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Abstract
We prove that every simple polygon can be made as a (2D) pop-up card/book that opens

to any desired angle between 0 and 360◦. More precisely, given a simple polygon attached to
the two walls of the open pop-up, our polynomial-time algorithm subdivides the polygon into
a single-degree-of-freedom linkage structure, such that closing the pop-up flattens the linkage
without collision. This result solves an open problem of Hara and Sugihara from 2009. We also
show how to obtain a more efficient construction for the special case of orthogonal polygons, and
how to make 3D orthogonal polyhedra, from pop-ups that open to 90◦, 180◦, 270◦, or 360◦.
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1 Introduction

Pop-up books have been entertaining children with their playful mechanics since their mass
production in the 1970s. But the history of pop-ups is much older [27], and they were
originally used for scientific and historical illustrations. The earliest known example of a
“movable book” is Matthew Paris’s Chronica Majora (c. 1250), which uses turnable disks
(volvelle) to represent a calendar and uses flaps to illustrate maps. A more recent scientific
example is George Spratt’s Obstetric Tables (1850), which uses flaps to illustrate procedures
for delivering babies. Dean & Sons’ Little Red Riding Hood (1850) is the first known movable
book where a flat page rises into a 3D scene, though here it was actuated by pulling a string.
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2 Algorithms for Designing Pop-Up Cards

The first known examples of self-erecting pop-ups, where the rise into 3D is actuated by
opening the page, are a card promoting the Trinity Buildings in New York City (c. 1908),
and S. Louis Girand’s Bookano Book (c. 1930s). Modern pop-ups have taken these principles
to new heights, often employing linkage-like mechanisms to form elaborate 3D shapes and
motions; some good guides for designing pop-ups are [1, 3, 5, 20]. In recent years, pop-up
books have risen to an art form with such art books as Bataille’s ABC3D [2], Carter’s series
of dot/spot books [4], and Pelhem’s poetic pop-up book [26]. One striking form of pop-ups is
origamic architecture, which form buildings and other geometric structures, and are usually
made by cutting a single sheet of card stock. A few examples of origamic architecture books
are [7, 8, 32]; see [11] for a thorough bibliography.

Our results. This paper investigates the computational geometry of pop-ups, in particular,
algorithmic design of pop-ups. We achieve three main results:

1. Any 2D n-gon (extruded orthogonally into 3D) can be popped up by opening a book to
a specified angle θ with 0 < θ ≤ 360◦, using a construction of complexity O(n2).

2. Any orthogonal n-gon (extruded orthogonally into 3D) can be popped up by opening a
book to a specified angle θ ∈ {90◦, 180◦, 270◦, 360◦}, using a construction of complex-
ity Θ(n).

3. Any orthogonal polyhedron can be popped up by opening a book to a specified orthogonal
angle θ ∈ {90◦, 180◦, 270◦, 360◦}, using a construction of complexity O(n3).

All of our constructions use rigid flat polygonal pieces to form single-degree-of-freedom
linkage structures, which uniquely and deterministically unfold from the flat state to the
open state, while avoiding collision.

Related work. Our results solve an open problem of Hara and Sugihara [14], who gave an
algorithmic construction for arbitrary polygons, but with no guarantees of collision avoidance
(and indeed the construction sometimes requires collisions). In another result in computa-
tional geometry, Uehara and Teramoto [31] proved that pop-ups with creases that can fold
both mountain and valley are NP-hard to open or close.

In computer graphics, Mitani et al. [23, 24] showed how to automatically design pop-ups
within a common class of 90◦ origamic architecture, in which the surface is monotone (hit
only once) in the view direction. This work led to Tama Software’s Pop-Up Card Designer
[30]. Li et al. [22] developed a software system for converting a given 3D model into one
that fits within this class. Several other systems enable designing and simulating pop-ups by
composing standard pop-up gadgets, including Glassner’s [12, 13], Popup Workshop [16, 15],
Okamura and Igarashi’s [25], and Iizuka et al.’s [19].

