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Abstract: We introduce a new method of origami construction, using cross sec-
tion diagrams. Instead of beginning our construction from a 2-dimensional sheet
of paper, we consider a 1-dimensional cross section moving forwards in time. We
obtain conditions for the validity of a particular cross section evolution sequence,
and prove that the resulting folded state is isometric to a flat sheet of paper.

Subsequently, we use this machinery to design an efficient construction of orthog-
onal terrains, with arbitrary rational extrusion heights.

1 Introduction
Many algorithms and universality results exist for producing parameterized fami-
lies of origami structures, but few are provably efficient, i.e. provide constructions
from a paper having dimensions within a low constant factor of an optimal con-
struction. At 5OSME, [Demaine et al. 10] presented an efficient construction for
folding orthogonal mazes which is computable in polynomial time. Origamizer,
presented in [Demaine and Tachi 17] constructs foldings corresponding to gen-
eral polyhedral surfaces, but does not provide any bound on the efficiency of the
constructions. On the other hand, TreeMaker from [Lang 96] produces efficient
crease patterns to fold uniaxial bases, but may require exponential time to to find
an efficient solution.

In this paper, we present an algorithm for efficiently producing an origami fold-
ing that corresponds to an input orthogonal terrain with arbitrary rational extru-
sion heights. A folding corresponds to an orthogonal terrain if the folding covers
every point on the terrain, but no point on the folding exists above the terrain. This
result improves an algorithm, [Benbernou et al. 10] also presented at 5OSME, ap-
plicable to a more general class of inputs, providing a universal construction to fold
general orthogonal polyhedra, though the construction is less efficient than our con-
struction applied to orthogonal terrains. Our construction approach follows three
steps:

1. Decompose the orthogonal terrain into strips, constant along one dimension.
2. Cover the strips efficiently using rectangular strips of paper.
3. Stitch the strips together along matching boundaries.
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In order to better communicate the algorithm and the final folded state pro-
duced, we also introduce a new cross section evolution representation of a folded
isometry: a straight line is swept across the crease pattern of a folded surface, and
we keep track of how the folding of the line evolves as a cross section of the folded
surface. The propagation of the cross section between crease pattern vertices is
uniquely determined by the initial orientation of the cross section, so the folded
isometry can be constructed by sweeping the line and locally modifying the cross
section when crossing crease pattern vertices during propagation. This representa-
tion not only simplifies the description of the 3D folded isometries constructed, but
also provides a simpler framework to argue that the folded state does not self inter-
sect, by propagating planar cross sections monotonically along a single direction.
We then show that our construction’s efficiency is within a small constant factor of
any folding with optimal efficiency.

2 Cross Section Evolution
We introduce a new method of origami construction, using cross section diagrams.
Instead of beginning our construction from a 2-dimensional sheet of paper, we
consider a 1-dimensional cross section moving forwards in time through 3D space.
A simple example using strip narrowing [Demaine et al. 00] is demonstrated in
Figure 4.

2.1 Segments and Cross Sections
Definition 1. A segment s is an oriented line segment with left and right endpoints
sl and sr. Each segment is also associated with an orientation vector ôs ≡ sr−sl

‖sr−sl‖
.

This vector serves to disambiguate the orientation of zero length segments.

Definition 2. A cross section C is defined as an ordered list of line segments
〈s1,s2, · · · ,sn〉, such that for every segment si (except the last), the right endpoint of
si coincides with the left endpoint of si+1. Each segment s is also associated with a
velocity vector v̂s of unit magnitude. For a segment si ∈C we will also denote this
velocity as v̂i.
Invariant 1. All non-joint nodes on a segment s have the same velocity v̂s.
Invariant 2. The velocity v̂s of segment s is orthogonal to its orientation ôs.

Definition 3. Given a cross section C = 〈s1,s2, · · ·sn〉, a node x denotes a point
on one of the segments si. A joint node is a node that resides on the endpoint of
a segment. The distance between two nodes on a cross section is defined as the
overall length of cross section between the two nodes.

