
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Computational complexity of numberless Shakashaka

Aviv Adler∗ Michael Biro† Erik Demaine∗ Mikhail Rudoy ‡ Christiane Schmidt§

Abstract

Shakashaka, like Sudoku, is a pencil-and-paper puzzle.
In this paper we show that Shakashaka is NP-complete
in the case of numberless black squares.

1 Introduction

Shakashaka is a pencil-and-paper puzzle, proposed by
Guten in 2008 and popularized by the Japanese pub-
lisher Nikoli [1].

An instance of Shakashaka consists of an m× n rect-
angle of unit squares. Initially, each square is colored
either black or white, and black squares may also con-
tain an integer between 0 and 4, inclusive. The solver
proceeds by filling in the initially white squares with
squares consisting of a black and a white triangle in one
of four orientations: . We denote these col-
lectively as b/w squares. The white squares may also
be left blank. In addition, the numbers written in black
squares constrain the solver by specifying the number of
b/w squares that must neighbor the given square (in its
four vertically and horizontally neighboring squares).

An instance is considered solved if every maximal con-
nected white region on the board is a rectangle (axis-
aligned or rotated by 45◦) and each numbered black
square has exactly as many b/w square neighbors as is
specified by its number. For an example and its (unique)
solution, refer to Figure 1.

Demaine et al. [3] proved that Shakashaka is NP-
complete. They used a reduction from planar 3-SAT,
and the black squares in the reduction either contained
the number 1 or remained blank. In addition, they
showed that Shakashaka can be formulated as a 0-1-
integer program and gave experiments using IP-solvers
(namely SCIP 3.0.0) to solve instances of sizes up to
20×36. Two questions remained in the concluding re-

∗Computer Science and Artificial Intelligence Labora-
tory, MIT, Massachusetts, USA. Email: adlera@mit.edu,

edemaine@mit.edu.
†Department of Mathematics and Statistics, Swarthmore Col-

lege, USA. Email: mbiro1@swarthmore.edu.
‡Electrical Engineering and Computer Science department

and Mathematics department, MIT, Massachusetts, USA. Email:
mrudoy@mit.edu.
§The Rachel and Selim Benin School of Computer Science and

Engineering, The Hebrew University of Jerusalem, Israel. Email:
cschmidt@cs.huji.ac.il. Supported by the Israeli Centers of
Research Excellence (I-CORE) program (Center No. 4/11).

(a) (b)

Figure 1: (a) An instance of Shakashaka and (b) its unique
solution.

marks of this paper, one concerned settling the compu-
tational complexity of Shakashaka without numbers in
the black squares.

In this paper we answer this question and show that
Shakashaka without numbers in the black squares is
NP-complete by a reduction from POSITIVE PLANAR
1-IN-3 SAT, a variant of the well known PLANAR 3-
SAT problem, shown to be NP-complete by Mulzer and
Rote [5]. The reduction is parsimonious, and, hence,
also shows #P-completeness. We also include an easier,
but non-parsimonious, reduction from PLANAR 3-SAT,
which is well-known to be NP-complete.

2 NP-completeness of numberless Shakashaka

Definition 1 An instance F of the POSITIVE PLA-
NAR 1-IN-3 SAT problem is a Boolean formula in 3-
CNF: it consists of a set C = {C1, C2, . . . , Cm} of m
clauses over n variables V = {x1, x2, . . . , xn}, where
each clause Ci consists of three variables (“POSITIVE”
indicates that no negated variables appear in the Ci’s).
Moreover, the variable-clause incidence graph G = (C ∪
V, E) is planar, where {Ci, xj} ∈ E ⇔ xj is in Ci. It
is sufficient to consider formulae where G has a recti-
linear embedding, see Knuth and Raghunathan [4]. The
POSITIVE PLANAR 1-IN-3 SAT problem is to decide
whether there exists a truth assignment to the variables
such that exactly one variable in each clause is true.

Theorem 1 Shakashaka without numbers in the black
squares is NP-complete.

