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Abstra
t

We present an algorithm for a magi
 tri
k. Given a polygon with holes P , our

algorithm determines a folding of a re
tangular sheet of paper su
h that a single straight


ut suÆ
es to 
ut out P . This paper is a simpli�
ation and improvement of a paper

�rst published in Fun with Algorithms [10℄.

1 Introdu
tion

The great Harry Houdini was one of the �rst to perform the following magi
 tri
k: fold

a sheet of paper so that a single straight 
ut produ
es a 
ut-out of a rabbit, a dog, or

whatever else one likes. Whereas Houdini only published a method for a �ve-pointed star [13℄

(a method probably known to Betsy Ross [12℄), Martin Gardner [11℄ posed the question

of 
utting out more 
omplex shapes. Demaine and Demaine [5℄ stated this question more

formally: given a polygon with holes P (possibly with more than one 
onne
ted 
omponent)

and a re
tangle R large enough to 
ontain P , �nd a \
at folding" of R su
h that the 
ross-

se
tion of the folding with a perpendi
ular plane is the boundary of P . More intuitively,

a single straight 
ut of the 
at folding produ
es something that unfolds to P . A 
at

folding [4, 14℄ is a mathemati
al notion, abstra
ting folded paper to a nonstret
hable, non-

self-penetrating, zero-thi
kness, pie
ewise-linear surfa
e in IR

3

.

Demaine et al. [6, 7℄ have proposed a solution to this 
ut-out problem, based on propa-

gating paths of folds out to the boundary of the re
tangle R. Here we give a more \lo
al"

solution, based on disk pa
king. Our strategy is to pa
k disks on R so that disk 
enters

indu
e a mixed triangulation/quadrangulation respe
ting the boundary of polygon P . We

fold ea
h triangle or quadrilateral interior (exterior) to P upwards (respe
tively, down-

wards) from the plane of the paper, taking 
are that neighboring polygons agree on 
rease

orientations. A 
ut through the plane of the paper now separates interior from exterior.

Disk pa
king has previously been used to 
ompute triangulations [1℄ and quadrangula-

tions [3℄ with spe
ial properties. Disk pa
king, or more pre
isely disk pla
ement, has also

been applied to origami design, most notably by Lang [15℄. In fa
t, the result in this paper
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Figure 1: (a) A disk pa
king respe
ting the boundary of the polygon. Verti
es of 4-gaps

are 
o
ir
ular. (b) Indu
ed triangles and quadrilaterals.

is in some sense a fusion of a quadrangulation algorithm from Bern and Eppstein [3℄ with

an origami design algorithm from Lang [15℄.

2 Disk Pa
king

Let P be a polygon with holes, stri
tly 
ontained in a re
tangle R. We think of P as

boundary along with interior. Let PR denote the planar straight line graph that is the

union of the boundary of P and the boundary of R. In this se
tion, we sket
h how to pa
k

disks su
h that ea
h edge of PR is a union of radii of disks, and su
h that the disks indu
e

a partition of R into triangles and quadrilaterals. Our solution is 
losely related to some

mesh generation algorithms [1, 3℄.

The disk pa
king starts with interior-disjoint disks. We 
all a 
onne
ted portion of R

minus the disks a gap. We 
all a gap bounded by three ar
s a 3-gap and one bounded by

four ar
s a 4-gap. We begin by 
entering a disk at ea
h vertex, in
luding the 
orners of R.

At vertex v, we pla
e a disk of radius one-half the distan
e from v to the nearest edge of

PR not in
ident to v. We introdu
e a subdivision vertex (a degree-2 vertex with a straight

angle) at ea
h interse
tion of a disk boundary and an edge of PR.

Now 
onsider the edges of (the modi�ed) PR that are not 
overed by disks. Call su
h

an edge 
rowded if its diameter disk interse
ts the diameter disk of another edge of PR.

We mark ea
h 
rowded edge, and then split ea
h 
rowded edge by adding its midpoint. We


ontinue marking and splitting in any order until no edges of PR are 
rowded. We then

add the diameter disk of ea
h PR edge so that ea
h edge is a union of diameters of disks as

required. Stri
tly speaking, only the edges of P need be 
overed by disks, but we in
lude

the boundary of R for the sake of neatness.

