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Abstract: We present a universal algorithm for constructing a locally flat-foldable
crease pattern transitioning between two arbitrary sets of parallel pleats across a di-
agonal ridge crease. In other words, we generalize uniaxial ridge level shifters. We
prove that such a transition is possible if and only if the number of input creases has the
same parity on both sides, and the alternating sum of the intercepts of the input creases
is the same on both sides. Finally, we show how such transition units can be useful for
terminating dense bouncing.

1 Introduction
In modern representational origami design, one widely used technique is a level shifter,
a structure that allows a crease pattern to transition from one axial height to another
[Lang 11]. Level shifters are often used to create figures that are not a single uniform
width — for example, insects with both thin legs and a wide shell, or human figures
with both detailed hands and feet but also wide clothing. One of the most common and
convenient ways to make a level shifter is by transitioning one set of parallel pleats to
another set across a ridge, where the spacing of pleats might differ on one side and the
other. This is known as a ridge level shifter, and it is well known that one can easily shift
from axial +1 to axial +2 using this method, as well as other integer heights [Abrashi 21].

However, beyond these well-known structures, existing level shifter methods do not
have a way to generalize to a more complex spacing of pleats. In this paper, we will
generalize ridge level shifters a step further by characterizing when parallel (axial) pleats
of arbitrary spacing have a (locally) flat-foldable transition, and when they do, give an
efficient algorithm to construct it. We also show an application of these generalized ridge
level shifters to solving the problem of dense bouncing in axial origami design.

1.1 Problem and Result
We set up our problem as follows; refer to Figure 1. Let A and B each be a set of parallel
semi-infinite creases (rays) starting on the x axis and forming an angle 0 < θ < 90◦

with the x axis, with A above the axis and B below the axis. Let {a1,a2, . . . ,am} and
{b1,b2, . . . ,bn} be the x-intercepts of the creases in A and B respectively, sorted in strictly
increasing order (from left to right). We assume the first crease of A and the first crease
of B have the same mountain-valley direction, and the creases within each set alternate
mountain/valley. We allow each crease in A∪B to be shortened, by starting the ray later
than the x axis.
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Figure 1: The problem statement: given two input sets of parallel creases (left), can we
construct a flat-foldable crease pattern that merges the two sets (right)? In this paper, we
prove that this is possible if and only if a1−a2+a3−a4+ · · ·am = b1−b2+b3−b4+ · · ·bn
and m ≡ n (mod 2).

We define the level-transition problem as follows: given inputs A,B,θ , when can we
construct a flat-foldable crease pattern consisting of finitely many creases that includes
an infinite subray of every crease in A∪B, and leftward and rightward infinite subrays of
the x axis? Thus we effectively combine A and B over a horizontal ridge.

Our main result is that a locally flat-foldable transition exists if and only if

a1 −a2 +a3 −a4 + · · ·am = b1 −b2 +b3 −b4 + · · ·bn, (1)
and m ≡ n (mod 2). (2)

We call this the alternating-sum condition. The parity equation (2) is also implied by
assuming that a1,b1 > 0 (and thus all ai,bi > 0), because then the sign of a1 −a2 +a3 −
·· ·am is positive for m odd and negative for m even.

2 Necessity
Theorem 1. If a flat-foldable transition exists between two sets of parallel creases A and
B with angle θ , then the alternating-sum condition is necessarily satisfied.

Proof. We use the generalized Kawasaki’s Theorem [Hull 20, Theorem 6.4] to prove this.
Kawasaki’s Theorem states that the alternating sum of angles around an interior vertex
must be 0 (implying that every interior vertex must have an even number of creases). The
generalized Kawasaki’s Theorem extends from a single vertex to any closed curve C that
does not intersect any vertices and stays interior to the paper; it states that, for any point,
successively reflecting the point over each crease visited by C will bring the point back to
where it started.

As shown in Figure 2, let C be a closed curve that intersects just the semi-infinite
creases of a hypothetical flat-foldable transition: the (possibly trimmed) semi-infinite
creases in A and B and the semi-infinite x-axis ridge creases. For convenience, we also
require C to pass through the origin p, and assume all x-intercepts are positive.
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Figure 2: A closed curve C that encloses the area to be filled by the transition, and arbi-
trary starting point p located at the origin.

The generalized Kawasaki’s Theorem implies that C intersects an even number of
creases (in order to preserve the orientation of the plane). In our situation, C crosses
m+n+2 creases where m = |A| and n = |B|. Therefore, m and n must be either both odd
or both even. This proves the parity equation (2) of the alternating-sum condition.

The x coordinate xi of p after reflecting over the first i creases in A can be expressed as
xi = (2a1−2a2+2a3−·· ·2ai)sinθ . For C to ultimately return point p back to the origin,
reflecting p over the creases in B from left to right must bring p to the same x coordinate
xm obtained by reflecting p over the creases in A from left to right. Putting together two
similar computations, we must have

(2a1 −2a2 +2a3 −·· ·2am)sinθ = (2b1 −2b2 +2b3 −·· ·2bn)sinθ .

