Open Problems on Polytope Reconstruction
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Abstract. We describe some open algorithmic problems re-
lated to constructing 3-dimensional polytopes from limited
information.

Introduction. There are several different ways to spec-
ify convex polytopes in three dimensions. One obvious
explicit representation is a list of the vertex coordin-
ates and connectivity information between the vertices,
edges, and facets. But not all this information is nec-
essary. For example, we can reconstruct the explicit
representation given only the vertex coordinates; this
is the well-studied convez-hull problem. By projective
duality, we can also reconstruct the polytope from a list
of halfspaces whose intersection is the polytope.

Although these are the two most well-known ways
to specify polytopes, at least in the computational ge-
ometry community, they are not the only ones. Here
we list several different theorems describing surprisingly
small sets of information that are sufficient to specify 3-
dimensional convex polytopes. The purpose of this note
is to pose the algorithmic versions of these theorems as
intriguing open questions. That is, is there an algo-
rithm that, given the information uniquely specifying a
convex polytope, builds the polytope? Numerical ap-
proximation algorithms are known in some cases, but
we know of no exact, purely combinatorial algorithms.
Such algorithms may require a model of computation
that allows exact computation (or at least useful repre-
sentations) of high-degree algebraic numbers.

Nets (“unfoldings”).  Our problems were inspired by
one in particular, Aleksandrov’s theorem, which we de-
tail now. A polyhedral metric on the sphere assigns to
each point a neighborhood that is isometric to an open
planar disk, except for a finite number of points whose
neighborhoods are isometric to the apex of a cone. If
the complete angle around every cone point is at most
27, the metric is said to be conver. Equivalently, a
polyhedral metric is obtained by gluing together edges
of a simple polygon in equal-length pairs, so that the
resulting  2-complex is
homeomorphic to a sphere;
the metric is convex if the
sum of the angles incident
to each vertex is at most 2.
This glued simple polygon is

e called a net (see Figure 1 for
Figure 1. A net for the cube.  gp example).
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Any convex 3-polytope naturally defines a polyhedral
metric; the “distance” between two points is just the
length of the shortest path on the polytope’s surface.
A beautiful and surprising result of Aleksandrov is that
the converse is true as well.

Aleksandrov’s Theorem. [1] Any convex polyhedral
metric can be realized by a unique convex polytope (up
to congruence).

For any convex polytope, we can define a net by “un-
folding” it into the plane. It is a well-known open prob-
lem [3, 7, 8] whether every polytope can be unfolded
into a simple net, that is, one that does not overlap it-
self, by cutting along edges; however, even non-simple
nets can be used to define polyhedral metrics. Aleksan-
drov’s theorem states that any net is an unfolding of a
unique convex polytope (up to congruence).

Problem 1. [5, 7] Given a net (a simple polygon with
edge-matching rules), how quickly can we construct the
corresponding polytope?

O’Rourke [7] describes how to split this into two sep-
arate subproblems. The first is to find the creases on
the polygon which map to polytope edges. A superset
of these creases can be found in polynomial time [7],
but it remains open to isolate them exactly.

Once we've found (a superset of) the creases, we
have the shapes of the faces and the complete ad-
jacency information—which faces are adjacent along
which edges. If two polytopes have the same faces and
the same adjacency pattern, they are called stereoiso-
mers. A key step in the proof of the uniqueness part of
Aleksandrov’s theorem is the following beautiful result
of Cauchy:

Cauchy’s Rigidity Theorem. Convex stereoisomers are
congruent.

In other words, any set of polygons with adjacency in-
formation can be obtained from at most one polytope,
and (by the existence part of Aleksandrov’s theorem)
this polytope exists as long as the resulting complex is
homeomorphic to the sphere and the sum of the an-
gles around each vertex is at most 27t. How quickly can
we construct this polytope? Cauchy’s proof is noncon-
structive. Although a numerical-approximation algo-
rithm seems quite likely, and indeed such experiments
have been carried out [7], it would be much more in-
teresting to have a purely combinatorial algorithm that
runs in polynomial time.

Here are two related open questions, which we con-

jecture to be NP-hard.
Problem 2. Given a set of convex polygons without ad-
jacency information, how quickly can we decide whether
they can be assembled into a convex polytope? Into a
unique convex polytope?



Problem 3. How quickly can we actually construct a
polytope with a given set of facets, if one exists?

Area-weighted normal vectors. A fairly simple the-
orem of Minkowski states that if you take the normal
vectors of the facets of a convex polytope, where the
length of the vector is the area of the corresponding
facet, then the resulting collection of vectors sum to
zero. In fact, this theorem is true in any dimension,
where “area” means the natural (d — 1)-dimensional
Lebesgue measure. But the more interesting part of
Minkowski’s theorem is that this process is reversible.

Minkowski’s Theorem. Any set of vectors whose sum
Is zero is the set of area-weighted normals of a unique
convex polytope (up to translation).

Problem 4. Given a set of vectors that sum to zero, how
quickly can we construct the corresponding polytope?

Aurenhammer, Hoffmann, and Aronov [2] describe
an iterative numerical-approximation algorithm for this
problem, by recasting it as a convex-optimization prob-
lem. However, no purely combinatorial algorithm is
known.