Next we add disks until all gaps between disks are either 3-gaps or 4-gaps. This 
an be

done by 
omputing the Voronoi diagram of the disks pla
ed so far, and repeatedly pla
ing

a maximal-radius disk at a Voronoi vertex and then updating the Voronoi diagram. Bern

et al. [1℄ give an O(n log

2

n) algorithm and Eppstein [9℄ an O(n log n) algorithm, where n

denotes the number of disks.
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Figure 1(a) gives an example disk pa
king, not pre
isely the same as the one that would

be 
omputed by the algorithm just sket
hed. By adding edges between the 
enters of tangent

disks, the disk pa
king indu
es a de
omposition of R into triangles and quadrilaterals as

shown in Figure 1(b).

3 Mole
ules

A mole
ule is a (typi
ally 
at) folding of a polygon that 
an be used as a building blo
k

in larger origamis. We shall fold the triangles in the de
omposition of R with rabbit ear

mole
ules. In the rabbit ear mole
ule, a mountain fold meets ea
h of the triangle's verti
es;

these folds lie along the angle bise
tors of the triangle so that the boundary of the triangle

is 
oplanar in the folded \star�sh". A valley fold meets ea
h of the triangle's sides at

the points of tangen
y of the disks; these all fold to a verti
al spine, perpendi
ular to the

original plane of the paper. The meeting point of the six folds, whi
h be
omes the tip of

the spine in the folded 
on�guration, is the in-
enter of the original triangle.

Figure 2: A rabbit ear mole
ule folds into a three-armed \star�sh".

At this point, we regard the orientations of the valley folds as 
hangeable: in the larger

origami some of them may be reversed from their initial assignment. For example, to form a


at origami from a single rabbit ear, one 
ould reverse one of the valleys into a mountain in

order to satisfy Maekawa's theorem.

1

The arms of the star�sh all point the same dire
tion

away from the spine in the 
at origami, and the boundary of the original triangle is 
ollinear.

We shall fold the quadrilaterals as shown in Figure 3. This folding is an improvement,

suggested by Robert Lang, of our original method of folding quadrilaterals [10℄. In this

gusset mole
ule [15℄, mountain folds extend some distan
e along the angle bise
tors to a

gusset , a quadrilateral inside the original quadrilateral, shown shaded in Figure 3. The

gusset is triangulated with one of its two diagonals, a valley fold, and ea
h of the halves

of the overall quadrilateral is folded in a sort of rabbit ear mole
ule. This folding of the

quadrilaterals enjoys the same property as the folding of the triangles: the valley folds from

points of tangen
y all meet at a 
entral spine, perpendi
ular to the plane of the paper.

Again we regard the orientations of these folds as 
hangeable. In the larger origami, we

may reverse one of the valleys in order to form a 
at folding with all arms pointing in the

same dire
tion. Noti
e that su
h a reversal also sends a 
rease (a mountain-valley two-edge

path, shown dotted in Figure 3) a
ross the 
entral gusset.

1

Maekawa's theorem for 
at origami [4, 14℄ states that at any vertex interior to the paper the number of

mountains minus the number of valleys must be plus or minus two.
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Figure 3: We fold a quadrilateral into a four-armed star�sh with a 
entral valley.
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Figure 4: (a) The two un
onstrained verti
es of the gusset may be 
hosen to lie on an inset

quadrilateral. (b) The inset quadrilateral is folded with two rabbit-ear mole
ules.

Two of the verti
es of the gusset, shown by dots in Figure 3, are �xed by the requirement

that valley folds extend perpendi
ularly from the points of tangen
y. We refer to these

verti
es as the perpendi
ular points. The other two verti
es of the gusset are not 
ompletely


onstrained. They must, however, lie on the angle bise
tors of the quadrilateral in order for

the boundary of the quadrilateral to fold to a 
ommon plane.

