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Abstract. We consider the problem of finding a planar embedding of a
(planar) graph with a prescribed Euclidean length on every edge. There
has been substantial previous work on the problem without the planarity
restrictions, which has close connections to rigidity theory, and where it
is easy to see that the problem is NP-hard. In contrast, we show that the
problem is tractable—indeed, solvable in linear time on a real RAM—for
planar embeddings of planar 3-connected triangulations, even if the outer
face is not a triangle. This result is essentially tight: the problem becomes
NP-hard if we consider instead planar embeddings of planar 3-connected
infinitesimally rigid graphs, a natural relaxation of triangulations in this
context.

1 Introduction

Given a graph and the lengths of the edges from a planar straight-line drawing of
a (planar) graph, can we reconstruct the drawing? When is this reconstruction
unique? Can we recognize realizable length assignments? These three problems
have an extensive history, having been studied in the fields of computational
geometry [8, 14, 26, 27], rigidity theory [7, 16, 18], sensor networks [5, 25], and
structural analysis of molecules [1, 9, 17]. The reconstruction problem arises fre-
quently when only distance information is known about a given structure, such
as the atoms in a protein [1, 9, 17] or the nodes in an ad-hoc wireless network [5,
24, 25]. A reconstruction is always unique and easy-to-compute for a complete
graph of (exact) distances, or any graph that can be “shelled” by incrementally
locating nodes according to the distances to three noncollinear located neighbors
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Fig. 1. Locating a
vertex from the
distances to three
located neighbors.

(Fig. 1). More interesting is that such graphs include visibil-
ity graphs [8] and segment visibility graphs [14]. In general,
however, the reconstruction problem is NP-hard [27], even
in the strong sense [26]. The uniqueness of a reconstruction
in the generic case (in 2D) was recently shown to be testable
in polynomial time by a simple characterization related to
generic rigidity [16, 18], but this result has not yet lead to
efficient algorithms for actual reconstruction in the generic
case.

Planar embeddings. We consider a variation on this basic
problem of reconstruction from distances: the graph is pla-
nar and the planar straight-line drawing must be a planar
embedding (edges not incident in the graph should not be incident in the plane).
Our problem is then, given a planar graph with prescribed lengths on the edges,
to construct a planar embedding of the graph that adheres to the specified edge
lengths, and determine whether this embedding is unique, or determine that no
such embedding exists.

Applications. The restriction to planar embeddings makes sense in many ap-
plications, for example when the underlying structure we want to reconstruct
is known to be planar. Another application specifically in the context of graph
drawing is the generation of linear cartograms. A cartogram is a map in which
the size of each entity is proportional to some value associated with the entity
[4]. Area cartograms are the most common example, in which the area of each
region is proportional to some function of the region, e.g., its population. In
linear cartograms, we want to display a network in such a way that the length
of a connection is related to some characteristic of the connection. In common
maps, this length is correlated (through a planar projection of the sphere) with
the length of the connection in the real world. However, we may be interested in
showing, e.g., the traveling time for each connection, or the traffic on each con-
nection. The construction of such a map can be modeled by defining the length of
each edge appropriately and trying to realize the graph with these edge lengths.
In real-life applications, we would also like to keep some resemblance with the
original network, and so we may restrict where the vertices of the graph can be
embedded. However, as we will see, the problem is already hard without this
restriction.

Our results. We prove the following main results:

1. Even for planar 3-connected graphs, deciding planar embeddability with unit
edge lengths is strongly NP-hard, even when the embeddings are guaranteed
to be infinitesimally rigid. 1 This improves upon results in [13], where the

1 Infinitesimal rigidity is a strong form of rigidity, stating that no first-order motion
of the vertices preserves the lengths of the edges to the first order. See e.g. [15] for
formal definitions.



hardness is shown for 2-connected graphs with unit edge lengths and for 3-
connected graphs with arbitrary edge lengths. Another (aesthetic) difference
is that our reduction is directly from planar 3-SAT, rather than using a
synthetic problem as a bridge. See Section 3.