Geometric pop-ups have also been studied for specific examples of polyhedra. The first
such example is a rhombic dodecahedron of the second type [10]. Other examples include
the dodecahedron [29] and other Platonic solids [17, 6, 21]. These types of pop-ups are
typically not attached to pages of a book, however.

Applications. Pop-ups have potential practical applications as well. Nano and micro fabri-
cation technology are well-established for patterning 2D sheets, but remain in their infancy
for 3D surfaces. Pop-ups offer a way to transform patterned 2D sheets into 3D surfaces.
This idea was recently explored in the context of MEMS [18], where Hui et al. manufactured
a 1.8mm-tall 3D model of the UC Berkeley Campanile clock tower using pop-ups.



Zachary Abel et al. 3

2 Models of Pop-Ups

(a) The desired pop-
up card.

(b) Cross-section
perpendicular to the
spine.

(c) The contents of
the cross-section.

Figure 1 Three views of a desired 3D structure, before the
creases and extra paper have been added to make it pop up.

Our basic model is of a book
with planar front and back cov-
ers which, when opened to a
desired angle θ, pops up a 3D
paper construction made from
pieces of stiff paper that are
folded and glued to each other
and to the covers. (We will not
deal with the more restrictive
model of origamic architecture
where one piece of paper is cut
and folded but not glued.)

Given a desired 3D structure, we aim to design a book that pops up the structure
by adding creases and extra pieces of paper. Adding creases may be necessary to let the
structure fold up when the book is closed. Adding extra paper may be necessary to make
the structure pop up into the correct shape when the book is opened.

(a) A common joint.

(b) A flap.

(c) A sliceform.

Figure 2 The
three types of joints
used in this paper.

Until Section 5, we consider a restricted version of the problem
that arises when all fold lines and all gluing lines are parallel to the
spine, as in Figure 1. In this case, a cross-section of the 3D structure
in a plane perpendicular to the spine yields a 2D pop-up: the pop-up
structure forms a planar linkage composed of rigid bars (line segments)
connected at joints. A joint is a point where bars intersect, usually at
an endpoint of at least one of the bars. We distinguish three kinds of
joints:

Common joints: Two or more bars are linked at one of their endpoints.
Flaps: A bar contains a joint in its interior, where an endpoint of

another bar is linked. The location of the joint at the interior of
the first bar is fixed.

Sliceforms: A joint (called a sliceform) can be formed by the intersec-
tion X of two bars. The intersection point X cannot shift along
the bars, but the two bars can change their angle at X (scissors-like). Notice that we do
not consider the two edges crossing if they are linked by a sliceform.

To distinguish the different joints in figures, we use a dot (•) for common joints and endpoints
of edges, an empty circle (◦) for flaps, and a cross (×) for sliceforms.

Figure 3 Simulating
sliceforms.

The common joint is sufficient to simulate the other joint types.
A flap can be simulated by forming a zero-area triangle among the
three collinear points. A sliceform can be simulated by common
joints and flaps as illustrated in Figure 3.

In the 2D case, we want to construct a linkage L with one
degree of freedom that unfolds to the desired polygon P . During
the folding motion we require that no bars cross, and that the order
of the bars emanating from a joint is preserved. Let the vertices of
P be v1, v2, . . . , vn labelled in counter-clockwise order. The edge
incident to vi and vi+1 is named ei, and the edge between vn and
v1 is named en. We assume that P is contained in one of the two
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wedges bounded by the rays −−→v1v2 and −−→v1vn. The angle of the wedge containing P is called
the opening angle, and the union of the rays −−→v1v2 and −−→v1vn is called the cover. We require
L to have the following properties:

1. In one configuration of L, the boundary of L coincides with P . We call this the open
configuration. The linkage L contains the edges e1 and en of P as bars. If a joint of L
coincides with a vertex vi in the open configuration, we name it pi.