A ni
e way [15℄ to lo
ate the the un
onstrained verti
es|p and r in Figure 4(a)|is

to pla
e them at the verti
es of an inset quadrilateral , a quadrilateral inside the overall

quadrilateral, with sides parallel and equidistant to the sides of the original quadrilateral.

In Figure 4(a) the original quadrilateral is ab
d and the inset quadrilateral is pqrs. When

the gusset mole
ule is folded, the inset quadrilateral will form a small star�sh whose 
entral

valley exa
tly rea
hes \sea level", that is, pqrs and pr fold to the same plane. In fa
t, the

gusset folding restri
ted to pqrs is just two rabbit-ear mole
ules, as shown in Figure 4(b).

Hen
e, the perpendi
ular points must lie at the in-
enters of triangles pqr and prs, and this

requirement determines the size of pqrs.

We now argue that all quadrilaterals indu
ed by 4-gaps|all the quadrilaterals that we

use|
an be folded with the gusset mole
ule. What we must show is that the triangles
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pqr and prs with in-
enters at the perpendi
ular points do indeed lie within ab
d, in other

words, that the requirements of the gusset mole
ule are not in 
on
i
t with ea
h other.

First assume that the perpendi
ular points are distin
t, and 
onsider the line L through

the perpendi
ular points. Line L is the line of equal power distan
e

2

from the disks 
entered

at a and 
, and hen
e passes between these disks. The bise
tor of the angle between L and

the valley fold perpendi
ular to b
 �xes the r. Sin
e L passes above the disk at 
, r lies

above 
 along the angle bise
tor at 
. Thus pqrs does indeed lie within ab
d. In the extreme


ase that the disks at a and 
 tou
h ea
h other, pqrs equals ab
d and the gusset mole
ule

redu
es to two rabbit-ear mole
ules.

What if the perpendi
ular points 
oin
ide? For this extreme 
ase, we use a spe
ial

property [1℄ of 4-gaps: the points of tangen
y of four disks, tangent in a 
y
le, are 
o
ir
ular.

Figure 1(a) shows the 
ir
le for one 4-gap. This property implies that the angle bise
tors

of the quadrilateral all meet at a 
ommon point o, namely the 
enter of the 
ir
le through

the tangen
ies. So in the extreme 
ase that the perpendi
ular points 
oin
ide, pqrs shrinks

to point o, and the valleys from the points of tangen
y and the mountains along the angle

bise
tors all meet at one 
at-foldable point.

4 Joining Mole
ules

We now show how to assign �nal orientations to 
reases, so that neighboring mole
ules �t

together and ea
h vertex satis�es Maekawa's theorem. This �lls in (a spe
ial 
ase of) a

missing step in Lang's algorithm [15℄.

We are aiming for a �nal folding of R that resembles a book of 
aps, something like

the rightmost pi
ture in Figure 6. More pre
isely, the folding will look like two books of

triangular 
aps, one above and one below the original plane of the paper. The mole
ules

(triangles and quadrilaterals) inside P will form the top book, whereas those outside P

will form the bottom book. The boundary of P itself will not be folded, and the polygons


rossing the boundary, ea
h 
ontaining a triangle from two di�erent original mole
ules, will

thus belong to both books.

Angle bise
tor edges inside P will be mountains and those outside P will be valleys.

Other edges of the 
rease pattern re
eive default orientations, subje
t to reversal in a �nal

mat
hing step. The default orientation of a tangen
y edge (an edge to a point of tangen
y)

or a side edge (an edge along the side of a triangle or quadrilateral) is valley inside P and

mountain outside P . Side edges lying along the boundary of P are not folded at all.