2. For planar 3-connected graphs, we can decide in O(|V |) time whether there
is a planar embedding with specified edge lengths in which only the out-
ermost face is not a triangle. Furthermore, such an embedding is always
unique up to rigid motions (translations, rotations, and reflections), and can
be constructed in O(|V |) time. More generally, we can find planar embed-
dings in which the triangular faces form a connected family of cells and the
nontriangular faces form a forest of cells. See Section 2.

These results give a fairly precise division between tractable and intractable
forms of planar embedding with specified edge lengths. To our surprise, triangles
seem to play a more fundamental role than other rigid structures, despite the
close connections between rigidity and embedding with specified edge lengths
[7, 16, 18]. Other than visibility graphs [8, 14] and dense graphs [1], our results
are the first positive results for efficient embeddings of (special) graphs with
specified edge lengths.

Model of computation. Even the simple task of embedding a triangle with given
side lengths in the plane and computing coordinates for the vertices involves
square roots. Thus, we do not know whether our embedding problems belong
to NP, and for our algorithmic results we have to assume the real RAM model
of computation [23] which supports constant-time exact arithmetic operations
(+, −, ×, ÷, √ ) on real numbers. This model is customary in computational
geometry. On the other hand, our NP-hardness result is in the standard Turing
machine model, and therefore must be careful to ensure that the input lengths
can be encoded in a number of bits that is polynomial in the input graph size.

2 Triangulated Graphs

Let G be a 3-connected planar graph. By Whitney’s Theorem, G has only one
topological embedding into the 2-dimensional sphere, or equivalently the faces in
any planar embedding of G are always induced by the same cycles [12, Chapter 6].
In particular, all embeddings of G have the same dual graph G∗, and once we
have fixed the outer face, the topological embedding into the plane is completely
determined. This is the basic ingredient for the following result:

Theorem 1. If G = (V, E) is a 3-connected graph with specified edge lengths,
we can decide in O(|V |) time on a real RAM whether there is a planar embedding
such that all faces are triangles, with the possible exception of the outer face.

Proof. Consider any planar embedding of G, which can be computed in O(|V |)
time [11]. If two or more faces are not triangles, then we can decide that the
desired realization is not possible because of Whitney’s theorem. If exactly one



face is not a triangle, that face must be the outer face in the desired realization.
If all faces are triangles, all the longest edges have to be part of the outer face,
which gives us at most two candidates T and T ′ for the outer face. If T is the
outer face, then T ′ must fit inside T while sharing the common edge, and vice
versa. This test leaves us with at most one candidate for the outer face fext.

All nodes in G∗\fext correspond to triangular faces. We pick a node f0 in this
graph, and compute coordinates for the vertices of the corresponding triangle
that realize the triangle edge lengths. Now we visit all nodes in G∗ \ fext using
breadth-first search from f0. When visiting a node fi, two options arise:

1. If all vertices of the face fi have already been assigned coordinates, we check
that all the edges in fi have the specified edge lengths.

2. If some vertex of the face fi has not been assigned coordinates, we know
that the other two vertices u, v of fi participate in another face fj that has
been already visited, and so they have already been assigned coordinates.
We can compute the coordinates of the third vertex using the specified edge
lengths and the restriction that fi and fj must lie on opposite sides of the
line segment uv by Whitney’s Theorem.

At the end, every edge in the graph has been checked whether it satisfies the
specified edge length, including the lengths of the edges of the outer face fext.
In the process, we visited each face once, and we spent constant time per face,
so, overall, the embedding process takes O(|V |) time.