Because 0 < θ < 90◦ and therefore sinθ ̸= 0, we can divide 2sinθ from both sides. The
equation then simplifies to equation (1) of the alternating-sum condition.

As an aside, we can also prove that a flat-foldable transition cannot exist if the creases
in A and B form different angles θA and θB (respectively) with the x axis. The generalized
Kawasaki’s Theorem around path C implies that reflecting p over creases in A and B not
only should bring p to the same x coordinate, but also to opposite y coordinates, so that
reflecting over the rightward x-axis crease causes the points to match. After reflecting p
over the creases in A, we obtain the point(

(2a1 −2a2 +2a3 −·· ·2am)sinθA, (2a1 −2a2 +2a3 −·· ·2am)cosθA
)
,

and after reflecting p over the creases in B, we obtain the point(
(2b1 −2b2 +2b3 −·· ·2bn)sinθB, −(2b1 −2b2 +2b3 −·· ·2bn)cosθB

)
.

For these two points to have equal x coordinates and opposite y coordinates, they must
have equal ratios of x coordinate over absolute y coordinate. In these ratios, the alternating
sums of ais or bis cancel, and we are left with tanθA = tanθB, so θA = θB.

3 Sufficiency
We now prove inductively that, if the input creases satisfy the alternating-sum condition,
then we can always construct a locally flat-foldable transition. In general, solutions are
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not unique. Here we will prove local flat foldability without considering mountain-valley
assignments or self-intersection, which is equivalent to Kawasaki’s Theorem [Demaine
and O’Rourke 07, Hull 20].

At a high level, our transition construction has two mostly independent parts. First,
we construct a graph of connections between the endpoints of the creases in A and B. Sec-
ond, we construct the actual crease pattern by adjusting the locations of these endpoints
(limited to “sliding” the vertex along its input crease) to make each vertex flat foldable.

3.1 1-to-nnn Construction

We start with the special case where A contains only one crease, which we call the 1-to-nnn
case; refer to Figure 3. By the parity equation (2), n must be odd. In this section, we
derive the crease pattern’s geometry using a sequence of equations.
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Figure 3: The case where set A has only one crease. For a given point Pbi , there is a
crease connecting it to Pa1 that makes an angle αi, and a crease connecting it to Pbi+1 that
makes an angle βi. In this example, the segment from Pbi−1 to Pbi goes downward, so βi−1
is negative.

Let Pa1 denote the endpoint of the a1 semi-infinite crease (to be chosen), let Pbi denote
the endpoint of the bi semi-infinite crease, and let Lbi be the distance from that point to
(bi,0). Let αi ∈ (−180◦,180◦] denote the angle of the crease that connects Pbi to Pa1 , and
let βi ∈ (−180◦,180◦] denote the angle of the crease that connects Pbi to Pbi+1 , where both
angles are measured relative to a rightward horizontal line.

Let us now develop constitutive relationships to relate the quantities βi,Lbi , and αi.
In general, each vertex Pbi will be connected to four creases: the crease connecting Pbi to
Pa1 at an angle αi, the crease going forwards from Pbi to Pbi+1 at an angle βi, the crease
going backwards from Pbi to Pbi−1 at an angle βi−1, and its original input crease at an
angle 180◦+ θ (measured relative to the positive x axis). Applying Kawasaki Theorem
to this vertex Pbi , as shown in Figure 3, gives us the following equation:

(αi −βi)+(θ −βi−1) = 180◦, i.e., βi =−βi−1 +αi −180◦+θ . (3)

Vertex Pbi is flat foldable if and only if equation (3) holds. This equation determines all βis
in terms of the first β1, which is another free input parameter in the range [−180◦+θ ,0).

Next let us look at the flat foldability of vertex Pa1 , as shown in Figure 4. By



ALGORITHMIC TRANSITIONS BETWEEN PARALLEL PLEATS

α3
α2

α1

θ Pa1

Figure 4: A closeup of the vertex Pa1 and the angles of its creases. Kawasaki’s Theorem
requires that the alternating sum of the angles of the creases around Pa1 add up to 180◦,
giving us equation (4).

Kawasaki’s Theorem, Pa1 is flat foldable if and only if the following equation holds:

180◦ = θ +α1 +(α3 −α2)+ · · ·+(αn −αn−1)

i.e., α1 −α2 +α3 −·· ·−αn−1 +αn = 180◦−θ . (4)

βbi-1

αi

La1 bi−a1

bi−bi
 
−1

bi
L

bi
L bi

 
−1

L− 

θ − βi−1
βi−1

Pbi

Pbi
 
−1

Pbi

Pa1

Figure 5: Left: the length Lbi for i > 0 can be derived by forming a triangle with the pre-
vious crease and an auxiliary horizontal line, then using the Law of Sines to yield equation
(5). Right: the angle αi can be derived by taking the difference in x and y coordinates of
Pbi and Pa1 , then taking the inverse tangent to yield equation (6).