2.2 Joints
Definition 4. A cross section with n segments is also associated with a list of joints
〈J1, · · ·Jn−1〉, where Ji corresponds to the right endpoint of si (same as left endpoint
of si+1. A particular joint Ji is associated with a left segment si, a right segment
si+1, and a velocity Jv.
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Definition 5. A joint plane is the plane that coincides with both segments l and r
associated with a particular joint J. In case the two segments are coincident (i.e.
ôl =±ôr), we define the joint plane to be orthogonal to v̂l = v̂r.

Definition 6. Consider a joint J associated with segments l, r, and joint plane P ,
where v̂l and v̂r are the velocities of segments l and r. We define v̂ql and v̂⊥l as
components of v̂l , such that v̂ql is the projection of v̂l onto P , and v̂⊥l = v̂l − v̂ql
(orthogonal to P). Similarly, we define v̂qr and v̂⊥r , as the components of v̂r. By
Invariant 2, v̂ql and v̂qr are orthogonal to ôl and ôr respectively. This uniquely
determines the direction of all velocity components.

Henceforth, we will refer to the v̂q component as the joint plane velocity, and
the v̂⊥ component as the joint orthogonal velocity,

Invariant 3. For a joint J associated with segments l and r, v̂⊥l = v̂⊥r i.e. the joint
orthogonal velocities have to be equal, such that the joint plane moves with a fixed
velocity along it’s normal. As a corollary,

∥∥v̂ql
∥∥= ‖v̂qr‖.

2.3 Time Travel
In the process of time travel, all the nodes on a segment s, except the joint nodes
move with velocity v̂s (orthogonal to ôs). For example, if we allow a single segment
of length X to evolve for time T , it will result in a X×T strip of paper.

The joint node velocity Jv may have a component along a corresponding seg-
ment s (along ôs). As a result, the lengths of segments may change (Figure 2b).
This can be visualized as movement of the corresponding joint along one of the
segments.

Definition 7. For every segment s in a cross section C, we associate a left pace
Ls, which indicates the rate at which s shrinks from its left endpoint. Similarly, we
define a right pace Rs grows from its right endpoint. Note that both these quantities
can be negative.

After time T , the length of a segment changes by T (Rs−Ls). The length of a
segment is not allowed to become negative. For a segment si with left joint JL and
right joint JR, we obtain the relations

JL
v − v̂si = Lsi ôsi , JR

v − v̂si = Rsi ôsi .

Definition 8. A joint J corresponding to segments s and t is valid if and only if the
evolution resulting from the velocities v̂l , v̂r, and Jv preserves distances between
the non-joint nodes.

Invariant 4. The right pace of si is equal to the left pace of si+1. This is to preserve
the overall length of the cross section, and the distance between any two nodes.
Furthermore, the left pace of the first segment, and the right pace of the last segment
should be zero, i.e., L0 = Rn = 0 This ensures that the total length of the cross
section does not change.
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The movement of a joint increases the length of one of its associated segments,
and decreases the length of the other segment by the same amount (this ensures that
the total length is preserved). This puts some constraints on the possible velocities
of adjacent segments.

Consider a joint Ji corresponding to segments l = si and r = si+1, at time t = 0.
Henceforth, we will refer to Lr as L, and Rl as R. Without loss of generality, we
assume that L < 0. At a later time t, let the new joint position be J′i. We define
nodes a and b corresponding to Ji and Ji+1 respectively. We also define the initial
and final positions of a as a, and a′, and similarly for b, we define b and b′. Let d
be the separation between nodes a and b. This setup is shown in Figure 1.

Figure 1: A joint with segments l
and r. The trajectory of the joint is
shown in orange. The trajectories of
a and b are shown in blue. The green
arrows indicate vq.

First, note that a,b lie on the segment l, and
a′,b′ lie on the segment r, which implies that
b−a = dôl , and b′−a′ = dôr:

b′−a′ = (b+ tv̂qr)− (a+ tv̂ql )
=⇒ b′−a′ = (b−a)+ t(v̂qr− v̂ql )

=⇒ dôr = dôl + t(v̂qr− v̂ql )

=⇒ v̂qr− v̂ql =
d
t
(ôr− ôl) =−R(ôr− ôl)

=−L(ôr− ôl).

This is only possible if ôl × ôr is oriented op-
posite to v̂ql × v̂qr.

