
PersiFS: A Versioned File System with an Efficient Representation

Dan R. K. Ports, Austin T. Clements, and Erik D. Demaine ∗

The availability of previous file versions is in-
valuable for recovering from file corruption or user
errors such as accidental deletions. Versioned file
systems address this need by retaining earlier ver-
sions of changed files. Many existing file systems,
such as Plan 9, WAFL, AFS, and others, use a snap-
shotting approach: they record and archive the state
of the file system at periodic intervals. However,
this fails to capture modifications that are made be-
tween snapshots. Our system, PersiFS, is continu-
ously versioned, meaning that it stores every mod-
ification, and thus allows access to the file system
state as it appeared at any specified time. To make
this feasible, we use a number of efficient data struc-
tures to optimize both access time and disk space.

PersiFS directly exposes access to past file re-
visions through the file system interface, allowing
convenient access with standard file system tools.
The current version of the file system tree is avail-
able read-write at /persifs/now, and read-only
views of previous versions are automatically mounted
simply by specifying a timestamp instead of “now”.
No special tools or per-file version numbers are re-
quired, though convenience tools exist, e.g. for list-
ing all revisions of a particular file.

Efficiently storing all previous revisions of each
file presents a new set of challenges because of the
volume of data involved. Our major contribution
is a compact representation that supports efficient
queries and modifications. Most previous continu-
ously versioned systems, such as CVFS, VersionFS,
and Wayback, use a log-based representation that
requires an expensive scan of the log to access ear-
lier revisions, and periodic snapshots. Instead, Per-
siFS uses partially persistent data structures, which
are data structures that can answer queries about
any of their previous states.

PersiFS stores all past and present file meta-
data in a partially persistent B+-tree, eliminating
the need for logs and snapshots. Our partially per-
sistent B+-tree provides read-write access to the cur-
rent revision and read-only access to previous revi-

∗MIT Computer Science and Artificial Intelligence Labo-
ratory; {drkp,aclements,edemaine}@mit.edu

sions with theoretical guarantees on worst-case per-
formance. Reading from any revision or modify-
ing the current revision requires disk accesses only
logarithmic in the size of that revision, and com-
mitting the current revision does not require any
disk accesses. Thus, accesses and modifications re-
quire approximately as little time as standard, un-
versioned B+-tree-based file systems take to operate
on the current revision. Moreover, unlike logging
designs, PersiFS can access any previous revision
with the same efficiency, and there is no need to
maintain a separate copy of the current revision.

Since disk sizes are not yet infinite, PersiFS ex-
ploits the similarity between files in different revi-
sions in order to minimize the amount of storage
space required. This is achieved with indirect stor-
age: the B+-tree contains only metadata and point-
ers to file contents stored in a separate structure
called the superblob. File contents are divided into
chunks using the LBFS variable-sized segmentation
algorithm, which places chunk boundaries based on
content rather than at fixed offsets. Like Venti, Per-
siFS identifies chunks by a hash of their contents, so
it does not need to store identical chunks more than
once. The result is that PersiFS can share identical
content on disk between any revision of any file,
thus greatly reducing file storage costs.

Our early prototype of PersiFS includes both
the representation described above and a standard
log-based backend. Comparison measurements in-
dicate that PersiFS’s representation yields substan-
tially better performance than logging for many work-
loads, as well as significant improvements in stor-
age costs, without sacrificing the speed of regular
access. This system also provides worst-case guar-
antees per operation, whereas snapshotting gener-
ally significantly slows down system performance
during snapshot operations.

Current work focuses on refining our implemen-
tation and optimizing performance. In particular,
we are researching techniques for rearranging file
chunks on disk to exploit locality. We are also adding
support for flexible retention and expiration policies
to reduce storage usage.