Next we geometrically derive expressions for Lbi and αi; refer to Figure 5. For any
vertex Pbi , we can form a triangle with vertex Pbi−1 and a horizontal line through Pbi−1 ,
and use the Law of Sines to find that the length Lbi is given by

Lbi −Lbi−1

sinβi−1
=

bi −bi−1

sin(θ −βi−1)
, i.e., Lbi = Lbi−1 −

sinβi−1

sin(θ −βi−1)
(bi −bi−1). (5)

We define Lb1 to be 0 so that it meets the leftward infinite subray of the x axis. For αi, we
can calculate the difference in x and y coordinates of Pbi and Pa1 based on their respective
L values, then taking the inverse tangent gives us

αi = arctan
(

(La1 +Lbi)sinθ

a1 −bi − (La1 −Lbi)cosθ

)
. (6)

Finally, La1 can be determined by applying Kawasaki’s Theorem to Pb1 to compute the
angle of the crease from Pb1 to Pa1 as 180◦−θ −|β1| (with absolute values because β1 is
in fact negative), then applying Law of Sines to △Pb1Pa1(a1,0) to obtain

La1 =
sin(θ + |β1|)

sin |β1|
(a1 −b1). (7)
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3.2 1-to-nnn Flat Foldability
Next we prove that our 1-to-n transition construction is flat foldable if the alternating-sum
condition holds. We start with a base case:

Lemma 2. Given a 1-to-3 input satisfying a1 = b1−b2+b3, there is a locally flat-foldable
transition.

a0
b0 b1 b2

θ A

C

E D
Fφ

β

B

θ

Figure 6: The 1-to-3 base case. Vertices A,B,C,D,E,F are labeled for convenience.

See Figure 6. We omit the proof, which consists of several applications of Kawasaki’s
Theorem, Interior Angle Theorem, and Law of Sines.

Theorem 3. Given a 1-to-n input satisfying a1 = b1−b2+b3−·· ·+bn, there is a locally
flat-foldable transition.

Proof. The proof is by induction on n, which must be odd by the parity equation (2)
of the alternating-sum condition. The base case n = 1 is trivial: by equation (1) of the
alternating-sum condition, a1 = b1, so the transition is a single vertex with reflectional
symmetry through the x axis. Lemma 2 proves the base case n = 3. For the induction
step, assume n > 3 and assume the theorem holds for n−2.

We modify the instance by a sequence of two moves:

1. Shift bn−2 and bn−1 to the right by bn −bn−1, resulting in b′n−2 and b′n−1.
2. Remove b′n−1 and bn, which now overlap.

Here we generalize the 1-to-n transition problem to allow overlapping creases (temporar-
ily). By construction, the new input (A,B′) satisfies the alternating-sum condition. By
induction, it has a locally flat-foldable transition. To extend this transition to the original
input, we need to undo the two operations, and prove they preserve local flat foldability:

2. Add overlapping creases with x-intercepts b′n−1 = bn.
1. Shift b′n−2 and b′n−1 to the left by bn −bn−1.

We justify each of these two steps in turn.

Lemma 4. Given a locally flat-foldable 1-to-(n− 2) transition for (A,B), we can add
bn−1 = bn to B and construct a locally flat-foldable 1-to-n transition.1

Proof. We need to show that (3) holds for Pbn−1 and Pbn , (4) holds for Pa1 , and βn = 0 and
Lbn = 0 in order to merge back into the rightward infinite subray of the x axis.

1We thank Aloysius Ng and David Lee for their ideas and suggestions with regards to this part of the proof.
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Figure 7: Left: a 1-to-(n− 2) transition that is given to be flat foldable. Right: adding
overlapping creases bn−1 = bn preserves flat foldability for any bn−1 > bn−2.

Because the given 1-to-(n−2) transition is flat foldable, we know that Lbn−2 = 0 and
βn−2 = 0. We can plug these two values into (5) to obtain

Lbn−1 = Lbn−2 −
sinβn−2

sin(θ −βn−2)
(bn−1 −bn−2) = 0.

Then, we plug Lbn−1 = 0 into (6) to obtain

αn−1 = arctan
(

(La1 +Lbn−1)sinθ

a1 −bn−1 − (La1 −Lbn−1)cosθ

)
= arctan

(
La1 sinθ

a1 −bn−1 −La1 cosθ

)
.

Similarly, we can use (5) and (6) to calculate Lbn and αn:

Lbn =

(
Lbn−1 −

sin(βn−1)(bn−1 −bn−1)

sin(θ −βn−1)

)
= 0,

αn = arctan
(

(La1 +Lbn)sinθ

a1 −bn−1 − (La1 −Lbn)cosθ

)
= αn−1.

Next, we use (4) and (3) to prove that all the new vertices in this 1-to-n transition are
flat foldable. We know the given 1-to-(n− 2) transition was flat foldable, so (4) gives
α1 −α2 + · · ·+αn−2 = 180◦ − θ . Combining with αn = αn−1 from above, we obtain
α1 −α2 + · · ·+αn−2 −αn−1 +αn = 180◦− θ as desired. Similarly, we know from (3)
that Pbn−1 and Pbn are flat foldable by choosing βn−1 = −βn−1 +αn−1 − 180◦ + θ and
βn =−βn−1 +αn −180◦+θ , so we obtain

βn =−(−βn−2 +αn−1 −180◦+θ)+αn −180◦+θ ,

i.e., βn = βn−2 −αn−1 +αn = βn−2 = 0.