2. In one configuration of L that can be reached from the open configuration, all edges are
collinear and p1 is an endpoint of the union of the edges of L. This configuration is called
the closed configuration.

3. There is a unique motion that transforms the open configuration into the closed config-
uration. During this motion, L is contained inside the wedge defined by the cover and
the opening angle decreases continuously. We refer to this motion as the closing motion.
Every configuration of L obtained during the closing motion is called an intermediate
configuration. The open configuration might have several joints that are opened 180◦.
In order to specify the folding uniquely, we prescribe for every such ambiguity the way
the vertex moves during the folding motion. Collinear points in the open configuration
appear naturally in pop-up structures. In the real world the folding motion at these
points is prescribed by the creasing of the paper.

The combinatorial complexity of a 2D pop-up is equal to the number of joints in the pop-up.

3 Orthogonal Polygon Pop-Ups

In this section, we assume the polygon P is orthogonal, i.e., every edge of P is either
horizontal or vertical. Under this assumption, we show how to construct a pop-up linkage
L for the polygon P with combinatorial complexity linear in n. The techniques we use in
this section are based on a particular type of motion:
I Definition 1. A shear is a motion of a linkage that leaves parallel edges parallel.
In Section 3.1, we explain how to construct pop-ups for polygons with opening angle 90◦,
also known as 90◦ pop-ups. In Section 3.2, we extend this result to larger opening angles.

3.1 90◦ Pop-Ups
To construct 90◦ pop-ups, we use a process called h-superimposing. As a first step we split
P into stripes such that (i) each stripe is an axis-aligned rectangle, (ii) the left and right
boundary edges of a stripe are a part of the boundary of P , and (iii) the union of any two
stripes is not a rectangle. We obtain such a decomposition by extending all horizontal edges
of P horizontally as long as they lie in P . See Figure 4a for an illustration. Two stripes are
adjacent if they (partially) share an edge.

Let L1 be the linkage obtained by extending all horizontal edges as long as they lie within
P . The newly introduced degree-3 vertices become flaps. An example of this is depicted in
Figure 4b. This intermediate linkage may have more than one degree of freedom: any pair
of adjacent stripes that do not share a vertical bar can shear independently. To handle this,
note that for any pair of adjacent stripes, there must be at least one vertical line passing
through the (strict) interior of both stripes. We call this a bracing line for the stripe pair.
The subset of the line contained in the stripe pair is called a bracing segment. For each
pair of adjacent stripes that do not share a vertical bar, we add a bracing segment to the
linkage, creating a sliceform joint where the segment intersects with the boundary between
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(a) The stripes induced by ex-
tending all edges horizontally.

(b) The intermediate linkage,
with too many degrees of free-
dom.

(c) The final linkage, with
bracing segments to enforce a
single shear motion.

Figure 4 The result of h-superimposing an orthogonal polygon.

the stripes. See Figure 4c for an example. Let L2 be the linkage resulting from the addition
of the bracing segments.
I Theorem 1. The linkage L2 obtained by h-superimposing defines a pop-up fold for the or-
thogonal polygon P with 90◦ opening angle. The motion of L2 is a shear. The combinatorial
complexity of L2 is O(n).
All omitted proofs may be found in the full version of this paper.

3.2 180◦, 270◦, and 360◦ Pop-Ups
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(a) The open configuration.

O

A B

GL

R

(b) An intermediate con-
figuration.

Figure 5 The reflec-
tor gadget that helps to
“reflect” two shearing mo-
tions.