Invariant 5. Given two adjacent segments l and r in a cross section C, the vector
ôl× ôr must be oriented opposite to v̂ql × v̂qr.

If the angle between the segments (between ôl and ôr) is θ , the magnitude
of ôr − ôl is

√
2−2cos(θ), and

∥∥v̂qr− v̂ql
∥∥ = v ·

√
2−2cos(π−θ). Here, v is

magnitude of the plane velocity (projection onto the joint plane P) of Ji. Given
ω = θ/2, we get:

−L =−R =
d
t
= v̂l− ôl

∥∥v̂qr− v̂ql
∥∥

‖ôr− ôl‖
= v ·

√
sin2 (π/2−θ/2)√

sin2
θ/2

= v · cot(ω) .

Invariant 6. The velocity of a joint J associated with segments l and r, is a constant
vector Jv = v̂l−

∥∥v̂ql
∥∥ ôl · cot(θ/2), where θ is the angle between ôl and ôr.

2.4 Cross Section Interval Folding
Definition 9. We consider a cross section composed of segments 〈s1,s2, · · · ,sn〉
with total length X (i.e., ∑ |si|= X). If we allow this cross section to evolve for time
T , we obtain a new cross section 〈r1,r2, · · · ,rn〉. The evolution forms a cross section
interval C of length T . The initial cross section is denoted as CI = 〈s1,s2, · · ·sn〉,
and the final cross section is denoted as CF = 〈r1,r2, · · ·rn〉.
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(a) (b)

Figure 2: Trapezoid formed by evolv-
ing line segment (a), and the gluing of
two adjacent trapezoids (b).

In this section, we focus on a sin-
gle cross section interval C with segments
〈s1,s2, · · ·sn〉 evolving over time T . First con-
sider the surface traced out by an individual
segment si. Since the endpoints of si move
in a straight line, each segment traces a trape-
zoid. We define the height of a trapezoid to
be the distance between its parallel sides.

Lemma 1. The surface traced out by a seg-
ment s in time T is a trapezoid Zs of height T
(Figure 2a). Specifically, if L,R are the initial
left and right endpoints of s, and L′,R′ are the final endpoints, Zs = LL′R′R is the
corresponding trapezoid (Figure 2a).

Proof. By Invariant 6, we know that the joint trajectories are straight lines, which
form the non-parallel sides. Since the non-joint nodes on a segment all have the
same velocity, the initial and final segment positions form the parallel sides.

Lemma 2. Consider a joint J with segments l and r, which has zero orthogonal
joint velocity (i.e., v⊥l = v⊥r = 0). The gluing of trapezoids Zl and Zr along the joint
trajectory TJ is isometric to a larger trapezoid.

Proof. We consider the evolution of joint J for time T (Figure 2b). First consider
a coordinate system with (v̂l , ôl) as the basis. Since, v̂l = vql , from Invariant 6, we
know that −Rl =

∥∥vql
∥∥cot(ω) = cot(ω). So, Jv = v̂l− ôv cot(ω). Therefore,

cot(∠LJJ′) =
−T Rl

‖T v̂l‖
= cot(ω) =⇒ ∠LJJ′ = ω.

Similarly, we consider a coordinate system with (v̂r, ôr) as the basis, with −Lr =
‖vqr‖cot(ω) = cot(ω). Since Jv = v̂r− ôr cot(ω), we get

cot(∠RJJ′) =
T Lr

‖T v̂r‖
=−cot(ω) =⇒ ∠RJJ′ = π−ω.

This implies that cot(∠RJJ′)+ cot(∠LJJ′) = π . So, the gluing of Zl and Zr along
the joint trajectory JJ′ is isometric to a larger trapezoid.

Lemma 3. Consider a joint J with segments l and r with non-zero orthogonal
velocity; see Figure 3. The gluing of trapezoids Zl and Zr along the joint trajectory
TJ is isometric to a larger trapezoid.