Proof. [via Positive Planar 1-in-3 SAT]

The proof is by reduction from POSITIVE PLANAR
1-IN-3 SAT, which was shown to be NP-complete by
Mulzer and Rote [5]. Let F be an instance of the POS-
ITIVE PLANAR 1-IN-3 SAT problem. We turn the
rectilinear embedding of G into a Shakashaka board:
we present the variables, clauses and edges by pieces of



27th Canadian Conference on Computational Geometry, 2015

(a) (b) (c) (d)

Figure 2: (a) The variable gadget, (b) with enforced white pixels and (c),(d) the two possible feasible solutions. We associate
the “kite” in blue with a truth setting of “false” and the “kite” in red with a truth setting of “true”.

(a) (b) (c)

Figure 3: (a) The NOT gadget. (b),(c) The wires connected by the NOT gadget always satisfy opposite truth assignments.
In (b) the gadget is entered with a truth assignment corresponding to “true” and left with a truth assignment corresponding
to “false”. Those roles are reversed in (c). Some enforced triangles are shown in green to facilitate understanding.

the board that need to be filled in. We will give the
details of the gadgets in the following.

The variable gadget is shown in Figure 2(a). The
empty circles in Figure 2(b) indicate (by the construc-
tion) enforced white pixels. There exist exactly two
feasible solutions for the variable gadget, shown in blue
and red in Figures 2(c) and (d) and corresponding to a
truth setting of “false” and “true”, respectively. In both
cases we use a “kite”, a sloped structure, occupying 7
out of the pixels of a 3×3-square. For the blue solution,
the kite is oriented from top left to bottom right, for
the red solution it is oriented from top right to bottom
left (both indicated by a line in the rectangle’s center).

The initial truth value is propagated by a wire gad-
get as indicated in Figure 2.

Parity. Note that, by construction, the kites propa-
gating through the wires (and all other gadgets below)
do so at regular intervals of three squares in both the
up/down and left/right directions; i.e., the kites that
propagate the truth assignments each fit inside a 3× 3-
square. In fact, the gadgets of our construction force
these kites to be placed inside the tiles of a single 3× 3-
tiling of the plane. This ensures that the gadgets can be
constructed and the kites will align without any shifting.

The NOT gadget, shown in Figure 3, enables us to
reverse the truth assignment in a variable wire. The
NOT gadget will be used in the bend gadget and split
gadget as a black box, and is only used there.

The bend gadget, shown in Figure 4, enables us to
bend a wire to match bends in the rectilinear embedding
of G while enforcing that the same truth assignments
continue to propagate along the wire.

The split gadget, shown in Figure 5, enables us to
increase the number of wires propagating the truth as-
signment of a variable gadget.

The at-most gadget, shown in Figure 6, enables us
to enforce that at most one of a pair of truth assign-
ments is true. It admits a feasible Shakashaka board in
all cases except for two true inputs, in which case an
infeasible Shakashaka board is obtained.

The related at-least gadget, shown in Figure 7, en-
ables us to enforce that at least one of a pair of truth
assignments is true. It admits a feasible Shakashaka
board in all cases except for two false inputs, in which
case an infeasible Shakashaka board is obtained.

The “XOR” gadget, shown in Figure 8, takes two

Figure 9: The clause gadget. The gray components ensure
that the reduction is parsimonious.



CCCG 2015, Kingston, Ontario, August 10–12, 2015

(a) (b) (c)

Figure 4: (a) The bend gadget. (b),(c) The wires connected by the bend always satisfy the same truth assignment.

(a) (b) (c)

Figure 5: (a) A split of the corridor. (b),(c) The wires connected by the split always satisfy the same truth assignment.

wires as input and outputs:

false/false → false

false/true → true or false possible

true/false → true or false possible

true/true → infeasible.