Therefore, the 1-to-n transition is locally flat foldable.

Lemma 5. Given a locally flat-foldable 1-to-n transition, the positions bn−2 and bn−1 can
be shifted by any amount ∆x and the transition will still be locally flat foldable, provided
that b1 ≤ b2 ≤ ·· · ≤ bn−2 ≤ bn−1 ≤ bn remains true.
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Figure 8: Left: A flat-foldable 1-to-n transition. Right: the same transition but with bn−2
and bn−1 shifted by some amount ∆x. The transition remains flat-foldable because the
alternating-sum condition is still true.

Proof. Because the crease pattern is flat foldable when ∆x = 0, we know that βn = 0,
which by (3) is satisfied only when

βn =−βn−1 +αn −180◦+θ = 0, i.e., βn−1 = αn −180◦+θ .

Similarly, using this value of βn−1, we can use (3) on bn−1 to find

αn −180◦+θ = βn−1 =−βn−2 +αn−1 −180◦+θ , i.e., βn−2 = αn−1 −αn.

On the other side of βn−2, βn−3 does not change with ∆x, so we can use (3) on bn−2 to
find an alternate expression for βn−2:

βn−2 =−βn−3 +αn −180◦+θ .

Setting these two expressions for βn−2 equal to each other gives

αn−1 −αn−2 =−βn−3 +αn −180◦+θ . (8)

This equation indicates that the difference αn−1 −αn−2 is not dependent on the value of
∆x because βn−3 and αn do not change with ∆x. Because these are the only two αi values
that are changing, (6) remains true, so a1 remains flat foldable. We have also shown that
βn−1 and βn−2 remain flat foldable, because we applied (3) to both. We used that the
order of creases in B is preserved: otherwise, the validity of (3) breaks down.

This concludes the proof of Theorem 3.

3.3 mmm-to-nnn Crease Graph
Now we tackle the general m-to-n transition. As before, let Pai denote the endpoint of the
ai semi-infinite crease, and let P be the set of all points Pai ,Pbi for all creases in A and B.
Then we specify that every crease in the transition will either be one of the parallel input
creases in A and B, or a crease that connects two vertices in P. The latter connections
form a graph on vertex set P, which we call the crease graph.

To simplify the structure of the graph, we first consider the situation of a break in
A,B, defined as some i < m and j < n where a1 −a2 +a3 −·· ·ai = b1 −b2 +b3 −·· ·b j.
If there is such a break, then A,B up to the break and the A,B after the break can each be
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Figure 9: Left: an example input. Middle: A valid graph based on the input creases. Pivot
vertices are highlighted in green. Right: the final crease pattern where each edge of the
graph becomes a crease, and vertices have been positioned to become locally flat foldable.

solved as a separate transition. Similarly, if there is a value x such that adding x to either
A or B would make a break at x, then we could also break the input into two transitions by
cutting at x. For example, if A = {0,1,3,4} and B = {1,3}, then there exists a value x = 2
such that inserting 2 into B would cause a break 0−1+3 = 1− (2) and could be solved
separately as {0,1},{1,2} and {3,4},{2,3}. Note that in this case, when the two separate
transitions are merged, both sets of B will have a crease at the auxiliary location x = 2
and will intentionally cancel out if their mountain valley parity are set to be opposite. We
assume in the rest of our construction that there are no such breaks, because if there were,
we could solve the two parts separately.

We call a crease graph valid if there is a locally flat-foldable crease pattern with a
crease for each edge in the graph, for some locations for vertices in P. We impose several
basic rules for a graph to be valid:

Lemma 6. A valid crease graph must be outerplanar, with vertices in P appearing on the
outside face in a clockwise order matching the clockwise order of rays at infinity.

Proof. Without outerplanarity, we would have crossings, which would create additional
vertices. (Even if we allowed them, the intersection vertices would not be flat foldable.)

Even stronger, the outerplanar crease graph that we will construct has no cut vertices,
so the outer face visits the Pais in increasing order followed by the Pb j s in decreasing
order. This fact will be a consequence of our construction.

Lemma 7. Each vertex of the graph must have odd degree, except for the two vertices
that connect to the x axis which must have even degree.

Proof. Each vertex must have an even number of creases on the crease pattern, as an
implication of Kawasaki’s Theorem [Demaine and O’Rourke 07]. One of these creases
will be the vertex’s respective semi-infinite input crease, so the number of creases formed
by graph connections must be odd. For the two vertices on the x axis, an additional crease
will be a semi-infinite x-axis ridge crease, so the number of creases formed by graph
connections must be even.

Lemma 8. Every vertex must connect to at least one vertex from the opposite set. That
is, every Pai must connect to some Pb j , and every Pb j must connect to some Pai .
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Figure 10: Top: A complete m-to-n transition. Left, middle, right: The transition can be
broken down into a sequence of local 1-to-n transitions, where each pivot (circled in green)
is the pivot of a local 1-to-n transition, each satisfying the alternating-sum condition. Con-
nections to neighboring vertices is replaced with connections to auxiliary x− and x+ points
on the x axis.