Proof. As before, let LJR and L′J′R′ represent the initial and final positions of
the segments respectively. We also construct the projection of L′J′R′ to the joint
plane P as LqJqRq. The evolution of the projection is analogous to the setting in
Lemma 2. Therefore, ∠LJJq = ω = θ/2 and ∠RJJq = π−ω .
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Consider the positive z-axis along the joint orthogonal velocity (i.e., normal to
the joint plane P). We define the orthogonal displacement vector as

−→
JJ′ = zk̂. Let

the positive x-axis be along JJq. So, the unit vector along
−→
JJ′ is 1√

1+z2
(1,0,z).

Since ∠JqJR=ω , the unit vector along
−→
J R is (cosω,sinω,0). So, we compute

cos∠RJJ′ = cosω/
√

1+ z2. Similarly, since ∠JqJL = π−ω , the unit vector along
−→
J L is (−cosω,sinω,0), which implies that cos∠LJJ′ = −cosω/

√
1+ z2. Fi-

nally, since both ∠LJJ and ∠RJJ′ are less than π , and cos(∠LJJ′)=−cos(∠RJJ′),
we conclude that ∠LJJ′+∠RJJ′ = π . Since LJJ′L′ and RJJ′R′ are both trapezoids,
this implies that the resulting gluing along JJ′ is isometric to a larger trapezoid.

Definition 10. Consider a cross section interval C formed from a cross section
C evolving over time T . By Lemma 1, the segments 〈s1,s2, · · ·sn〉 form trapezoids
〈Z1,Z2, · · ·Zn〉 each of height T , where Zi represents the ith trapezoid in folded
space. The folded surface F T

C corresponding to C is formed by successively gluing
the trapezoids Zi to Zi+1 along the trajectory of joint Ji (for 1 ≤ i < n) to form a
connected shape.

Definition 11. Given a cross section interval C with folding F T
C , the initial-

boundary of a folding F T
C is defined as the union of the initial cross section seg-

ments in CI , where the right endpoint of the ith segment is attached to the left
endpoint of the (i+1)st segment. Similarly, the final-boundary of F T

C is defined as
the union of the final segments in CF .

Theorem 4. Consider a cross section interval C formed from a cross section C
evolving over time T to form a folding F T

C . Further assume that the total length of
cross section C is X units. Then, F T

C is isometric to a X×T strip of paper.

Proof. By repeated use of Lemma 3, we know that F T
C is isometric to a trapezoid.

Let L,L′ be the initial and final positions of the left (non-parallel) edge of the trape-
zoid, and let R,R′ be the initial and final positions of the right edge of the trapezoid.
Say that C comprises of segments 〈s1,s2, · · ·sn〉. From Invariant 4, we know that
the left pace of s0 is zero. So, the line LL′ follows the trajectory of v̂0, which is
orthogonal to the segment s0. In other words, the left edge of the trapezoid has
length T , and is orthogonal to the parallel edges. Similarly, because the right pace
of sn is zero, the right edge of the trapezoid is also orthogonal. Therefore, F T

C is
isometric to a right angled trapezoid (i.e., a strip) of length X and width T .

Remark 1. The trajectory of a joint forms a crease in the folded state.

2.5 Multiple Cross Sections
Definition 12. Given two cross section intervals C and D , such that CF and DI are
equivalent, we say that D is next-compatible with C and C is previous-compatible
with D . Two cross sections C = 〈s1,s2, · · ·sn〉 and D = 〈r1,r2, · · ·rm〉 are equiva-
lent if and only if C and D correspond to the same sequence of segments after the
deletion of all zero length segments.
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(a) The trivial cross
section.

(b) New zero length segment inserted at left end-
point. Existing segment reverses velocity.

(c) Evolution continues

(d) New zero length segment (red) inserted between two existing seg-
ments with the same velocity as the rightmost segment. Existing seg-
ments retain their velocities.

(e) Length of leftmost (blue)
segment becomes zero.

(f) Leftmost (zero length) segment is deleted. The
remaining two segments continue in the same di-
rection. Overall strip width has been reduced

(g) Side view of strip narrowing gadget,
with layers separated. The red lines denote
the boundaries of the cross section.

Figure 4: Cross section evolution of a strip narrowing gadget [Demaine et al. 00].