Finally, the clause gadget, shown in Figure 9, en-
forces that exactly one of the three variables included
in the clause is set to true. Three variables, rep-
resented by A, B and C in Figure 9, are pairwise
combined by the at-most gadget. This combination
can only be solved if there is at most one true vari-
able among A, B, and C (i.e. the possibilities are
false/false/false, true/false/false, false/true/false, and
false/false/true). Consequently, we only need to ex-
clude the false/false/false case. We combine each of two
pairs of variables with an “XOR” gadget (“XOR”1 and
“XOR”2) and combine the results in the at-least gadget.
Note that the “XOR” gadgets would yield an infeasible
Shakashaka board for two true inputs, but this case has
already been excluded.

If all variables are set to false, both “XOR” gad-
gets must output false. The subsequent combination
of the two “XOR” outputs with an at-least gadget re-
sults in an infeasible Shakashaka board. If one variable
is set to true, at least one “XOR” gadget can output
true. Therefore, the subsequent combination of the two
“XOR” outputs with an at-least gadget is possible and
does not render the board infeasible.

Thus, the resulting Shakashaka has a solution if and
only if exactly one variable per clause is set to true,
that is, if and only if the original POSITIVE PLA-
NAR 1-IN-3 SAT formula F is satisfiable. It is easy to

see, that this reduction is possible in polynomial time.
Moreover, given a filled in board it is easy to check
whether it constitutes a feasible Shakashaka solution,
hence, Shakashaka is in the class NP. Consequently,
Shakashaka without numbers in the black squares is
NP-complete. So, this gadget, i.e., everything except
the gray part in Figure 9, yields the Theorem’s state-
ment. But, we want to obtain a parsimonious reduction:
once we fix an assignment of F , the filling pattern of the
resulting Shakashaka instance is uniquely determined.

Given that the only possible combinations are
the possibilities are false/false/false, true/false/false,
false/true/false, and false/false/true, one of the “XOR”i
has input false/false, hence, it has to output false.
The other two “XOR”j , “XOR”k (i 6= j 6= k, i, j, k ∈
{1, 2, 3}) have input true/false or false/true, i.e., they
output either true or false. But then we combine
all pairs of “XOR” outputs with an at-least gadget:
“XOR”i outputs false, thus, each of “XOR”j and
“XOR”k must output true to obtain a feasible board.
Hence, we have a one-to-one correspondence between
solutions to F and the resulting Shakashaka instance,
i.e., the reduction is parsimonious. �

Because the counting version of POSITIVE PLANAR
1-IN-3 SAT is #P-complete [2], we have:

Corollary 1 The counting version of Shakashaka is
#P-complete.

Definition 2 An instance F of the PLANAR 3-SAT
problem is a Boolean formula in 3-CNF consisting of a
set C = {C1, C2, . . . , Cm} of m clauses over n variables
V = {x1, x2, . . . , xn}. Clauses in F contain variables



27th Canadian Conference on Computational Geometry, 2015

(a) (b) (c) (d) (e)

Figure 6: (a) The “at most” gadget. (b) with two false inputs, (c)/(d) with one true and one false input, (e) with two true
inputs the board cannot be completed.

(a) (b) (c) (d) (e)

Figure 7: (a) The “at least” gadget: (b) with two false inputs the board cannot be completed, (c)/(d) with one true and one
false input, (e) with two true inputs.

and negated variables, denoted as literals (e.g. ‘x1’ or
‘¬x7’). A clause is satisfied if and only if it contains
at least one true literal, and the formula F is true if
and only if all its clauses are satisfied. The variable-
clause incidence graph G is planar and it is sufficient to
consider formulae where G has a rectilinear embedding.

We now present the alternate reduction.

Proof. [via Planar 3-SAT]
In this proof, we give a reduction from PLANAR 3-

SAT. We turn the rectilinear embedding of G into a
Shakashaka board, much along the lines of the previous
proof. We will first discuss the basic representation of
variables in this reduction, and then show how this can
be used to build wires (which are very easy to split and
negate) and clauses.