Proof. For the sake of contradiction, consider a vertex Pbi that does not connect to any
vertices in the opposite set. (The Pai case is symmetric.) By Lemma 6, this vertex can
connect only to its neighbors Pbi−1 ,Pbi+1 in B. By Lemma 7, it can connect to only one
of these neighbors. (If Pbi is at an end, then it has only one neighbor, and we get a
contradiction.) Thus Pbi has degree 2. By Kawasaki’s Theorem, the two incident creases
must be collinear. This cannot happen, assuming the input bi’s are distinct.

Define a pivot to be a vertex that is connected to more than one vertex in the opposite
set; refer to Figure 9. If a pivot Pai is connected to vertices Pb j , . . . ,Pbk , then by Lemma 6,
only Pb j and Pbk can be pivots; the intermediate vertices must be non-pivots connected
only to Pai . We assume that the pivots are connected in a chain, with each pivot connecting
to the previous pivot, the next pivot, and all opposite vertices in between. In particular,
the pivots alternate between being from A and being from B. The first neighbor of the first
pivot and the last neighbor of the last pivot will be the vertices connected to semi-infinite
x-axis ridge creases.

For any vertex Pbi connected to its neighbor Pbi−1 , define x−bi
to be the x-intercept < bi

that Pbi could connect to instead of Pbi−1 and remain flat foldable; refer to Figure 10.
Similarly, if Pbi is connected to Pbi+1 , then x+bi

is the x-intercept > bi that Pbi could connect
to instead of Pbi+1 and remain flat foldable. We require in our construction that these
x-intercepts exist, enabling us to reduce to 1-in-n subproblems.

Lemma 9. The first pivot must be the greater of a1 and b1.

Proof. First, Pa1 and Pb1 cannot both be pivots because by definition a pivot connects to
more than one vertex from the opposite set, and connecting Pa1 to multiple vertices from
B and Pb1 to multiple vertices from A would violate Lemma 6. It also cannot be the case
that neither Pa1 nor Pb1 is a pivot, because by our connectivity assumption every non-pivot
connects to a pivot, which would again cause crossing graph connections.

For the sake of contradiction, consider by symmetry the case where Pa1 is the pivot
and a1 < b1. Then Pa1 connects to Pb1 ,Pb2 , . . . ,Pbi ,Pa2 for some i ≥ 2. Replacing the con-
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nection to Pa2 with a connection to (x+a1
,0), Pa1 would then form a local 1-to-n transition

with a1,b1,b2, . . . ,bi,x+a1
, which is flat foldable by Theorem 3 if a1 = b1 −b2 +b3 −·· ·−

bi + x+a1
. Because a1 < b1 and b1 < b2 < · · · < bi is monotonically increasing, the only

way to satisfy the alternating-sum condition is if x+a1
< bi, contradicting our requirement

that x+a1
> b1. Therefore, the first pivot must be the greater of a1 and b1.

Lemma 10. The indices for pivots from A are either all even or all odd. The indices for
pivots from B are the opposite even-odd parity of the indices from A.

Proof. First we prove that all pivots within A (and symmetrically B) have the same parity.
For the sake of contradiction, consider the case where Pai is a pivot, and the next pivot
from A is Pai+k where k is odd. In the chain of pivots, there must be some pivot Pb j in
between Pai and Pai+k . Because Pb j is not the first or last pivot, it must be connected to
Pb j−1 ,Pai ,Pai+1 , . . . ,Pai+k ,Pb j+1 , which is an even number of connections because k is odd,
contradicting Lemma 7.

Next we prove that the pivots from A have the opposite parity from B. By symmetry,
consider the case where Pa1 is the first pivot, and the next pivot on the chain is Pb j . Then
Pa1 connects to Pb1 ,Pb2 , . . . ,Pb j ,Pa2 . By Lemma 7, this must be an odd number of con-
nections, which implies that j is even. Thus some pivot from A has opposite parity (odd)
from some pivot from B (even), which by the equality argued above implies that all pivots
from A have opposite parity from all pivots from B.

3.4 mmm-to-nnn Flat Foldability
Theorem 11. Given an m-to-n input satisfying the alternating-sum condition, there is
a locally flat-foldable transition. Furthermore, there is such a transition that satisfies a
given β1 (the angle of the crease from Pb1 to Pb2 ) provided |β1| ≤ 180◦−θ and the sign
of β matches whether B is below or above the ridge line.

Proof. We follow the graph conditions and pivot structure described in Section 3.3. Let
{ap1 , . . . ,apu} be the set of pivots from A, and {bq1 , . . . ,bqv} be the set of pivot from B,
i.e., {p1, . . . , pu} and {q1, . . . ,qv} are the pivots’ indices in their respective sets.

The proof is by induction on the number of input crease positions, m+ n. The base
cases are when m = 1 or n = 1, corresponding to a 1-to-n transition, which is covered by
Theorem 3.