This section is devoted to constructing pop-up folds with larger
opening angles. We reduce this problem to the 90◦ pop-up sce-
nario by introducing a linkage (called a reflector gadget) that al-
lows us to reflect a shear. The open configuration of the gadget is
constructed as shown in Figure 5a. Figure 5b depicts an interme-
diate configuration.
I Lemma 1. The reflector gadget has one degree of freedom. Its
closing motion has the following properties:

1. the vertical line segments in the open configuration remain
vertical during the induced motion,

2. the boundary of the gadget is symmetric with respect to a line
of reflection running through OM , and

3. the linkage folds to a line without introducing any crossings in
an intermediate configuration.

We use the properties of the reflector to combine two 90◦ pop-
ups to create a pop-up with larger opening angle. We discuss 180◦
pop-ups first. In this case both cover edges lie on a line through p1.
To guide our construction we add a bisector s of the cover edges
that runs through p1. Furthermore, we add two lines parallel to s
such that the induced stripe contains s and does not contain any
point of P except those lying on s. This stripe is called S. The
edges that “appear” when intersecting P with the boundary of S
are added to the linkage L. We “fill” each rectangle obtained by
intersecting P with S with a reflector gadget. The components of
P \S are turned into a linkage by h-superimposing as discussed in
Section 3.1, so that every component of P \S supports a shearing
motion. The shearing motions are linked by the reflector gadgets, so the combined linkage
L has one degree of freedom. By the properties of the reflector, the left and right side of
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(a) (b)

Figure 6 A 180◦ pop-up fold constructed
with the help of reflector gadgets. (a) The open
configuration. (b) An intermediate configura-
tion.

(a) (b)

Figure 7 (a) A polygon with opening angle
270◦. The induced connected components are
drawn with different shades of grey. (b) The
pop-up linkage. The reflector gadgets have to
be inserted at the crossed regions.

s perform a shear and both parts of P stay on their own side, relative to s. Hence it is
impossible for L to self-intersect. Notice that we can always make the stripe S thin enough
that the rectangles of P ∩ S are not “too wide” for the reflector gadgets. See Figure 6 for
an example. We conclude with:

I Theorem 2. The method described above constructs a pop-up fold for the polygon P with
opening angle 180◦. The combinatorial complexity of the linkage is O(n).

In order to realize 270◦ and 360◦ folds we extend the 180◦ construction as follows. We
split P into pieces by cutting it along the horizontal and vertical lines through p1. We then
turn each connected component of the split polygon into a 90◦ linkage, by adding bars and
joints as discussed in Theorem 1. Then each piece of the polygon will be constrained to move
in a shear motion, but different pieces will not necessarily move together. To synchronize the
pieces, we use reflector gadgets to connect them. To generate the space for the gadgets, we
add bars that sandwich the horizontal and vertical lines through p1, thereby creating vertical
and horizontal strips in which the reflector gadgets can be placed. Because no gadgets lie
inside the intersection of the vertical and horizontal strip, no two reflector gadgets interfere.
Figure 7 shows an example of an 270◦ fold. We conclude with the following theorem:

I Theorem 3. The method described above constructs a pop-up fold for the polygon P with
opening angle 270◦ or 360◦. The combinatorial complexity of the linkage is O(n).

4 General Polygon Pop-Ups

In this section we provide a different method for constructing pop-ups of polygons. This
method works for all simple P (not necessarily orthogonal), but has a higher asymptotic
complexity of O(n2). Before giving the construction, we provide a key geometric lemma
about the non-crossing of nested “V-fold” linkages.

4.1 Nested V-folds
We define an outward V-fold as the single-degree-of-freedom linkage formed by a (weakly)
convex quadrilateral ABCD with AB + BC = AD + DC. (This was called a V-fold in
[14].) Such a linkage folds flat as the opening angle ∠BAD decreases to zero. If, in the
open configuration, the angle at C is 180◦ and the angle at A is less than 180◦ (i.e. the
quadrilateral is a nontrivial triangle with C on side BD), we call this linkage a flat outward
V-fold. Similarly, the linkage formed by a (weakly) non-convex quadrilateral ABCD with
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AB − BC = AD − DC has one degree of freedom and folds flat without overlap, and is
called an inward V-fold. If the angle at C is 180◦ and the angle at A is less than 180◦ it is
a flat inward V-fold.
I Theorem 4. (a) Let ABCD and AB′C ′D′ be flat outward V-folds on the same rays with
4BAD ⊂ 4B′AD′, where we may have B = B′ or D = D′. Then these linkages do not
cross during the closing motions. In fact, they do not touch at all, except at the closing
configuration and possibly at the endpoints B = B′ or D = D′ if either equality holds.

