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Abstract

We present an algorithm for a magic trick. Given a polygon with holes P, our
algorithm determines a folding of a rectangular sheet of paper such that a single straight
cut suffices to cut out P. This paper is a simplification and improvement of a paper
first published in Fun with Algorithms [10].

1 Introduction

The great Harry Houdini was one of the first to perform the following magic trick: fold
a sheet of paper so that a single straight cut produces a cut-out of a rabbit, a dog, or
whatever else one likes. Whereas Houdini only published a method for a five-pointed star [13]
(a method probably known to Betsy Ross [12]), Martin Gardner [11] posed the question
of cutting out more complex shapes. Demaine and Demaine [5] stated this question more
formally: given a polygon with holes P (possibly with more than one connected component)
and a rectangle R large enough to contain P, find a “flat folding” of R such that the cross-
section of the folding with a perpendicular plane is the boundary of P. More intuitively,
a single straight cut of the flat folding produces something that unfolds to P. A flat
folding [4, 14] is a mathematical notion, abstracting folded paper to a nonstretchable, non-
self-penetrating, zero-thickness, piecewise-linear surface in IR3.

Demaine et al. [6, 7] have proposed a solution to this cut-out problem, based on propa-
gating paths of folds out to the boundary of the rectangle R. Here we give a more “local”
solution, based on disk packing. Our strategy is to pack disks on R so that disk centers
induce a mixed triangulation/quadrangulation respecting the boundary of polygon P. We
fold each triangle or quadrilateral interior (exterior) to P upwards (respectively, down-
wards) from the plane of the paper, taking care that neighboring polygons agree on crease
orientations. A cut through the plane of the paper now separates interior from exterior.

Disk packing has previously been used to compute triangulations [1] and quadrangula-
tions [3] with special properties. Disk packing, or more precisely disk placement, has also
been applied to origami design, most notably by Lang [15]. In fact, the result in this paper
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Figure 1: (a) A disk packing respecting the boundary of the polygon. Vertices of 4-gaps
are cocircular. (b) Induced triangles and quadrilaterals.

is in some sense a fusion of a quadrangulation algorithm from Bern and Eppstein [3] with
an origami design algorithm from Lang [15].

2 Disk Packing

Let P be a polygon with holes, strictly contained in a rectangle R. We think of P as
boundary along with interior. Let PR denote the planar straight line graph that is the
union of the boundary of P and the boundary of R. In this section, we sketch how to pack
disks such that each edge of PR is a union of radii of disks, and such that the disks induce
a partition of R into triangles and quadrilaterals. Our solution is closely related to some
mesh generation algorithms [1, 3].

The disk packing starts with interior-disjoint disks. We call a connected portion of R
minus the disks a gap. We call a gap bounded by three arcs a 3-gap and one bounded by
four arcs a 4-gap. We begin by centering a disk at each vertex, including the corners of R.
At vertex v, we place a disk of radius one-half the distance from v to the nearest edge of
PR not incident to v. We introduce a subdivision vertex (a degree-2 vertex with a straight
angle) at each intersection of a disk boundary and an edge of PR.

Now consider the edges of (the modified) PR that are not covered by disks. Call such
an edge crowded if its diameter disk intersects the diameter disk of another edge of PR.
We mark each crowded edge, and then split each crowded edge by adding its midpoint. We
continue marking and splitting in any order until no edges of PR are crowded. We then
add the diameter disk of each PR edge so that each edge is a union of diameters of disks as
required. Strictly speaking, only the edges of P need be covered by disks, but we include
the boundary of R for the sake of neatness.

Next we add disks until all gaps between disks are either 3-gaps or 4-gaps. This can be
done by computing the Voronoi diagram of the disks placed so far, and repeatedly placing
a maximal-radius disk at a Voronoi vertex and then updating the Voronoi diagram. Bern
et al. [1] give an O(nlog?n) algorithm and Eppstein [9] an O(nlogn) algorithm, where n
denotes the number of disks.



Figure 1(a) gives an example disk packing, not precisely the same as the one that would
be computed by the algorithm just sketched. By adding edges between the centers of tangent
disks, the disk packing induces a decomposition of R into triangles and quadrilaterals as
shown in Figure 1(b).