For the inductive step, assume m,n > 1 and that the theorem holds for all m-to-n
transitions with smaller m+n. By symmetry, we assume that a1 > b1, which by Lemma 9
implies that the first pivot is a1. Refer to Figure 11. At a high level, we split the given m-
to-n input into two parts: a 1-to-(≤ n+1) input around the first pivot Pa1 , and an (m+1)-
to-(< n) input where we replace the neighbors of Pa1 to make it no longer a pivot. We
apply Theorem 3 to the 1-to-(≤ n+ 1) part, and apply the induction hypothesis to the
(m+ 1)-to-(< n) part. Then we combine the two transitions to argue that the original
m-to-n input has a locally flat-foldable transition.

More precisely, we split the input into two parts as follows. We set q1 to be the largest
even index such that

a1 > b1 −b2 +b3 −·· ·+bq1−1. (9)
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=
P'a1

Pa1

xa1

+

Pa1

+
b1, b2, …, bq1−1

m-to-n input transition

q1
bP

x−'a1

1-to-(q1−1) reduced transition (m+1)-to-(n−q1+1) reduced transition

q1
bP'q1

bP

Figure 11: The reduction operation of our inductive proof. Left: an m-to-n transition.
Middle: a local 1-to-(q1 + 1) transition around the first pivot, Pa1 . Right: the reduced
(m + 1)-to-(n − q1 + 1) transition with one fewer pivot, after replacing b1,b2, . . .bq1−1
with their alternating sum x−′

a1
. After solving the inputs, we combine the two transitions on

the right to form the transition on the left.

(Assuming every bi > 0, the “even” requirement is in fact implied, because adding a
negative term will only reduce the alternating sum.) Note that q1 ≥ 2 because a1 > b1.
Then we define two reduced inputs to the transition problem: one is 1-to-(q1 +1) and the
other is (m+1)-to-(n−q1 +1).

The 1-to-(q1 + 1) reduced input consists of a1 and b1,b2, . . . ,bq1 ,x
+
a1

and the same
β1, where x+a1

= a1 − (b1 − b2 + b3 − ·· · − bq1). Thus the alternating-sum condition is
satisfied:

a1 = b1 −b2 +b3 −·· ·−bq1 + x+a1
. (10)

Also, this input is correctly in sorted order because bq1 < x+a1
by equation (9). By Theo-

rem 3, this 1-to-(q1 +1) input has a locally flat-foldable transition. Let α1,α2, . . . ,αq1+1
be the angles of the creases incident to Pa1 in this transition (in the same order as B).

The (m+1)-to-(n−q1+1) reduced input consists of B′ = {x−′
a1
,a1,a2, . . . ,am}, where

x−′
a1

= b1 − b2 + b3 − ·· ·+ bq1−1, A′ = {bq1 ,bq1+1, . . . ,bn}, and β ′
1 = α1 − α2 + α3 −

·· ·+αq1−1. (The notation for this input uniformly adds primes.) This input satisfies
the alternating-sum condition:

x−′
a1
−a1 +a2 −a3 + · · ·±am = (b1 −b2 +b3 −·· ·+bq1−1)− (a1 −a2 +a3 −·· ·∓am)

= (b1 −b2 +b3 −·· ·+bq1−1)− (b1 −b2 +b3 −·· ·∓bn)

= bq1 −bq1+1 + · · ·±bn.

Also, this input is correctly in sorted order because x−′
a1

< a1 by equation (9). Furthermore,
|β ′

1| ≤ 180◦−θ by equation (4).
This “reduced” input has m+n−q1+2 creases, which is ≤m+n because q1 ≥ 2. But

when q1 = 2, it has the same number m+n of creases as the original input. Fortunately,
in this case, we can argue that the next such reduction will have strictly fewer creases.
First, x+a1

> a2 because otherwise x+a1
would be a break: inserting x+a1

into A would fit
between a1 and a2, with matching alternating sums by equation (10). The next iteration
has a′1 = bq1 , b′1 = x−′

a1
, b′2 = a1, and b′3 = a2, where we have swapped A/B labels so that

a′1 = bq1 > bq1−1 > b1 − b2 + b3 − ·· ·+ bq1−1 = x−′
a1

= b′1. Now we claim that the next
value q′1 according to equation (9) will be at least 4 (> 2), i.e., a′1 > b′1 − b′2 + b′3, i.e.,
bq1 > x−′

a1
− a1 + a2: by equation (10), a1 = x−′

a1
− bq1 + x+a1

, so by our earlier argument
that x+a1

> a2, a1 > x−′
a1
−bq1 +a2.
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Thus, we can still effectively apply induction to the (m+ 1)-to-(n− q1 + 1) reduced
input, and obtain a locally flat-foldable transition. (Technically, we might need to do two
reduction steps in a row before m+n decreases and we can apply induction, but the result
is the same.)

It remains to show how to combine the two locally flat-foldable transitions of the two
reduced inputs to form a locally flat-foldable transition to the original input. Refer again
to Figure 11. Our goal is to merge the crease patterns along the segment from Pa1 to Pbq1

,
while deleting the dashed segments and the then-isolated horizontal rays (the rightward
one in the 1-to-(q1 + 1) transition and the leftward one in the (m+ 1)-to-(n− q1 + 1)
transition). For this to work, we need to check that the geometry of that segment matches
in the two diagrams (in particular, that the two versions of Pa1 coincide, as do the two
versions of Pbq1

), and that the two merged vertices Pa1 ,Pbq1
remain flat foldable after the

merging. (All other vertices come entirely from one of the two reduced transition crease
patterns which we know to be locally flat foldable, so they are still locally flat foldable.)
In particular, the pivot chain proceeds from Pa1 to Pbq1

and then as in the (m+ 1)-to-
(n−q1 +1) transition.