The basic variable gadget is a 2× 3 rectangle, which
can be filled in 3 ways, as shown in Figure 10; by looping
it as shown in Figure 11, we can eliminate the trivial
solution of Fig. 10(a), giving the two solutions shown
in Fig. 10(b),(c) (the orientations of the 2 × 2 groups
in each 2× 3 block must match because otherwise there
will be an ‘L’-shaped white tetromino). We can set a
given loop of this kind to represent each variable xi; the
variable is set to true if the 2 × 2 half-filled group is

(a) (b) (c)

Figure 10: Basic variable gadget with possible solutions.

in the clockwise direction, and false if the 2 × 2 half-
filled group is in the counterclockwise direction. There
cannot be any other solutions because the edge shared
between any pair of 2×3 blocks is only 1 wide, and hence
no diagonally-oriented white rectangles can fit through
(otherwise they would need to have a width of less than
1 which is impossible in Shakashaka). As long as our
attachments are only 1 tile wide, this will prevent white
rectangles from bridging two adjacent blocks and ensure
that the only solutions possible are those described here.

There are 3 different patterns of loops, as shown in
Figure 12, so as to allow maximum flexibility in our wire
construction (shown in Figure 13); these all satisfy the
property of having exactly two solutions, which differ
in the orientation of the 2 × 2 groups. Wires are built
by attaching loops together to form chains; each chain
consists of a series of loops, each adjacent pair of which
shares a 2 × 3 block; in each chain is a special ‘vari-
able’ loop, which is where the variable setting is read.
We note that these loops alternate between having the
2×2 group in the clockwise direction and in the counter-
clockwise direction; we refer to a loop as being ‘synced’

(a) (b)

Figure 11: Variable loop with a truth setting of (a) true
(red) and (b) false (blue).



CCCG 2015, Kingston, Ontario, August 10–12, 2015

(a) (b) (c)

(d) (e) (f)

Figure 8: (a) The “XOR” gadget. (b)/(c) two false inputs cannot be completed for a true output (infeasible Shakashaka
board indicated in purple), but may be completed for a false output. (d)/(e) both true/false false/true combinations allow a
true output, (f) two inputs of true result in an infeasible Shakashaka board. Enforced triangles are shown in green.

if it shares its orientation with the variable loop (i.e. if
it is an even distance away in the chain); otherwise it
is ‘de-synced’ and has the opposite orientation. Thus,
once the ‘variable’ loop contained in the chain is set,
every other loop within the chain is forced into a par-
ticular orientation depending on whether it is synced
with the variable loop, as sketched in Figure 13.

We also note that it is very easy to bend a chain (by
attaching the next loop to one of the 2×3 blocks to the
side rather than to the one opposite to the previously-
shared 2 × 3 block) and to split a chain (by simply at-
taching two loops to one in a T-junction). As before,
the parity of the distance of each loop in the chain from
the variable loop determines whether it is synced or de-
synced.

The clause gadget is as shown in Figure 14(a); each
of the three 2×3 “input” blocks (denoted a, b, and c) is
attached to a corresponding variable chain. The attach-

(a) (b)
(c)

Figure 12: The different patterns for variable loops.

ment occurs at a synced loop if the literal represented is
not negated, and at a de-synced loop if the literal rep-
resented is negated (i.e. to represent ‘xi’ we attach to a
synced loop, and to represent ‘¬xi’ we attach at a de-
synced loop). Because of the multiple loop patterns, by
increasing the scale of the board by a constant factor we
can allow space for the chains to correct the offset and
allow the correct parity loop to be in the given spot. If
the literal is attached to any of the three ‘input’ blocks
is false, the attached loop will be in the false state,
thus forcing the 2×2 group in the 2×3 ‘input’ block to
be placed away from the main body of the clause gad-
get; if the literal is true then there is a choice of where

Figure 13: The variable loop is shaded yellow. Synced loops
are indicated in green, de-synced loops in pink. Chain con-
tinuations are shown in turquoise; note that by using the
different attachment points to a loop, bends and splits can
be achieved (as shown).