Definition 13. A cross section sequence is a sequence is an ordered list of cross
section intervals 〈C1,C2, · · ·Cn〉, such that Ci is next-compatible with Ci−1 for all
i ∈ [2,n]. This is equivalent to stating that Ci is previous-compatible with Ci+1 for
all i ∈ [1,n−1]. Note that we do not care about the velocities of the segments.

Figure 3: Evolution of a joint with non-zero
orthogonal velocity from LJR to L′J′R′. The
blue dotted lines are the projection of the final
state to the joint plane P .

We will represent our full con-
struction as a valid cross section se-
quence. Given a cross section se-
quence 〈C1,C2, · · ·Cn〉, the transition
from Ci to Ci+1 corresponds to the
deletion of one or more length zero
segments from Ci, and the addition of
one or more zero length segments to
obtain Ci+1. Figure 4 shows a simple
example.

Definition 14. Given a cross section
sequence 〈C1,C2, · · ·Cn〉, We obtain
F T

i as the folding of cross section Ci.
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For each i≤ n−1, we attach F T
i to F T

i+1 by gluing the final cross section of Ci to
the initial cross section of Ci+1. This results in the final folding of the cross section
sequence.

Proposition 1. In addition to the creases formed along the trajectory of joints
(Remark 1), creases are also created when a segment changes velocity. For in-
stance, consider two adjacent cross sections C and D , with corresponding seg-
ments sC ∈ CF and sD ∈DI , where sC and sD are identical except for their velocity
direction. Then, the segment sC (same as sD) forms a crease in the folded state.

2.5.1 Evolution Corresponds to Flat Paper
In this section we will demonstrate that the folding formed by cross section evolu-
tion is realizable from a sheet of flat paper. We note here that our construction may
still result in self intersections.

We consider a cross section sequence 〈C1,C2, · · ·Cn〉, where each cross section
interval Ci has evolution time Ti. We then use Theorem 13 to attach the sequence
of X×Ti strips, to form a complete X×T sheet of paper, where T = ∑Ti.

Theorem 5. Consider a cross section sequence C = 〈C1,C2, · · ·Cm〉 where each
cross section interval Ci evolves over time Ti to form a folding Fi such that In-
variants 1-6 hold for all segments and joints in each of the cross sections involved.
Then, the folding FC obtained by successively gluing the final boundary of Fi to
the initial boundary of Fi+1 (for each 1 ≤ i < m), is isometric to a X ×T strip of
paper, where T = ∑Ti.

Proof. From Theorem 4, we know that each Fi is isometric to a strip Zi of size
X ×Ti. Further, the initial and final cross sections of Ci form the parallel sides of
Zi (of length X). The gluing of n strips of size X ×Ti forms a strip of size X ×T .
So, the final folding is isometric to a sheet of paper with size X×T .

3 Orthogonal Terrains

Figure 5: Example orthogonal terrain.

In this section, we outline a construction of
orthogonal terrains with arbitrary rational
extrusion heights. In our construction, the
cross section at will always be on the x− z
plane. To simplify the presentation, we will
consider an uniform X −Y grid, with arbi-
trary rational extrusion heights correspond-
ing to every grid square (Figure 5).

Definition 15. An n×m rational grid extrusion is a 3-dimensional structure, whose
projection onto the x−y plane forms an unit grid of size n×m. The 3-dimensional
structure is formed as the union of n×m boxes, each with an unit base such that
the height of the (i, j)th box is Ei, j where Ei, j is a rational number.
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Figure 6: Column extrusion with heights
{0,1,3,1,2,0}.

We consider each “column” of
a given grid extrusion separately as
an individual column extrusion (Fig-
ure 6). We will construct each of the n
columns independently (Figure 8), and
attach them together with column con-
nectors (Figure 12).

We begin by choosing an 2ε = 1/K where K is a positive integer. This is chosen
such that Ei, j is an integral multiple of 2ε for all i, j.

3.1 Construction of Column Extrusion by Level Shifting
First, we consider a single column (Figure 6) of the orthogonal terrain {Ei,1,Ei,2, · · · ,Ei,n}.
We denote the column extrusion heights as {H1,H2, · · ·Hn}, where H j = Ei, j. Con-
sider the decomposition of T into the following time intervals:

T = 1+D1 +1+D2 +1+D3 + · · · · · ·+1+Dm−1 +1. (1)

Here, the time corresponding to the ith 1 is realized as the surface at height Hi, and
the time corresponding to Di = |Hi−Hi+1| is the transition between Hi and Hi+1.