(b) The same statement holds with “outward” replaced by “inward”.

4.2 The General Pop-Up Construction: The Method
We may now describe the construction for pop-ups of general polygons. As in Section 2,
we wish to construct a one-degree-of-freedom linkage L contained in simple polygon P =
v1v2 · · · vn, where P is contained in the wedge formed by rays v1v2 and v1vn. We sometimes
refer to the crease point v1 as O. The opening angle θ of the original configuration, namely
the angle of polygon P at vertex O, may take any value 0 < θ ≤ 360◦.

First we discuss the general strategy and provide a linkage L1 that has a pop-up motion
for polygon P but has more than one degree of freedom. Later we brace the linkage to
remove the excess flexibility.

We first subdivide the wedge around O containing P by rays starting at O, where there
is one such ray through each vertex of P and additional rays are inserted so that consecutive
rays form acute angles. Suppose r1, . . . , rt are these rays in order around O = v1, starting
at r1 = −−→Ov2 and ending at rt = −−→Ovn. The region of the plane between rays ri and ri+1
is the ith wedge, Wi. We subdivide polygon P by these rays: any positive length segment
of a ray ri contained in P or its boundary is inserted as a single bar in linkage L1 and is
called a wall segment. Notice that edges of P may be wall segments. Also, by slight abuse
of terminology, a positive length subsegment of a wall segment is also called a wall segment.
Any isolated points on ri ∩ P are necessarily vertices of P and are called wall points.

The rays ri subdivide P into a number of triangles and quadrilaterals, called cells. Each
cell has two wall portions on consecutive rays: at least one of these is a wall segment, and
the other may be a wall segment or point. A cell that has two wall segments is called an
internal cell, and those with a wall point are ear cells. Two cells are adjacent if they share a
wall segment. By adding at most one new ray for each ear cell, (and renumbering the rays
as necessary), we may assume that each ear cell is adjacent to a unique interior cell.

The rays ri also subdivide the boundary of P into segments. On each such segment AB
that is not a wall segment (which implies A and B are on consecutive rays), insert a joint
C at the point that would make OACB an outward V-fold at O, i.e., C is the unique point
on AB with OA+AC = OB +BC. This linkage L1 serves our first stated purpose:
I Lemma 2. The linkage L1, constructed from P by adding wall segments and extra bound-
ary vertices as described here, can be continuously folded flat without overlap.

Proof. Let φi be the angle of wedge Wi, i.e., the angle between rays ri and ri+1 at O. Con-
sider any continuous rotation of rays r1, . . . , rt around O such that all angles φ1, . . . , φt−1
decrease monotonically to 0. Let each wall portion on ray ri rotate around O to stay on ray
ri, and for each boundary portion ACB of P within wedge Wi, let ACB fold outward as
would the outward V-fold OACB. Then path ACB remains inside wedge Wi throughout
the motion, and therefore does not interact with portions of P in different wedges. Further-
more, by Theorem 4, the various boundary portions in wedge Wi do not touch each other
throughout the motion. It follows that this is indeed a continuous planar motion of L1. J
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The rest of the construction shows how to add additional support to L1 to turn it into a
one-degree-of-freedom linkage whose motion has the form described in the proof of Lemma 2.
We cut down the freedoms of L1 in several steps, given in the next three subsections.

4.3 Constraining Wall Segments to Rotations

A BC

D E
FG H

P

Q

R

S

Figure 8 Rotation gadget.