At this point, ea
h vertex of the 
rease pattern has an equal number of mountains and

valleys. The verti
es interior to R inside P need one more mountain, whereas those outside

P need one more valley, in order that mole
ules fold to their assigned half-spa
es, above or

below the original plane of the paper. (Verti
es on the boundary of P 
an have an ex
ess of

either mountains or valleys.) Let G be the planar graph obtained from the de
omposition

by removing all angle bise
tor edges and all edges along the boundary of P . We would like

to �nd a set of edges M|a mat
hing|su
h that ea
h vertex of G lying in the interior of

R is in
ident to exa
tly one edge of M . By reversing the orientations of the edges of M ,

2

The power distan
e [1℄ from a point to a 
ir
le is the square of the usual distan
e minus the radius of the


ir
le squared. For points outside the 
ir
le it is the same as the tangential distan
e to the 
ir
le squared.
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Figure 5: (a) Cutting out a tree T

C

(shaded) spanning interior 
orners leaves a tree of

mole
ules T

M

. Roots are at the upper left. (b) The mat
hing 
onsists of side edges from


orners to parents in T

C

and tangen
y edges from mole
ule 
enters to parents in T

M

.

Assignments shown assume all mole
ules are inside P .

we ensure that ea
h vertex satis�es Maekawa's theorem. All verti
es, even the ones along

P , whi
h lost two edges ea
h from the original de
omposition of R, also satisfy Kawasaki's

theorem.

3

We now show how to solve the mat
hing problem using dual spanning trees. Let T

C

be

a tree of side edges su
h that: T

C

in
ludes no edges along the boundary of R or P ; T

C

spans

all interior 
orners of mole
ules; and T

C

spans exa
tly one 
orner along the boundary of R,

whi
h we 
onsider to be its root. If we were to 
ut the paper along T

C

, we would obtain a

tree of mole
ules T

M

, as shown in Figure 5(a). We root T

M

at one of the mole
ules in
ident

to the root of T

C

. The mat
hing M 
ontains two types of edges: ea
h tangen
y edge from

the 
enter of a mole
ule to the side of its parent in T

M

(along with one su
h edge inside the

root mole
ule), and ea
h side edge from a 
orner to its parent (a tangen
y point) in tree

T

C

. See Figure 5(b).

To pi
ture the e�e
t of this 
hoi
e of M on the eventual 
at folding, imagine that we

have a
tually 
ut along the edges of T

C

. Imagine building up the 
at folding mole
ule by

mole
ule in a preorder traversal of T

M

. The root mole
ule of T

M

folds to a book of 
aps

with 
ollinear edges lying along the original plane of the paper. Ea
h 
hild mole
ule adds

a \pamphlet" of three or four 
aps between two 
aps of the book we have 
onstru
ted so

far. The 
over and ba
k 
over of the pamphlet are glued to their adja
ent pages, so that a

quadrilateral thi
kens two old 
aps and adds two new 
aps.

We 
ontinue gluing pamphlets between 
aps of the growing book as we go down the tree.

Whenever we 
ross the boundary of P , we glue the next pamphlet above or below|rather

than between 
aps of|its parent mole
ule, so that the boundary of P is not itself folded.

When we are done joining all the mole
ules we indeed have two books of 
aps, one above

and one below the original plane of the paper.

Now imagine taping the 
ut edges ba
k together in a postorder traversal of T

C

. Before

taping, the 
ut leading to a leaf of T

C

, say inside P , de�nes the bottom edge of two adja
ent

\armpits", as shown in Figure 6. (An armpit 
onsists of one layer from ea
h of two adja
ent

3

Kawasaki's theorem for 
at origami [4, 14℄ states that at any vertex interior to the paper the sum of

alternate angles must be 180

Æ

.
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M

V

Figure 6: Taping together a 
ut leading to a leaf of T

C

amounts to joining two \armpits"

in the book of 
aps.


aps.) Taping together the �rst and last layer of the intervening 
ap forms a mountain fold,

agreeing with the orientation we gave to side edges in the mat
hing. Taping together the

remaining two sides of the 
ut forms a valley fold, agreeing with the default orientation of

side edges inside P . Taping a 
ut leading to a leaf of T

C


loses two armpits and redu
es the

number of 
aps in the book by two. We 
an 
ontinue taping 
uts all the way up T

C

. Sin
e

ea
h taping joins armpits adja
ent at the time of the taping, there 
an be no \
rossed"

pair of tapings, or put another way, no pla
e where the paper is for
ed to penetrate itself.