Figure 7: Cross section change from level i to i+ 1. The accordion segments are
separated for illustration. In reality, the accordion is folded flat. Zero distances
are marked by φ . The velocities of horizontal and vertical segments are shown by
purple and green arrows respectively.

To construct the column, we will present a cross section sequence. First we
describe a down-shift gadget. That is, consider i, such that Hi+1 = Hi−2ε ·d < Hi.
Figure 7 shows the cross section evolution. This cross section comprises of a two
vertical lines separated by a top horizontal line. The vertical lines are connected
to the top segment with a sequence of 2k horizontal segments that accordion back
and forth. During each 1-interval, all segments move along the positive y direction
(Figure 8a),to create the ith level. Subsequently, during the level shift, all segments
move in the x− z plane (Figure 8b, 8c).

Property 1. The number of accordion folds during horizontal evolution (along the
y axis) must be even.
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(a) Higher initial level.
Top segment moves down.

(b) Two segments created. New segments
are aligned with top segment, and move
down. Vertical segments move inwards.

(c) Two more segments created. Vertical segments reverse direction.

(d) Level shift completed with four new horizontal seg-
ments.

(e) Flat folded state.

Figure 8: Level shifting gadget. The separation along the Y direction illustrates the
layering. The red line denotes the boundary of the cross section.

The top segment moves downwards in intervals of 2ε . During this process, the
horizontal segments move downwards continuously (Figure 8b, 8c). For the first
ε time interval, a new horizontal downwards moving accordion segment of length
zero is created at both accordions, and the vertical segments move towards each
other along the x-axis (Figure 8b). For the next ε time interval, similar (oppositely
oriented) accordion segments are created at the lowest position. This time, the ver-
tical segments move outwards (Figure 8c), until they reach their original position
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(Figure 8d). Overall, two sets of accordion segments on either side are added, and
the height of the top segment decreases by 2ε .

In the case that Hi+1 = Hi + 2ε · d, the level up-shift is simply the down-shift
evolution in reverse (Figure 12). This transition is only possible if the initial number
of accordion segments in the Hi cross section is at least 2d. Specifically, assuming
that the minimum height is zero, we have the following lemma.

Lemma 6. If the number of accordion segments at level Hi is li, then the number
of accordion segments after transitioning to level Hi+1 is li+1 = li− (Hi+1−Hi)/ε .
Specifically, if the number of layers at level 0 is l, then the number of layers at level
max{Hi} is l−max{Hi}/ε .

Corollary 7. Since the number of accordion segments can never be negative, the
minimum number of layers at at level zero is L = max{Hi}/ε . This also ensures
that every other level shift is also possible.

Corollary 8. The length of the cross section at a zero level is at least 1+2 ·L · ε .
So, the minimum possible length of the cross section under our construction is
1+2 ·max{Hi}.

This provides the minimum width of any strip required to construct a column
extrusion. Also the minimum required strip length is given by

T = 1+D1 +1+D2 +1+D3 + · · · · · ·+1+Dm−1 +1 = m+
m−1

∑
i=1
|Hi+1−Hi| .

Theorem 9. A given column extrusion with heights {H1,H2, · · ·Hn}, can be con-
structed from a strip of paper with size X×T , where

X ≥ 1+2 ·max{Hi} , T ≥

(
m+

m−1

∑
i=1
|Hi+1−Hi|

)
.

3.2 Multiple Column Extrusions form a Grid Extrusion
Now, we consider multiple column extrusions evolving in parallel. Henceforth, we
will refer to the evolution of column cross sections along the y-axis (the “1”s in
Equation 1) as horizontal evolution. Meanwhile, a vertical transition will refer to
level shifting evolution in the x−z plane. Let C (i) be a valid cross section evolution
corresponding to the ith column in the grid extrusion (as defined in Section 3.1).
As before, for simplicity, we will assume that the minimum height in each column
is zero

(
i.e. min j

{
Ei, j
}
= 0
)
.