For two segments PQ and RS whose lines intersect at a
point O, consider the rotation gadget as illustrated in Fig-
ure 8. (When we apply this below, PQ and RS will be wall
segments, and O will be the crease point.) This linkage is
specified as follows: AB ‖ DE are any two segments not
sharing an endpoint with PQ or RS with AB closer to O
than DE; C is chosen on AB so that OA+AC = OB+BC,
and the 180◦ angle at C is declared to fold outward, with F
on DE chosen similarly; G and H are chosen so that both
DACG and CBEH are parallelograms.

I Lemma 3. The linkage illustrated in Figure 8 has one degree of freedom. If PQ and point
O are held fixed in the plane, then in the unique motion, segment RS rotates rigidly around
point O from its starting position to a closed configuration where PQ and RS are collinear.

I Lemma 4. Let L2 be the linkage derived from L1 as follows: for every internal cell, attach
a rotator gadget inside the cell connecting (internal subintervals of) the wall segments. Then
the motions of L2 correspond exactly to those motions of L1 where wall segments only rotate
around O, and planar motions of L1 extend (uniquely) to planar motions of L2.

4.4 Synchronizing Wall Segments

Pi−1

Qi−1

Pi

Qi

Pi+1

Qi+1

A

B

O

CL

DL
EL FL

GL

HL IL CR

DR

ER
FR

GR

HR

IR

Figure 9 Synchronizing gadget.

We next show how to synchronize the
wall segments to ensure that all wall
segments originally on ray ri remain on
a single ray through O throughout any
continuous motion. Let φ1, . . . , φt−1
be the initial angles of the wedges
W1, . . . ,Wt−1. For an internal cell
ABCD with AB ⊂ ri and CD ⊂ ri+1,
we know that any motion of L2 rotates
AB and CD around O, and we define
the angle of the cell at any time as the
angle between rays OAB and OCD.

I Definition 2. For each 1 ≤ i ≤ t − 2,
construct a linkage Mi with two adja-
cent flat V-folds as follows. Points A,D,B,E,C are collinear, and connected in order (with
B a flap on bar DE), and point O connects to A, B, and C. Angle OBA is 90◦, ∠AOB = φi,
and ∠BOC = φi+1. Finally, if i is even then OADB is an outward flat V-fold and OBEC is
an inward flat V-fold, and if i is odd then OADB is chosen outward and OBEC is inward.

I Lemma 5. The linkage Mi defined as above has a single degree of freedom and folds from
the initial configuration to a flat one without overlap. Furthermore, there is a continuous,
strictly increasing, and invertible function mi : [0, φi] → [0, φi+1] such that mi(∠AOB) =
∠BOC during this motion.
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Inductively define Φ1(s) = s and Φi(s) = mi−1(Φi−1(s)); these will control the rates
at which internal cells’ angles change. Specifically, fix an internal cell X1Y1Y2X2 with two
wall segments X1Y1 and X2Y2 such that X1Y1 ⊂ r1 and X2Y2 ⊂ r2 initially. (We may have
X1 = X2 = O.) Let s be a variable representing the angle of cell X1Y1Y2X2 during any
motion. We will brace L2 to a new linkage so that every internal cell initially in Wi will
have angle Φi(s) during the motion.

To do this, we make the following additions to L2 to form a new linkage L3: For ev-
ery pair of adjacent internal cells with wall segments Pi−1Qi−1 ⊂ ri−1, PiQi ⊂ ri, and
Pi+1Qi+1 ⊂ ri+1 (note that PiQi need not be a maximal wall segment for either cell), at-
tach a synchronizing gadget as shown in Figure 9. The full version of this paper provides a
more detailed description of this process.
I Lemma 6. Define L3 as the linkage constructed from L2 by inserting a synchronizing
gadget between every pair of adjacent internal cells as described above. Then the contin-
uous motions of L3 correspond to those motions of L2 such that the angle of any internal
cell originally in wedge Wi is now Φi(s), where s represents the (changing) angle of cell
X1Y1Y2X2. Furthermore, planar motions of L2 induce planar motions of L3.