P'a1

x−'a1

|β1|

Pa1

xa1

+

b1, b2, …, bq1−1

|β1|

q1
bP q1

bP'

'

α1'
(1)

(2)

(4)

(3)

Figure 12: Left: The 1-to-(q1 + 1) transition, indlucing the closed curve applied with
the generalized Kawasaki’s Theorem with crossing regions (1) – (4) labelled. Right: The
(m+ 1)-to-(n− q1 + 1) transition. We merge the two transitions along the segment from
Pa1 to Pbq1

such that everything to the left of this segment is constructed according to the
1-to-(q1+1) transition, and everything to the right is constructed according to the (m+1)-
to-(n−q1+1) transition. For this operation to be valid, we require that the two vertices Pa1

and Pbq1
are in the same position in both configurations, and that the operation preserves

their flat foldability.

We apply the generalized Kawasaki’s Theorem [Hull 20, Theorem 6.4] to the 1-to-
(q1 + 1) transition crease pattern; refer to Figure 12. Specifically, there is a closed
curve that crosses (1) the leftward x-axis crease, (2) the b1,b2, . . . ,bq1−1 creases in or-
der, (3) the crease connecting Pbq1−1 and Pbq1

, and then (4) the creases connecting Pa1
and Pbq1−1 ,Pbq1−2, . . . ,Pb2 ,Pb1 in order. Thus the correspondence sequence of reflections
compose to the identity transformation. The creases in (2) are all parallel, so the compo-
sition of their reflections is equivalent to a single reflection, whose line has angle θ and
x-intercept b1 − b2 + b3 − ·· ·+ bq1−1 = x−′

a1
. The creases in (4) are all incident to Pa1 ,

so the composition of their reflections is equivalent to a single reflection, whose line is
incident to Pa1 and whose angle is α1 −α2 +α3 −·· ·+αq1−1. Thus we obtain four lines
whose composed reflection is the identity. It follows that the four lines meet at a point: the
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composition of the first two or last two reflections is a rotation, so to be inverses of each
other, they must share a rotation center.2 In fact, this intersection point must be (x−′

a1
,0),

because this is the intersection of lines (1) and (2). Lines (3) and (4) pass through Pbq1
and Pa1 respectively.

Now look at the (m+1)-to-(n−q1 +1) reduced transition crease pattern; refer back
to Figure 11. It has a vertex at (x−′

a1
,0) (where the four reflection lines meet), with creases

at angles 180◦ (leftward), 180◦−θ , and β ′
1 = α1 −α2 +α3 −·· ·+αq1−1. These creases

match the angles of lines (1), (2), and (4), respectively, except that line (2) is reflected
through the horizontal ridge line, but such a reflection does not affect flat foldability.
Because this vertex is flat foldable in the reduced transition, its fourth crease must match
the angle of line (3), i.e., it must pass through Pbq1

. Because this crease passes through
P′

bq1
, as does the θ input crease with x-intercept bq1 , we conclude that Pbq1

= P′
bq1

, i.e.,
this vertex is at the same location in both reduced transitions. Similarly, P′

a1
is at the

intersection of line (4) and the θ input crease with x-intercept a1, so Pa1 = P′
a1

. Thus the
two reduced transition crease patterns agree on the crease connecting Pa1 and Pbq1

, so we
can merge the two patterns together along that segment.

Finally, we argue flat foldability of the two merged vertices Pa1 and Pbq1
. In fact,

Pbq1
has exactly the same incident crease directions in the merged m-to-n transition as in

the (m+1)-to-(n−q1 +1) reduced transition. Because that vertex is flat foldable in the
(m+1)-to-(n−q1+1) reduced transition, so it is in the merged m-to-n transition. To show
Pa1 is flat foldable in the merged m-to-n transition, it suffices to show that the incident
crease to x+a1

in the 1-to-(q1+1) reduced transition is in the same direction as the incident
crease to Pa2 in the (m+ 1)-to-(n− q1 + 1) reduced transition. This follows because we
know Pa1 is flat foldable in each reduced transition, so by Kawasaki’s Theorem, we know
the alternating sum of incident crease angles is zero in both cases. We already know
that the θ crease and the crease to Pbq1

match in the two transitions, and the creases to
Pb1 ,Pb2 , . . . ,Pbq1−1 in the 1-to-(q1+1) reduced transition have the same alternating sum as
the crease to x−′

a1
in the (m+1)-to-(n−q1+1) reduced transition. Thus the one remaining

crease directions must match.