We need to check that the realization that we constructed is indeed planar, to
avoid situations like the ones depicted in Fig. 2. A simple plane sweep would do
this in O(|V | log |V |) time. To get linear time, we first construct a triangulation
of the whole plane: We enclose all points in a large triangle T and triangulate
the area between T and the boundary of the outer face fext. To do this, we insert
an edge from an extreme vertex of V to a corner of T and triangulate the re-
sulting simple polygon in linear time [6]. Under the assumption that the original
embedding was planar, we obtain a graph which is a triangulation of T and is
embedded in the plane without crossings. On the other hand, if the original em-
bedding contains crossings, the triangulation algorithm will either (i) terminate
in error, or (ii) it will produce a subdivision of T which is topologically con-
sistent but whose embedding contains crossings. Topological consistency means
that the two triangle faces incident to an edge are embedded on different sides of
the edge, except for the edges of T where the other triangle is embedded inside
T . The planarity condition (ii) for a subdivision can be tested in linear time [10].

�

If all faces are triangles and we only want to test embeddability without
constructing coordinates, it suffices to use the following result.

Lemma 1. Let G be a triangulated planar graph with a designated outer triangle
T and an embedding which embeds the two triangles incident to an edge on
different sides of the edge, except for the edges of T . Then the realization is
planar if and only if, for all vertices v /∈ T , the sum of the angles that are
incident to v is 360 degrees.



Fig. 2. These examples show that we need to check that the embedding is indeed
planar.

It is clearly necessary that the angle sum is 360 degrees for all interior ver-
tices v. To see that this property is sufficient, imagine that the faces (triangles)
that we constructed are made of cardboard. The question becomes whether we
can arrange these pieces of cardboard, respecting the vertex adjacencies, with-
out overlap in the plane. This question appears in some proofs of the Koebe-
Andreyev-Thurston circle packing theorem [22, Chapter 8], and a positive answer
is easily shown by induction on the number of vertices: the triangles adjacent
to an interior vertex can be packed to form a star-shaped polygon P , which is
obviously planar; then you remove that vertex and retriangulate the polygon P .

For graphs of bounded degree, this can be tested in polynomial time in the
classical Turing machine model, with rational edge lengths as inputs, using sepa-
ration bounds for algebraic computations, see [3, 2, 20]. We may also allow square
roots of rationals as inputs. (Otherwise, it will be difficult to come up with in-
teresting examples of realizable graphs with rational edge lengths.) For general
graphs, this algorithm is singly-exponential in the degree.

On the other hand, observe that, in the proof of the Theorem 1, we have only
used that the coordinates of the vertices can be computed by considering the
triangular faces in an appropriate order. To get this property, we only need that
each vertex of G is incident to a triangular face, and that the set of triangular
faces is connected in the dual graph G∗. Therefore, we can weaken the hypothesis
on G as follows: the subgraph of G∗ induced by vertices of degree 3 is connected,
and the subgraph of G∗ induced by vertices of degree larger than 3 is a forest.
Once we have fixed the outer face, these hypotheses would be enough to prove
the result.

3 NP-Hardness

To show the NP-hardness of our problem, we reduce from the P3-SAT (planar
3-satisfiability) problem, which is strongly NP-complete [21]. In an instance of
P3-SAT, we are given a planar bipartite graph whose nodes on one side of the
bipartition represent the variables v1, . . . , vn, and whose nodes on the other side
represent the clauses C1, . . . , Cm, and edges connect each clause to the three
variables it contains. Moreover, the variables can be arranged on a horizontal
line, and the three-legged clauses be drawn such that all edges lie either above or



below this line; and the graph can be drawn on a rectangular grid of polynomial
size as shown in Fig. 3, left [19].

. . .v1 v2 v3 v4 v5 vn . . .v1 v2 v3 v4 v5 vn

Fig. 3. Left: example of a planar 3-satisfiability instance. The variables can be arranged
on a straight line, and the clauses are represented as a vertex with three orthogonal
edges leaving from it and one bend in each edge. Right: High-level sketch of NP-
hardness reduction. We will make a rigid 3-connected structure that resembles the
bold lines.