4.5 Constraining Ear Cells
The configurations of all internal cells in L3 are determined by s = ∠Y1OY2. The only
unwanted degrees of freedom of L3 must therefore come from the ear cells, which have not
yet been modified. In this section we constrain these to produce the final linkage L.

Consider an ear cell with wall segment PiQi ∈ ri and wall point Vi+1 ∈ ri+1, say. This
is adjacent to a unique interior cell, with wall segment Pi−1Qi−1 along ri−1. To constrain
ear cell PiQiPi+1, we simply add two synchronization gadgets centered on PiQi that both
connect to Vi+1 ∈ ri+1 and some point Vi−1 ∈ Pi−1Qi−1. Adding these synchronization
gadgets for each ear cell produces the final linkage L:
I Theorem 5. The linkage L obtained from L3 by adding two synchronization gadgets to
each ear cell is a pop-up for the polygon P . Its boundary is connected and forms the polygon
P in its opened configuration, and there are O(n2) total bars in the linkage.

5 Orthogonal Polyhedra Pop-Ups

In this section, we apply some of the techniques of 2D pop-up folds to the design of 3D pop-
up structures that take the shape of orthogonal polyhedra. We first show how to construct
pop-ups with an opening angle of 90◦, then extend the construction to larger opening angles.

5.1 3D Pop-Up Model
In the 3D case, we model a pop-up using a model similar to rigid origami. A structure
in rigid origami is composed of infinitely thin rigid sheets of paper, each in the shape of a
simple polygon, connected using hinged joints. If two or more sheets are joined at a hinge
and one is held fixed, then the only possible motion for the other sheet(s) is rotation around
the hinge. A fold or a crease in a pop-up is equivalent to a hinge connecting two sheets. A
flap in a pop-up corresponds to attaching the edge of one sheet to the center of another.

Let P be a simple polyhedron with n vertices v1, . . . , vn. We select one edge e in P to
be the spine of the pop-up. Let f1 and f2 be the faces adjacent to e. The opening angle of
the pop-up is the measure of the dihedral angle between f1 and f2. The cover of the pop-up
consists of the union of two halfplanes. The first halfplane in the cover is the half of the
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supporting plane of f1 that contains f1 and has the extension of e as its boundary. The half
of the cover containing f2 is defined similarly.

A rigid-origami structure L is a 3D pop-up for P if it has an open configuration, a closed
configuration, and a unique folding motion from open to closed, all defined analogously to
the configurations of a 2D pop-up. The combinatorial complexity of the 3D pop-up L is
equal to the number of hinges.

Note that unlike in the 2D case, it is not sufficient to add more paper and more creases.
By the Bellows Theorem [28, 9], if we treat a polyhedron as a linkage where each face is rigid
and faces must rotate around edges, then all motions preserve the volume of the polyhedron.
Hence, we cannot fold the polyhedron flat unless we cut the boundary of the polyhedron.

5.2 Scaffold Pop-Ups
Suppose we have a simple orthogonal polyhedron P with an opening angle of 90◦. Without
loss of generality, we may assume that e lies along the z-axis, and that f1 lies in the positive x
section of the xz plane. Suppose further that f2 lies in the positive y section of the yz plane.
Let x1, . . . , xn be the sorted x-coordinates of all vertices in P . Similarly, let y1, . . . , yn be the
sorted y-coordinates and let z1, . . . , zn be the sorted z-coordinates. Then grid cell (i, j, k)
is the rectangular box [xi, xi+1]× [yj , yj+1]× [zk, zk+1]. By construction, the polyhedron P
is the union of a face-connected subset R of grid cells. The scaffold of P is the union of all
faces f of cells in R such that f is parallel to the spine.