4 Implementation
In this section, we describe an algorithm for finding a desired m-to-n transition, expand-
ing our inductive proof into a linear-time iterative algorithm. An implementation of this
algorithm is available online.3 The inputs are the crease locations in A and B, crease an-
gle θ , and an initial angle β1. Similar to Section 3.3, we assume that the input has no
breaks; if the algorithm finds a break, it re-initializes and solves the input after the break.

4.1 Crease Graph
First, we generate the crease graph by choosing the pivot vertices. In addition to input
crease positions ai,b j, let S(ai),S(b j) denote the alternating sums of their respective sets

2We thank Lily Chung for suggesting this proof.
3https://github.com/theplantpsychologist/transitions-implementation

https://github.com/theplantpsychologist/transitions-implementation
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up until ai,b j; for example, S(ai) = a1 − a2 · · ·± ai. We will use rolling indices iA, iB to
denote the current vertices that are allowed to make connections. Once we connect PaiA
to PbiB

, no connections may form with any Pai<iA
or Pbi<iB

to avoid crossing connections.
Thus, each iteration of the algorithm consists of choosing between two possible actions:
connecting PaiA

to PbiB+1 , PbiB
to PbiB+1 , and increasing iB by 1 (which we call stepping BBB),

or connecting PbiB
to PaiA+1 , PaiA

to PaiA+1 , and increasing iA by 1 (which we call stepping
AAA). The algorithm terminates when iA = m and iB = n.

The algorithm initializes with iA = iB = 0. By Lemma 9, the first step (essentially the
first pivot) is chosen to be the greater of a1 and b1: if a1 > b1, then we step B, otherwise,
we step A. By Lemma 10, all subsequent steps until the last step must step the same
side twice in a row to preserve parity. If |S(aiA+1)| < |S(biB)|, then we step A twice. If
|S(aiA)| > |S(biB+1)|, then we step B twice. This is equivalent to how we defined q1 in
the proof of Theorem 11. Otherwise, the transition is finished or we hit a break, in which
case we decompose the problem.

4.2 Vertex Locations
Once we have the crease graph, we propagate the Kawasaki flat-foldability condition until
all vertices have been placed. The procedure initializes by placing the smaller of a1 and
b1 with L = 0. Suppose that a1 > b1 (if b1 > a1, the result would be symmetric). We then
use the input parameter β1 to place Pa1 and Pbi , by calculating La1 and Lb2 using equations
(7) and (5) from Section 3.1. Similar to the crease-graph algorithm, we use two rolling
indices iA and iB. After initialization, iA = 1 and iB = 2.

Until termination, one of aiA or biB will have k graph connections where k−1 of the
connected creases already have an assigned position. This is a result of our assumed pivot
structure. We then use Kawasaki’s Theorem to compute L for the remaining crease such
that the current vertex (aiA or biB ) becomes flat foldable, then increment the respective
rolling index by 1. The algorithm terminates when iA = m and iB = n.

4.3 Solution Variability
In general, there are many possible flat-foldable transitions between two given sets of
input pleats. One obvious source of solution variability is in the input parameter β1.
Some inputs also have multiple valid crease graphs, including beyond the structure we
assumed in Section 3.3. Even within our assumed structure, there can be solutions with
multiple valid pivot choices.

5 Applications
While our initial motivator for generalized ridge transition units is for use as level shifters
in box-pleated or hex-pleated designs, representational design in practice rarely requires
such arbitrarily complex level shifters. Designers will rarely use ridge transitions that
shift more than 2 or 3 units due to practicality issues such as the space taken up by the
transition itself, or the difficulty of folding excessively complicated transitions. We now
present an additional application of generalized ridge transitions that could potentially be
useful for representational origami design.
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Figure 13: This algorithm can be used to terminate infinite dense bouncing. From left to
right: (1) The initial packing, with ridges shown in red and hinges shown in teal. (2) The
bouncing creases begin. (3) Keep bouncing until each crease has hit and stopped at the
transition ridge shown in green. (4) Construct a transition around the transition ridge, and
adjust the mountain-valley directions. The crease pattern is complete and flat foldable.

5.1 Terminating Dense Bouncing
Dense bouncing is a problem that arises in uniaxial bases where axial creases will be
forced to bounce densely across ridges without termination [Demaine and O’Rourke 07].
Dense bouncing is usually solved by discretizing ridge lengths to a grid system such as
box pleating or hex pleating [Lang 11], or in the case of 22.5◦ designs, by constraining
ridge creases into tiles of known molecules.

As shown in Figure 13, it is possible to to terminate dense bouncing in some crease
patterns by constructing a generalized ridge transition across a ridge. First, pick one ridge
crease to be the “transition ridge”, and bounce each axial crease until it either terminates
naturally or hits the chosen transition ridge. Then, if the axial creases that touch the tran-
sition ridge satisfy the alternating-sum condition, construct a generalized ridge transition
around the transition ridge, and the crease pattern will no longer contain dense bouncing.

We conjecture that this procedure always works if there is a closed axial polygon
bounding the ridges in question (for Figure 13, the square is the axial polygon) and leave it
as an open problem to prove that this is true. The possibility of terminating crease patterns
that would otherwise bounce densely opens up new possibilities of fully generalizing
uniaxial 22.5◦ or other non-grid based uniaxial methods.
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