The high-level workings of the reduction are as follows. We slant the grid into
a hexagonal grid to get angles that are multiples of 60 degrees. This slant will
allow us to make all lengths one. Furthermore, we modify the drawing so that all
the corners have angles of 120 degrees, and the three edges arriving at a clause
form angles of 120 degrees; see Fig. 3, right. We make a rigid structure that will
leave a tunnel for each edge connecting a variable with a clause. A variable will be
represented by a rigid structure that has two different realizations, representing
the truth assignment of the variable. The value of the literal will be transmitted
to the clause through the tunnel corresponding to the edge, and we will represent
the clause by a structure that can be realized if and only if at least one of the
literals is true. Furthermore, each of the lines in the figure will be represented by
a rigid 3-connected bar, like a “thick” line. This will be the basic trick to make
the whole graph 3-connected as well.

The construction relies on three basic rigid structures that are depicted on
Fig. 4, and that we explain in the following. In all cases, the grey regions represent
3-connected, rigid structures which are fixed. Firstly, in Fig. 4A, the edges p1q1

and p2q2 have the same length, and so do p1p2 and q1q2. Under these conditions,
in any realization of this structure, the edges p1p2 and q1q2 have to be parallel.
Secondly, in Fig. 4B, if the vertices p1 and p2, marked with squares, are fixed,
then the vertex marked with a circle has two possible positions, q and q′. This is
so because the distance between this vertex and p1 and p2 is fixed, and therefore
it has to be placed at the intersection of two circles centered at p1 and p2. Finally,
in Fig. 4C, there is a 3-connected structure that allows q to rotate around p.

Theorem 2. Deciding planar embeddability of a planar 3-connected graph with
specified edge lengths is NP-hard.

Proof. We have already described the general idea, so it only remains to describe
the gadgets that are used. For the tunnels, we need a structure that allows us
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Fig. 4. Assume that the grey regions are rigid and fixed. A. The segments p1p2 and q1q2

are parallel in any realization. B. The vertex q can only be realized in two positions.
C. How to make rotations while keeping 3-connectedness.

to fix the relative positions of both sides of the tunnel, while transmitting the
value of the literal through the tunnel. The value will be either true or false, so
we need a structure that allows two realizations.

In Fig. 5A the holder gadget is shown. Consider the upper half of it. Observe
that the two points that are marked with big dots, p1, p2, and the two points
that are marked with squares, q1, q2, represent a situation like shown in Fig. 4A.
Therefore, the bar that supports q1, q2 is always parallel to the one that supports
p1, p2, and the point q2 is always vertically above point q. The points q, q2 and p2,
implement the idea shown in Fig. 4B, and so p2 has only two possible placements
with respect to q, q2. Overall, this implies that the upper half of Fig. 5A can be
realized in two ways.

The holder gadget can be realized in four different ways: two of them keep
the relative position of both sides of the tunnel (A and B), while two of them
would move them (C and D). We can concatenate two of these gadgets with one
bend, as shown in Fig. 5E, in such a way that the realizations C and D are not
possible. Thus, the two sides of the tunnel are connected in a (globally) rigid
way. We define the transmitter to be the bar that is inside the tunnel, because it
will transmit the truth value of the literal from the variable to the clause. Below
we will discuss the possible realizations of the transmitter.

The structure that we have described is 3-connected, and so we can construct
a rigid 3-connected structure, as shown in Fig. 3, right, where the distance be-
tween the upper and the lower part will be defined later on by the height of the
variables. The sides of the tunnels taken together form a rigid structure in which
the transmitters and the variables can move: If a tunnel contains a bend, its two
sides can be connected rigidly by two holders, as in Fig. 5E. One can check that
the sides of a tunnel without a bend are always connected to a tunnel with a
bend, and therefore are also immobile. (Or we could introduce two bends in a
zigzag way to make an otherwise straight tunnel rigid in its own right.)