The grid slice Gk consists of the union of all grid cells (i, j, k), not necessarily contained
in P . Let the slice scaffold Sk be the intersection of the scaffold with Gk. The slice scaffold
contains no faces perpendicular to the z-axis, and every cross section perpendicular to the
z-axis is the same. Hence, the problem of constructing a pop-up for Sk is purely 2D.

To construct a pop-up for Sk with the correct shear motion, we must somehow combine
faces of Sk into larger rigid sheets. If an edge borders exactly three faces, then the two
coplanar faces can be fused into a rigid sheet, with the third face added as a flap. Suppose
instead that we have an edge with x and y coordinates (xi, yj) bordering exactly four faces.
If (i+ j) is even, then we rigidify the pair of faces perpendicular to the x-axis; otherwise, we
rigidify the pair of faces perpendicular to the y-axis. This construction means that the four
sheets adjacent to a given grid cell are arrayed in a pinwheel pattern. This ensures that the
shear motion of one cell must be the same as the shear of all adjacent cells.

Suppose that we use this construction to make a pop-up-like structure for each slice,
which we will call a pinwheel slice. Place all pinwheel slices side-by-side so that the initial
position takes the shape of the scaffold. Call the result of this process the sliced pinwheel
scaffold. Unfortunately, the sliced pinwheel scaffold has too many degrees of freedom: each
slice scaffold is disconnected from its neighbors, and even within a single slice the scaffold
may be disconnected.

Given any pair r1, r2 ∈ R of adjacent cells in adjacent slices, we wish to cause any motions
of the sheets around r1 to affect the sheets around r2. For each such pair r1, r2, we fuse each of
the four sheets that surround r1 in the initial configuration with the corresponding coplanar
sheet around r2, to create four larger rigid sheets in the initial opening configuration. Call
the result of this fusing the pinwheel scaffold of P .

I Lemma 7. The pinwheel scaffold of a polyhedron P is a pop-up for the scaffold of P . The
pinwheel scaffold has complexity O(n3).

The pinwheel scaffold has a number of faces parallel to the spine. All such faces are
contained within P when the scaffolding is open, and all faces on the boundary of P that
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are parallel to the spine also exist in the scaffolding (although they may be subdivided).
The only missing pieces are the faces of P that are perpendicular to the spine.

5.3 Additional Faces
To add those pieces to the pinwheel scaffold, we first subdivide the faces using our rectilinear
grid so that the sheets we wish to add to the pinwheel scaffold are faces of the grid cells. We
must attach each such sheet to the sheets in the scaffold that form the adjacent grid cell.

There are four potential hinges that we could use to attach the new face to the scaf-
fold. The hinges we choose to use are the hinge parallel to the x-axis with the smallest
y-coordinate, and the hinge parallel to the y-axis with the smallest x-coordinate. By con-
struction, the angle between these two hinges will grow smaller as the pinwheel scaffold
folds. Therefore, if we attach the new face using these hinges, it is sufficient to add a crease
to the new sheet emanating from the intersection of the two hinges at a 45◦ angle. For
consistency, we make each crease constructed in this fashion fold in the positive z-direction.
We call the resulting rigid origami structure the draped scaffold.

I Theorem 6. The draped scaffold of P is a pop-up for P with complexity O(n3).

The draped scaffold may be used to construct 90◦ pop-ups in 3D. By combining this
structure with a reflector gadget as in Section 3.2, we can extend our construction to handle
larger multiples of 90◦. See the full version for details.

6 Conclusion and Open Problems

In this paper, we demonstrate techniques for designing 2D pop-ups for general polygons,
and 3D pop-ups for orthogonal polyhedra. The most obvious open question is whether there
is a way to construct 3D pop-ups for general polyhedra. Another question to consider is
which 2D or 3D shapes are constructible using a single sheet of material with no gluing, as
in most origamic architecture.
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