We consider the parallel evolution of each column extrusion C (i).

• During the horizontal evolution of row j, each C (i) evolves along the positive y
direction for time 1 at height Ei, j.

• During the vertical transition from row j to j + 1, each C (i) evolves for time
Di j =

∣∣Ei, j+1−Ei, j
∣∣.
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(a) Column starts
at initial level Hi

(b) Two segments created. New
segments are aligned with top
segment, and move down.

(c) Segments reverse
direction

(d) Cross section returns to initial state,
and continues horizontal evolution. (e) Flat folded state

Figure 9: Up-down gadget. The separation along the Y direction illustrates the
layering. The red line denotes the boundary of the cross section.

Note that the vertical transition times are different for each C (i). Since we want to
glue the sequence of

{
C (i)

}
s, our constructions must have equal transition times.

Definition 16. We define the common transition time from row j to row j+1 as

D j = max
j

{
Di j
}
= max

j

{∣∣Ei, j+1−Ei, j
∣∣} .

So, the slowest column dictates the transition time, and the faster columns have
to stall for additional time. To achieve this, we define an up-down gadget, which
is very similar to our original level shifting gadget. This up-down gadget (Fig-
ure 9) evolves for 2ε time, but the height of the corresponding column remains
unchanged. This gadget starts at a height Hi, and for the first ε time interval (Fig-
ure 9b), evolves exactly the same way as the down-shift gadget (Figure 8b). For
the second ε time interval, the cross section evolves in reverse (Figure 9c), back to
it’s original state at height Hi (Figure 9d).

So, the vertical transition of C (i) needs to use a total of (D j−Di, j)/(2ε) up-
down gadgets (each gadget stalls for 2ε time). We obtain the following proposition,
as a consequence of Theorem 9.

Proposition 2. By Theorem 9, the extrusion for column i is constructed from a
paper strip with size (

1+2 ·max
j

{
Ei j
})
×

(
m+

m−1

∑
j=1

D j

)
.
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3.3 Gluing Column Extrusions together with Strip Connectors

Now that all the column extrusions
{
C (i)

}
have the same evolution time, we would

like to glue them together into a continuous strip of paper. In order to achieve this,
we consider the time-axis boundaries of C (i) (red line in Figure 8, 9). First, note
that the boundaries always lie on the same plane, corresponding to the zero level.
We will constrain this to be on the plane z = 0. Now, let us consider the motion of
the boundary on this plane.

• During the horizontal evolution of any row j, both boundaries move along the
positive y-axis with unit velocity (Figure 8a, 8d, 8e, 9a, 9d, 9e).

• During the vertical transition from row j to j + 1, both boundaries move back
and forth along the x-axis with unit velocity. (Figure 8b, 8c, 9b, 9c). We can
divide the vertical transition into k = D j/(2ε) intervals of length 2ε . Each of
these interval segments is either a up-shift, a down-shift, or a up-down gadget.

– In the first half of each interval (ε time), the left and right boundaries move
towards each other; i.e., the left boundary moves along the positive x-axis, and
the right boundary moves along the negative x-axis for a distance of ε .

– In the second half of each interval, the left and right reverse velocities, and
return to their original positions.

– After D j time, the boundaries return to their original positions, and resume
their movement in the positive y direction.

Figure 10: Boundaries
of adjacent column ex-
trusions (D j = 8ε). φ

denotes a zero distance.

We will attempt to construct a cross section sequence
whose left and right boundaries line up with the adjacent
column extrusion boundaries shown in Figure 10. No-
tice that the distance between corresponding points on the
boundaries varies between 0 and 2ε . So, the connector
strip must have width at least 2ε .

We outline a construction of a 2ε width strip, as shown
in Figure 11. During horizontal evolution, the cross sec-
tion comprises of two vertical segments, each of length
ε , which move along the same trajectory in the positive
y-direction (during horizontal evolution Figure 12a, 12k).
Now, consider a transition of length D j divided into in-
tervals of length 2ε , each of which evolves according to
Figure 11.

• The vertical segments move outwards with unit velocity
to match the outward moving boundaries of the adjacent
strips. An upwards moving horizontal segment of length zero is created between
the two existing segments (Figure 12b).