3 Mbolecules

A molecule is a (typically flat) folding of a polygon that can be used as a building block
in larger origamis. We shall fold the triangles in the decomposition of R with rabbit ear
molecules. In the rabbit ear molecule, a mountain fold meets each of the triangle’s vertices;
these folds lie along the angle bisectors of the triangle so that the boundary of the triangle
is coplanar in the folded “starfish”. A valley fold meets each of the triangle’s sides at
the points of tangency of the disks; these all fold to a vertical spine, perpendicular to the
original plane of the paper. The meeting point of the six folds, which becomes the tip of
the spine in the folded configuration, is the in-center of the original triangle.
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Figure 2: A rabbit ear molecule folds into a three-armed “starfish”.

At this point, we regard the orientations of the valley folds as changeable: in the larger
origami some of them may be reversed from their initial assignment. For example, to form a
flat origami from a single rabbit ear, one could reverse one of the valleys into a mountain in
order to satisfy Maekawa’s theorem.! The arms of the starfish all point the same direction
away from the spine in the flat origami, and the boundary of the original triangle is collinear.

We shall fold the quadrilaterals as shown in Figure 3. This folding is an improvement,
suggested by Robert Lang, of our original method of folding quadrilaterals [10]. In this
gusset molecule [15], mountain folds extend some distance along the angle bisectors to a
gusset, a quadrilateral inside the original quadrilateral, shown shaded in Figure 3. The
gusset is triangulated with one of its two diagonals, a valley fold, and each of the halves
of the overall quadrilateral is folded in a sort of rabbit ear molecule. This folding of the
quadrilaterals enjoys the same property as the folding of the triangles: the valley folds from
points of tangency all meet at a central spine, perpendicular to the plane of the paper.
Again we regard the orientations of these folds as changeable. In the larger origami, we
may reverse one of the valleys in order to form a flat folding with all arms pointing in the
same direction. Notice that such a reversal also sends a crease (a mountain-valley two-edge
path, shown dotted in Figure 3) across the central gusset.

!Maekawa’s theorem for flat origami [4, 14] states that at any vertex interior to the paper the number of
mountains minus the number of valleys must be plus or minus two.



Figure 4: (a) The two unconstrained vertices of the gusset may be chosen to lie on an inset
quadrilateral. (b) The inset quadrilateral is folded with two rabbit-ear molecules.

Two of the vertices of the gusset, shown by dots in Figure 3, are fixed by the requirement
that valley folds extend perpendicularly from the points of tangency. We refer to these
vertices as the perpendicular points. The other two vertices of the gusset are not completely
constrained. They must, however, lie on the angle bisectors of the quadrilateral in order for
the boundary of the quadrilateral to fold to a common plane.

A nice way [15] to locate the the unconstrained vertices—p and r in Figure 4(a)—is
to place them at the vertices of an inset quadrilateral, a quadrilateral inside the overall
quadrilateral, with sides parallel and equidistant to the sides of the original quadrilateral.
In Figure 4(a) the original quadrilateral is abed and the inset quadrilateral is pgrs. When
the gusset molecule is folded, the inset quadrilateral will form a small starfish whose central
valley exactly reaches “sea level”, that is, pgrs and pr fold to the same plane. In fact, the
gusset folding restricted to pgrs is just two rabbit-ear molecules, as shown in Figure 4(b).
Hence, the perpendicular points must lie at the in-centers of triangles pgr and prs, and this
requirement determines the size of pgrs.

We now argue that all quadrilaterals induced by 4-gaps—all the quadrilaterals that we
use—can be folded with the gusset molecule. What we must show is that the triangles



pgr and prs with in-centers at the perpendicular points do indeed lie within abcd, in other
words, that the requirements of the gusset molecule are not in conflict with each other.

First assume that the perpendicular points are distinct, and consider the line L through
the perpendicular points. Line L is the line of equal power distance? from the disks centered
at a and ¢, and hence passes between these disks. The bisector of the angle between L and
the valley fold perpendicular to bc fixes the r. Since L passes above the disk at ¢, r lies
above c along the angle bisector at c. Thus pgrs does indeed lie within abcd. In the extreme
case that the disks at a and ¢ touch each other, pgrs equals abcd and the gusset molecule
reduces to two rabbit-ear molecules.