We still have to discuss how the variables, the transmitter, and the clauses
work.

For each variable we repeat the structure of the upper half of the holder
gadget, but with a thicker bar (variable-bar) inside; see Fig. 6. Consider the
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Fig. 5. A. The holder gadget. A–D. Four possible positions of the holder. E. Two
holders connected by a bend. This rigidly connects the sides of the tunnel.



realization of the structure assigned to true. On the sides of the variable-bar
that are facing the tunnels, for each literal that is not negated, we place an
indentation on it that prolongates the tunnel of the literal. For the literals that
are negated, we place such an indentation on the part of the variable bar that
faces the tunnel in the “false” realization of the structure; see Fig. 6. We have
to make the variable-bar large enough that tunnels for all occurrences of each
variable can be accommodated on its sides. (In Fig. 6, there are three tunnels
on each side.)

The graph that we have constructed so far is 3-connected and rigid. Fur-
thermore, whenever a literal is true, the transmitter bar inside the tunnel can
be pushed towards the variable-bar. Furthermore, we can transmit this “push-
ing information”, or pressure, through the tunnel, and also through the corners
using Fig. 5E, so that it can be used at the clause.

vi ≡ true

vi ¬vivi

vi vi¬vi

Fig. 6. A variable assigned to true.

Our next goal is to design a clause checker that is realizable if and only if one
of the three transmitters can be pushed towards its variable. It turns out to be
easier to solve the reverse problem: a clause that is realizable if and only if one of
the transmitters is pushed towards the clause. Therefore, we design a pushing-
inverter which we place on each tunnel just before the clause. It is described
in Fig. 7, where its two possible realizations are displayed. The inverter is 3-
connected, and inverts pressure towards the clause into pressure towards the
variable, and vice versa.

Finally, a clause is described in Fig. 8, with its relevant realizations. The
big dots in each literal indicate the two possible positions for the end of the
transmitter, and the one that is closer to the center indicates that the literal
is true (pushing towards the clause). In all cases, the position of the big dot in
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Fig. 7. An inverter. A–B are realizable, but C is not.

the center is completely determined by the values of li and lj . When all li, lj, lk
are false, then, the big dot in the center is too far from lk to be realizable; see
Fig. 8A. In the other cases, it is always realizable; see Fig. 8B–D for some cases.

To conclude, we summarize the argument why a realization of the graph
corresponds to a satisfying truth assignment. The clause checker can be realized
if and only if at least one transmitter is at the position closer to the clause
checker. This can only be the case if, at the variable side of the corresponding
inverter, the transmitter is pushed away from the clause checker. This pushing
is transmitted through all bends and holders to the variable wheels. It follows
that the literal must be true.

One can check by inspection that the clause-gadget is 3-connected, and there-
fore the whole construction is 3-connected. Furthermore, the lengths of the con-
structed graph are one because the vertices and edges lie on a hexagonal grid.
The grid has polynomial size. Therefore, we are using a polynomial number of
edges and bits, and so the reduction can be done in polynomial time. �

Observe that, when the graph is realizable, the realization is infinitesimally
rigid. In other words, its vertices cannot be infinitesimally perturbed in a way
that preserves the edge lengths to the first order. This condition is stronger than
rigidity, and implies that the underlying graph is generically rigid [15]. Therefore,
the problem remains NP-hard even when we know that the graph is generically
rigid.

The 3-SAT problem is NP-hard even if each variable occurs at most 6 times,
and this property is maintained in the reduction from 3-SAT to P3-SAT. There-
fore, the faces that participate in the variable gadget have bounded degree. By
filling the free space between the tunnels and on the outside by a triangulation,
we can make sure that all the faces have bounded degree. Therefore, the problem
remains NP-hard even if we assume bounded face degree.
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Fig. 8. A clause checker. The situation in A is not realizable, but the ones in B–D are
realizable.
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