27th Canadian Conference on Computational Geometry, 2015

(a)
(b) (c) (d) (e)

Figure 14: (a) The clause gadget. The input blocks (a, b, c) are indicated in pink, the chains feeding those blocks in orange.
Note that the clause still works if input block a is rotated to be vertical (so in panel (e), the disallowed pink region would be
a rotated ‘L’); this allows extra flexibility in connecting the clauses up to the chains. (b)-(d) The board for one true (red) and
two false (blue) literals. (e) For three false literals (blue) the board cannot be completed.

the 2× 2 group can be (either towards or away).
To get the clause gadgets to conform to the format

given by Knuth and Raghunathan [4], we can wind the
chain connecting at the top of the gadget over the right
side of the clause’s main body (with two 90◦ bends),
such that the three chains come in from the bottom.

We now need to show the following:

1. If at least one of the three literals is true, the clause
can be satisfied (there is a solution in the gadget).

2. If all of the three literals are false then there is
no solution within the clause (thus preventing the
whole Shakashaka instance from being solved).

This would mean that the Shakashaka board generated
has a solution if and only if the formula F is satisfiable.

We note that since a true literal can be made to
mimic a false literal (by allowing placement of the 2×2
group away from the body of the clause), we only need
to show that the clause is satisfiable if exactly one of
the three literals is true; this is because if more than
one is true, we can have one of the satisfied literals act
as true and the others mimic false. This allows us to
handle (1) by Figure 14(b)-(d).

The second result is then shown by the following, as
depicted in Figure 14(e). Since each literal is false in
this case, we are forced to put all three 2×2 groups away
from the main body of the clause. The tiles highlighted
in green (t1 and t2) are forced to be filled in the given
way. This is because if t2 is left blank, then t1 cannot
be left blank as it would create a non-rectangular white
shape; but t1 in this case cannot be filled either, as
each of the four orientations of fill result in a non-right
angle, again violating the rectangular shape constraint.
We then consider the tiles adjacent to the three ‘input’
blocks; we refer to them as a∗, b∗, and c∗ (which are
next to inputs a, b, and c respectively). None of these
can be left blank (or else there is 270◦ angle, which is
not allowed). However, b∗ and c∗ can only be filled in
the manner shown, as any other orientation of fill will
also result in a non-right angle. This forces the white

rectangle formed (in part) by tiles t1, t2, b∗, and c∗ to
be closed as shown. But this means that a∗ cannot be
filled, thus proving that no solution is possible.

Hence, a clause gadget can be solved in Shakashaka
if and only if the clause in F that it represents is satisfi-
able. Thus, we can conclude that the Shakashaka board
generated from F via this reduction (which can easily
be seen to be polynomial-time) is solvable if and only
if all clauses in F can be simultaneously satisfied, i.e.
if and only if F is satisfiable. This completes the re-
duction, showing that Shakashaka is NP-hard (and by
virtue of polynomial-time verification, as discussed in
the previous proof, it is therefore NP-complete). �

3 Conclusion

In this paper we showed that Shakashaka without num-
bers in the black squares is NP-complete.

In the future, we like to address the second question
from the paper by Demaine et al. [3]: given an m × n
board, what is the minimum number k of black squares
that is necessary to obtain a board with a unique solu-
tion? Another natural question asks for this number if
the black squares contain numbers.

References

[1] http://www.nikoli.co.jp/en/puzzles/shakashaka.html,
NIKOLI Co., Ltd. Accessed January 5, 2014.

[2] E. D. Demaine. Lecture 15, 6.890. http://
courses.csail.mit.edu/6.890/fall14/lectures/L15.html.

[3] E. D. Demaine, Y. Okamoto, R. Uehara, and Y. Uno.
Computational complexity and an integer programming
model of Shakashaka. In Proc. 25th Canad. Conf. Com-
put. Geom., CCCG 2013. Carleton University, Ottawa,
Canada, 2013.

[4] D. E. Knuth and A. Raghunathan. The problem of com-
patible representatives. SIAM Journal of Discrete Math.,
5(3):422–427, 1992.

[5] W. Mulzer and G. Rote. Minimum-weight triangulation
is NP-hard. Journal of the ACM, 55(2), 2008.