• After time ε , the length of the vertical segments become zero, and the horizontal
segment spans the 2ε gap between the column boundaries (Figure 12c). Notice
that that the boundary of the connector maintains its z coordinate (Figure 11).
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• Then the connector segments reverse velocities, and retrace their path for ε time
(Figure 12d), until the vertical segments become length ε , and the horizontal
segment disappears (Figure 12e).

• The entire process repeats D j/(2ε) times (Figure 12f, 12g, 12h).

The completed connector gadget is shown in Figure 12i, 12j. We show the
connector gadget attached to an up-shift gadget in Figure 12h, 12k.

Figure 11: Cross section evolution of column connector gadget.

3.4 Size of Construction
We define Mi = max j

{
Ei j
}

. From Proposition 2, we know that each column extru-
sion strip C (i) has width

(
1+2 ·max j

{
Ei j
})

= 1+2 ·Mi. We can ignore the left,
and right vertical strips for the leftmost, and rightmost columns. So, the leftmost
and rightmost columns use strips of width (1+M0) and (1+Mn) respectively.

Additionally, we have n− 1 strip connectors, each of width 2ε . So, the total
width of the orthogonal terrain construction is

X = 2(n−1) · ε +n+2 ·
n

∑
i=1

Mi−M0−Mn.

Our construction is also valid for any ε ′ = ε/(2k), where k is an integer. In other
words, we can make ε arbitrarily small.

Theorem 10. Using the time evolution (y dimension) from Proposition 2, we con-
clude that a grid extrusion can be folded from a strip of size X×T , where

X = n+2 ·
n

∑
i=1

Mi−M0−Mn +o(1), T = m+
m−1

∑
j=1

D j.

3.5 Optimality
Consider a n×n orthogonal terrain where the highest points along x-axis are M =
max j Ei j, and the maximum deltas along the y-axis are D j = maxi ‖Ei, j−Ei, j+1‖=
M. Now, we consider a sort of worst case orthogonal terrain defined as follows:

Ei j =

{
M if (i+ j) is even,
0 if (i+ j) is odd.

This forms a checkerboard alternating between the minimum and maximum
heights. We assume that the top faces of the terrain form axis aligned squares in
the unfolded state, The longest line formed along either axis is the total length of
the top surfaces plus the sum of the height changes across the axis, which gives

L = n+
n

∑
i=1

M = n+(n−1) ·M.
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(a) Initial
height.

(b) Connector moves outwards. (c) Connector
at maximum
width.

(d) Connector moves inwards. (e) Back to (a). (f) Same as (b).

(g) Same as (d). (h) Level shift complete, and next level continues.

(i) Connector
gadget.

(j) Side view. (k) Flat folded
state.

Figure 12: Column gadget attached to a single column connector gadget. The red
line demarcates the interface between the two gadgets.
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We conclude that the minimum required size of the folding is L×L.
From Theorem 10, we know that the terrain can be folded from a X×Y strip of

paper, where X = n+2(n−1) ·M+o(1) and Y = n+(n−1) ·M. Since Y = L, and
X < 2L (assuming an appropriately small value of ε), our construction results in a
folding is within a factor two of the optimal paper usage, under the aforementioned
assumption.

This paper provides a universal construction to fold orthogonal terrains that
is optimally efficient over its domain, improving upon previous constructions that
were less efficient but applicable to a more general class of target shapes, i.e., or-
thogonal polyhedra. Some natural questions arise. Can one improve the efficiency
of the construction for a more restricted set of terrains? For example, our lower
bound is achieved by a maximum height-difference checkerboard; perhaps one can
improve folding efficiency for terrains that are more slowly varying. Our construc-
tion only covers the terrain from above, allowing the folding to exist anywhere in
the space below the terrain. This allocation is necessary when points of the terrain
have more than 2π material at a point. What is the minimum area of paper that can
exist away from the target terrain over all possible foldings?

Acknowledgements: We thank Martin Demaine, Herng Yi Cheng, Aviv Ovadya,
and Tomohiro Tachi for helpful discussions about this family of problems at 5OSME.
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