Altogether the taping 
ompletes a 
rease pattern on paper R that 
an be folded 
at so that

P lies above, and its 
omplement R n P lies below, the original plane of the paper.

5 Fattening the Polygon

At this point, we have a degenerate solution to the 
ut-out problem. A 
ut through the

original plane of the paper separates P from its 
omplement. Unfortunately, it also 
uts

P into its 
onstituent mole
ules. A 
ut very slightly below the original plane of the paper

leaves P inta
t, while adding a small \rim" to P .

We 
an remove the degenera
y by fattening the boundary of P into a narrow \ribbon" as

shown in Figure 7. The boundaries of the ribbon are slightly inside and outside the original

P ; verti
es of P are moved in or out along angle bise
tors. (We a
tually saw this ribbon


onstru
tion already: a gusset mole
ule is two adja
ent rabbit ear mole
ules surrounded by

a ribbon!) The width of the ribbon must be smaller than the minimum feature size of the

polygon, the minimum distan
e between a vertex of P and an edge not in
ident to that

vertex.

We modify the disk pa
king step so that it pa
ks partial disks (se
tors) around the

boundary of ribbon, su
h that interior and exterior se
tors mat
h up. Creases between


orresponding subdivision points 
ross the ribbon at right angles, whereas 
reases between


orresponding verti
es 
ross at angle bise
tors, so that ea
h vertex still satis�es Kawasaki's

theorem. Noti
e that interior and exterior se
tors 
entered on 
orresponding verti
es have

slightly di�erent radii.
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Figure 7: Fattening the polygon into a ribbon lets P survive the 
ut inta
t.

6 Dis
ussion

We have given an algorithm for the 
ut-out problem. More pre
isely, we have given an

algorithm for 
omputing a 
rease pattern with a 
at folding that solves the 
ut-out problem.

We have not des
ribed how to a
tually transform the 
rease pattern into the 
at folding.

Is our algorithm usable? The answer is a quali�ed yes. Figure 8 gives a 
rease pattern

for a �sh 
ut-out that is not too hard to fold. In this 
rease pattern, we have taken a number

of short
uts to make the algorithm more pra
ti
al. First, we have used only three-sided and

spe
ial four-sided gaps, ones in whi
h perpendi
ulars from the 
enter vertex o happen to

meet the sides at the points of tangen
y. Se
ond, we have not pa
ked the disks all the way

to the boundary of the paper, only far enough that radiating folds do not meet within the

page. Third, we have not fattened the polygon, and hen
e the 
ut should be pla
ed slightly

below original plane of the paper, so that the interior remains 
onne
ted.

The number of 
reases used by our algorithm is not really ex
essive, linear in the number

of disks in the initial disk pa
king. The number of disks, in turn, depends upon a fairly

natural 
omplexity measure of the polygon. De�ne the lo
al feature size LFS (p) at a point

p on an edge e of P to be the distan
e to the 
losest edge that is not adja
ent to e [16℄.

The lo
al feature size is small at narrow ne
ks of the polygon. It is not hard to see that the

number of disks around the boundary of P is O(

R

�P

1=jLFS (p)j), where the integral is over

the boundary of P . The number of additional disks needed to �ll out the square is linear

in the disks around the boundary of P , be
ause ea
h new disk redu
es the number of sides

of the gap into whi
h it is pla
ed.

The algorithm of this paper 
an be generalized to the problem in whi
h the input is

a planar straight-line graph G, and a single 
ut must 
ut along all the edges of G. An

interesting open question asks whether there is a polynomial-size solution (polynomial in

the number of original verti
es of P or G) for the 
ut-out problem. A solution using disk

pa
king may shed some light on two other 
omputational geometry problems: simultaneous

inside-outside nonobtuse triangulation [2℄ and 
onforming Delaunay triangulation [8℄.
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Figure 8: An example for the reader to try. This \mounted marlin" design in
orporates

some pra
ti
al short
uts. For example, pa
king the exterior with disks is unne
essary,

be
ause radiating folds do not 
ollide.
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