What if the perpendicular points coincide? For this extreme case, we use a special
property [1] of 4-gaps: the points of tangency of four disks, tangent in a cycle, are cocircular.
Figure 1(a) shows the circle for one 4-gap. This property implies that the angle bisectors
of the quadrilateral all meet at a common point o, namely the center of the circle through
the tangencies. So in the extreme case that the perpendicular points coincide, pqrs shrinks
to point o, and the valleys from the points of tangency and the mountains along the angle
bisectors all meet at one flat-foldable point.

4 Joining Molecules

We now show how to assign final orientations to creases, so that neighboring molecules fit
together and each vertex satisfies Maekawa’s theorem. This fills in (a special case of) a
missing step in Lang’s algorithm [15].

We are aiming for a final folding of R that resembles a book of flaps, something like
the rightmost picture in Figure 6. More precisely, the folding will look like two books of
triangular flaps, one above and one below the original plane of the paper. The molecules
(triangles and quadrilaterals) inside P will form the top book, whereas those outside P
will form the bottom book. The boundary of P itself will not be folded, and the polygons
crossing the boundary, each containing a triangle from two different original molecules, will
thus belong to both books.

Angle bisector edges inside P will be mountains and those outside P will be valleys.
Other edges of the crease pattern receive default orientations, subject to reversal in a final
matching step. The default orientation of a tangency edge (an edge to a point of tangency)
or a side edge (an edge along the side of a triangle or quadrilateral) is valley inside P and
mountain outside P. Side edges lying along the boundary of P are not folded at all.

At this point, each vertex of the crease pattern has an equal number of mountains and
valleys. The vertices interior to R inside P need one more mountain, whereas those outside
P need one more valley, in order that molecules fold to their assigned half-spaces, above or
below the original plane of the paper. (Vertices on the boundary of P can have an excess of
either mountains or valleys.) Let G be the planar graph obtained from the decomposition
by removing all angle bisector edges and all edges along the boundary of P. We would like
to find a set of edges M—a matching—such that each vertex of G lying in the interior of
R is incident to exactly one edge of M. By reversing the orientations of the edges of M,

>The power distance [1] from a point to a circle is the square of the usual distance minus the radius of the
circle squared. For points outside the circle it is the same as the tangential distance to the circle squared.



Figure 5: (a) Cutting out a tree T (shaded) spanning interior corners leaves a tree of
molecules Ty;. Roots are at the upper left. (b) The matching consists of side edges from
corners to parents in T¢ and tangency edges from molecule centers to parents in Thy.
Assignments shown assume all molecules are inside P.

we ensure that each vertex satisfies Maekawa’s theorem. All vertices, even the ones along
P, which lost two edges each from the original decomposition of R, also satisfy Kawasaki’s
theorem.?

We now show how to solve the matching problem using dual spanning trees. Let Tc be
a tree of side edges such that: T includes no edges along the boundary of R or P; T spans
all interior corners of molecules; and T spans exactly one corner along the boundary of R,
which we consider to be its root. If we were to cut the paper along T, we would obtain a
tree of molecules T}/, as shown in Figure 5(a). We root T at one of the molecules incident
to the root of T¢. The matching M contains two types of edges: each tangency edge from
the center of a molecule to the side of its parent in T (along with one such edge inside the
root molecule), and each side edge from a corner to its parent (a tangency point) in tree
Tc. See Figure 5(b).

To picture the effect of this choice of M on the eventual flat folding, imagine that we
have actually cut along the edges of T>. Imagine building up the flat folding molecule by
molecule in a preorder traversal of Th;. The root molecule of T); folds to a book of flaps
with collinear edges lying along the original plane of the paper. Each child molecule adds
a “pamphlet” of three or four flaps between two flaps of the book we have constructed so
far. The cover and back cover of the pamphlet are glued to their adjacent pages, so that a
quadrilateral thickens two old flaps and adds two new flaps.

We continue gluing pamphlets between flaps of the growing book as we go down the tree.
Whenever we cross the boundary of P, we glue the next pamphlet above or below—rather
than between flaps of—its parent molecule, so that the boundary of P is not itself folded.
When we are done joining all the molecules we indeed have two books of flaps, one above
and one below the original plane of the paper.