Several “easier” decision problems are also open. For
example, given a set of vectors whose sum is zero, is the
corresponding polytope simple (every vertex has degree
three)? Is it simplicial (every facet is a triangle)? Is its
volume less than 17

1-skeleta (“Edge Graphs”). The 1-skeleton of a con-
vex polytope is the graph naturally induced by the poly-
tope’s vertices and edges. The following well-known re-
sult of Steinitz completely characterizes the 1-skeleta of
convex 3-polytopes:

Steinitz’s Theorem. [10] A graph is the 1-skeleton of a
(not necessarily unique) convex 3-polytope if and only
if it is planar and 3-connected.

Problem 5. Given a 3-connected planar graph, how
quickly can we construct a polytope whose 1-skeleton
is that graph?

Das and Goodrich [4] describe an algorithm to realize
any 3-connected planar triangulation as a polytope in
O(n) time on a rational RAM, but the problem remains
open for non-triangulated graphs.

One way to construct such a polytope might be to use
the following theorem of Koebe, independently reproved
by Thurston using results of Andreev.

Koebe’s Theorem. [10] Any planar graph is the con-
tact graph of a set of circular disks in the plane or cir-
cular caps on the sphere. Furthermore, if the graph is
a triangulation, the set of disks is unique up to Mobius
transformations.

Koebe’s theorem can be used to prove the follow-
ing much stronger version of Steinitz’s theorem, which
describes a “canonical” polytope representation of a

graph. (The history of this theorem is a bit mud-
dled [10]; overlapping portions were independently
proved—but not necessarily published—by Bragger,
Doyle, Schramm, and Thurston.)

Theorem. Any 3-connected planar graph is the 1-
skeleton of a polytope with edges tangent to the unit
sphere, such that the barycenter of the contact points
is the origin. This polytope is unique up to reflections
and rotations about the origin, and every combinato-
rial symmetry of the graph is realized by a symmetry
of the polytope. Each edge of the polytope meets the
corresponding edge of the polar dual polytope at right
angles at the contact point on the sphere.

Problem 6. Given a 3-connected planar graph, how
quickly can we construct its “canonical” polytope?

This problem is open even for triangulations; Das and
Goodrich’s algorithm [4] contructs non-canonical poly-
topes. Solving this problem essentially boils down to
finding an algorithmic version of Koebe’s theorem.

Problem 7. How quickly can we construct a set of disks
with a given planar contact graph?

The proofs of Koebe, Andreev, and Thurston are
nonconstructive, as are several more recent proofs.
Mohar [6] and Smith [9] independently developed
polynomial-time numerical-approximation algorithms.
No purely combinatorial algorithm is known, which is
perhaps not surprising since the radii could be algebraic
numbers of unbounded degree.

We conclude with another related open question.

Problem 8. How hard is it to decide if a collection of
“sticks” (line segments subject to rigid motions) can be
joined to form the 1-skeleton of a convex polytope?

The corresponding two-dimensional question has an
easy answer: A set of sticks can be assembled into a
convex polygon if and only if the longest stick is shorter
than all the other sticks put together. Like Problem 2,
we conjecture that this problem is NP-hard.

References

[1] A. D. Aleksandrov. Convezr polyhedra (in Russian). State Press of Technical
and Theoretical Literature, Moscow, 1950. See also the German translation,
Konveze Polyeder, Akademie Verlag, 1958.

[2] F. Aurenhammer, F. Hoffman, and B. Aronov. Minkowski-type theorems
and least-squares clustering. Algorithmica 20(1):61-76, 1998.

[3] H.T. Croft, K. J. Faconer, and R. K. Guy. Problem B21: Nets of polyhedra.
Unsolved Problems in Geometry, pp. 73-76. Springer-Verlag, 1991.

[4] G. Das and M. T. Goodrich. On the complexity of optimization problems
for 3-dimensional convex polyhedra and decision trees. Comput. Geom. Theory
Appl. 8:123-137, 1997.

[5] A. Lubiw and J. O’Rourke. When can a polygon fold to a polytope?
Technical Report 048, Dept. Comput. Sci., Smith College, 1996. (ftp://
cs.smith.edu/pub/orourke.papers/folding.ps.Z).

[6] B. Mohar. A polynomial time circle packing algorithm. Discrete Math. 117:257—
263, 1993.

[7] J. O'Rourke. Folding and unfolding in computational geometry. Proc.
Japan Conf. Discrete Comput. Geom., p. to appear. Lecture Notes Comput. Sci.,
Springer-Verlag, 1998.

[8] G. C. Shephard. Convex polytopes with convex nets. Math. Proc. Camb. Phil.
Soc. 78:389—-403, 1975.

[9] W. D. Smith. Accurate circle configurations and numerical conformal
mapping in polynomial time. Manuscript, NEC Research Institute, 1991.
(http://www.neci.nj.nec.com/homepages/wds/braegger.ps).

[10] G. M. Ziegler. Steinitz’ thoerem for 3-polytopes. Lectures on Polytopes, lec-
ture 4, pp. 103-126. Springer-Verlag, 1995.



