/2i−1, and 1/2j ≤ β ≤ 1/2j−1,
we can run the above strategy with parameters 1/2i and 1/2j instead of α and
β. The same probabilistic bounds would work in the same way, and we can
prove the same claims as proved in Section 3. But we do not even have good
estimations of these two parameters. The only thing we know is that they are in
range [ε, 1] and [ε′, 1] respectively.



But we know that α is in one of these m ranges: [1/2, 1], [1/4, 1/2], · · ·,
[1/2m, 1/2m−1], and the same for β. We should run the strategy for different
estimations of α and β in a parallel manner. So there are m × m′ different
pairs of estimations for our parameters. But a receptive agent contributes in the
campaign with only βk edges. We can ask a receptive node to spend βk

m×m′
in

each of these runs. Note that in order to run a strategy we need to set four
parameters α, β, k, and n. Here we want to use the strategy for m×m′ parallel
runs. So for each pair (i, j), we run the strategy with parameters 1/2i, 1/2j,

k
m×m′

, and n (instead of α, β, k, and n) for each 1 ≤ i ≤ m, and 1 ≤ j ≤ m′.
Each receptive nodes spends at most βk edges in all the runs. The only thing
that changes our upper bounds on the price of anarchy, is the new value of k in
each run. In fact we are using k

m×m′
edges to reduce the price of anarchy. So we

have the following theorem for cases that parameters are not known in advance.

Theorem 3. When the parameters α > ε and β > ε′ are not known in advance,

the price of anarchy is at most O(
log

k′ (n)
α log

k
(n) ) = O(

log
k′ (k)
α ) using the above ad-

vertising strategy (updated version) where k′ is αβ
c log (n) × k

m×m′
for a constant c.

Integers m and m′ are dlog (1/ε)e and dlog (1/ε′)e respectively.

Proof. When we run the original strategy for different pairs of (i, j), one of
these pairs is a good estimation for α and β. Using the constructed edges by the
receptive nodes in this specific run of the strategy and Theorem 2, we can have
this bound. The only different thing is that we can use k

m×m′
in each run, and

that is why the value of k′ is divided by a factor of m × m′.

Since ε and ε′ are two constant (and probably very small) constants, we can
say that m and m′ are also some constant (and probably large) numbers. We
conclude that the Corollaries 1 and 2 are also true in this case (unknown α and
β).
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