Now imagine taping the cut edges back together in a postorder traversal of T-. Before
taping, the cut leading to a leaf of T, say inside P, defines the bottom edge of two adjacent
“armpits”, as shown in Figure 6. (An armpit consists of one layer from each of two adjacent

¥Kawasaki’s theorem for flat origami [4, 14] states that at any vertex interior to the paper the sum of
alternate angles must be 180°.



Figure 6: Taping together a cut leading to a leaf of T amounts to joining two “armpits”
in the book of flaps.

flaps.) Taping together the first and last layer of the intervening flap forms a mountain fold,
agreeing with the orientation we gave to side edges in the matching. Taping together the
remaining two sides of the cut forms a valley fold, agreeing with the default orientation of
side edges inside P. Taping a cut leading to a leaf of T» closes two armpits and reduces the
number of flaps in the book by two. We can continue taping cuts all the way up T¢. Since
each taping joins armpits adjacent at the time of the taping, there can be no “crossed”
pair of tapings, or put another way, no place where the paper is forced to penetrate itself.
Altogether the taping completes a crease pattern on paper R that can be folded flat so that
P lies above, and its complement R\ P lies below, the original plane of the paper.

5 Fattening the Polygon

At this point, we have a degenerate solution to the cut-out problem. A cut through the
original plane of the paper separates P from its complement. Unfortunately, it also cuts
P into its constituent molecules. A cut very slightly below the original plane of the paper
leaves P intact, while adding a small “rim” to P.

We can remove the degeneracy by fattening the boundary of P into a narrow “ribbon” as
shown in Figure 7. The boundaries of the ribbon are slightly inside and outside the original
P; vertices of P are moved in or out along angle bisectors. (We actually saw this ribbon
construction already: a gusset molecule is two adjacent rabbit ear molecules surrounded by
a ribbon!) The width of the ribbon must be smaller than the minimum feature size of the
polygon, the minimum distance between a vertex of P and an edge not incident to that
vertex.

We modify the disk packing step so that it packs partial disks (sectors) around the
boundary of ribbon, such that interior and exterior sectors match up. Creases between
corresponding subdivision points cross the ribbon at right angles, whereas creases between
corresponding vertices cross at angle bisectors, so that each vertex still satisfies Kawasaki’s
theorem. Notice that interior and exterior sectors centered on corresponding vertices have
slightly different radii.



Figure 7: Fattening the polygon into a ribbon lets P survive the cut intact.

6 Discussion

We have given an algorithm for the cut-out problem. More precisely, we have given an
algorithm for computing a crease pattern with a flat folding that solves the cut-out problem.
We have not described how to actually transform the crease pattern into the flat folding.

Is our algorithm usable? The answer is a qualified yes. Figure 8 gives a crease pattern
for a fish cut-out that is not too hard to fold. In this crease pattern, we have taken a number
of shortcuts to make the algorithm more practical. First, we have used only three-sided and
special four-sided gaps, ones in which perpendiculars from the center vertex o happen to
meet the sides at the points of tangency. Second, we have not packed the disks all the way
to the boundary of the paper, only far enough that radiating folds do not meet within the
page. Third, we have not fattened the polygon, and hence the cut should be placed slightly
below original plane of the paper, so that the interior remains connected.

The number of creases used by our algorithm is not really excessive, linear in the number
of disks in the initial disk packing. The number of disks, in turn, depends upon a fairly
natural complexity measure of the polygon. Define the local feature size LFS(p) at a point
p on an edge e of P to be the distance to the closest edge that is not adjacent to e [16].
The local feature size is small at narrow necks of the polygon. It is not hard to see that the
number of disks around the boundary of P is O([3p 1/|LFS(p)|), where the integral is over
the boundary of P. The number of additional disks needed to fill out the square is linear
in the disks around the boundary of P, because each new disk reduces the number of sides
of the gap into which it is placed.

The algorithm of this paper can be generalized to the problem in which the input is
a planar straight-line graph G, and a single cut must cut along all the edges of G. An
interesting open question asks whether there is a polynomial-size solution (polynomial in
the number of original vertices of P or G) for the cut-out problem. A solution using disk
packing may shed some light on two other computational geometry problems: simultaneous
inside-outside nonobtuse triangulation [2] and conforming Delaunay triangulation [8].



Figure 8: An example for the reader to try. This “mounted marlin” design incorporates
some practical shortcuts. For example, packing the exterior with disks is unnecessary,
because radiating folds do not collide.
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