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Abstract. Fixed-angle polygonal chains in 3D serve as an interesting
model of protein backbones. Here we consider such chains produced
inside a “machine” modeled crudely as a cone, and examine the con-
straints this model places on the producible chains. We call this notion
α-producible, and prove as our main result that a chain is α-producible
if and only if it is flattenable, that is, it can be reconfigured without
self-intersection to lie flat in a plane. This result establishes that two
seemingly disparate classes of chains are in fact identical. Along the way,
we discover that all α-producible configurations of a chain can be moved
to a canonical configuration resembling a helix. One consequence is an al-
gorithm that reconfigures between any two flat states of a nonacute chain
in O(n) “moves,” improving the O(n2)-move algorithm in [ADD+02].
Finally, we prove that the α-producible chains are rare in the following
technical sense. A random chain of n links is defined by drawing the
lengths and angles from any “regular” (e.g., uniform) distribution on
any subset of the possible values. A random configuration of a chain
embeds into R

3 by in addition drawing the dihedral angles from any
regular distribution. If a class of chains has a locked configuration (and
we know of no nontrivial class that avoids locked configurations), then
the probability that a random configuration of a random chain is α-
producible approaches zero geometrically as n → ∞.

1 Introduction

The backbone of a protein molecule may be modeled as a 3D polygonal chain,
with fixed link (edge) lengths. The joints are not universal; rather the bonds
between residues form nearly fixed angles in space. The motions at the joints are
then called dihedral motions. The study of such fixed-angle chains was initiated
in [ST00] and continued in [ADM+02] and [BDD+02]. These papers identified
flat states of a chain—embeddings into a plane without self-intersection—as
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geometrically interesting. A chain that can reconfigure in R
3 via dihedral motions

between any two of its flat states is called flat-state connected. A chain that has
a flat state but is in a configuration that cannot reach that state (via dihedral
motions, without self-intersection) is called unflattenable or simply locked.1
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Fig. 1. The chain
is produced in
Cα, and emerges
at the origin into
the complimentary
cone Bα below the
xy-plane.

We look here at a particularly simple but natural con-
straint on the “production” of a fixed-angle chain. Our
inspiration derives from the ribosome, which is the “ma-
chine” that creates protein chains in biological cells. How-
ever, we quickly deviate from reality and replace the ri-
bosome by a simple geometric constraint: the chains are
produced inside a cone of half-angle α ≤ π/2, emerging
through its apex.

We show in Section 3 that this simple constraint guar-
antees that all producible chains are flattenable and fur-
thermore mutually reachable. There are several interesting
aspects to this result. First, cones with α > π/2 (concave
cones) permit the production of locked chains, as shown
in Section 4, so the ≤ π/2 constraint is needed. Second,
we are naturally led in our proof to a canonical form,
called α-CCC, which bears a resemblance to the helical
form preferred by many proteins. Third, we show in Sec-
tion 5 that long “random” chains are locked with probabil-
ity approaching 1, implying that producible protein chains
are rather special.

2 Definitions

2.1 Chains and Motions

The fixed-angle polygonal chain P has n + 1 vertices V = 〈v0, . . . , vn〉 and is
specified by the fixed turn angle θi at each vertex vi, i = 1, . . . , n − 1, and by
the edge length di between vi and vi+1, i = 0, . . . , n− 1. When all angles θi ≤ α
for some 0 < α ≤ π/2, P is called a (≤ α)-chain. We write P [i, j], i ≤ j, for the
polygonal subchain composed of vertices vi, . . . , vj .

A configuration Q = 〈q0, . . . , qn〉 of the chain P (see Fig. 2) is an embedding
of P into R

3, i.e., a mapping of each vertex vi to a point qi ∈ R
3, satisfying

the constraints that the angle between vectors qi−1qi and qiqi+1 is θi, and the
distance between qi and qi+1 is di. The points qi and qi+1 are connected by a
straight line segment ei. Thus, a configuration can be specified by the position of
e0 and dihedral angles δi, i = 1, . . . , n − 2, where δi is the angle between planes
ei−1ei and eiei+1. The configuration is simple if no two nonadjacent segments
intersect.

1 In fact, this definition is slightly more specific than the usual notion of “locked,”
which says that there are two arbitrary configurations of the linkage that are mutu-
ally unreachable.
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Fig. 2. Notation for a configuration Q.

A motion M = 〈m0, . . . ,mn〉 of a chain P is a list of n + 1 continuous
functions mi : [0,∞] → R

3, i = 0, . . . , n, such that M(t) = 〈m0(t), . . . ,mn(t)〉 is
a configuration of P for all t ∈ [0,∞]. The motion is said to be simple if all such
configurations M(t) are simple. We normally assume that the motion is finite in
the sense that, after some time T , M becomes independent of t.

2.2 Chain Production

As mentioned above, our model is that the chain is produced inside an infinite
open cone Cα with apex at the origin, axis on the z axis, and half-angle (to the
positive z-axis) α ≤ π/2; see Fig. 1. Let Cα be the corresponding closed cone.
We similarly define the cone Bα, the mirror image of Cα with respect to the
xy-plane.

The vertices and edges are created inside Cα and exit the machine at the
apex of Cα. The portion of the chain already produced is allowed to move freely
as long as it stays simple and never meets Cα. At time t0 = 0, the machine
creates v0 at the apex of Cα, v1 inside Cα, and the segment e0 connecting them.
In general, at time ti, vertex vi reaches the apex of Cα, and vi+1 and ei are
created inside Cα. The vertex vi stays in Cα between times ti−1 and ti and
0 = t0 < t1 < · · · < tn.

Formally, an α-production F is a set of n + 1 continuous functions fi :
[ti−1,∞] → R

3, i = 0, . . . , n, such that, for all t ∈ [tj−1, tj ], fj(t) ∈ Cα,
F (t) = 〈f0(t), . . . , fj(t)〉 is a simple configuration of P [0, j], and no segment
ei intersects Cα, i < j. A configuration Q is said to be α-producible if there
exists an α-production F with F (∞) = Q.

One consequence of this model is the following:

Lemma 1. An (≤ α)-chain can be produced only in a cone Cα/2 or larger.

Proof. Suppose θi = α. At time ti, when vi+1 is created inside the cone, vi is
at the apex, and vi−1 is outside. Because we stipulate continuous motion, vi−1

must be inside the cone Bα/2 below the xy-plane, for it must have been there
throughout t ∈ [ti−1, ti). If ei−1 is on that cone surface, then vi+1 can just barely
be inside Cα/2, on its surface, with turn angle α at vi. Note that, for t > ti, vi−1

need no longer remain in Bα/2. 2



We will prove that there exists a simple motion between any two α-producible
configurations of the same chain, and that all such configurations are flattenable.
Next we define the notion of a “simple” motion.

2.3 Complexity of a Motion

There are of course many ways to define the complexity of a motion M . As
a first approximation, we could assume that each dihedral angle δM

i (t) of the
segment ei is a piecewise-linear function of time t, and the complexity T (M) of
the motion M is the total number of linear pieces over all functions δM

i (t). That

is, T (M) =
∑n−2

i=1
T (δM

i ), where T (δM
i ) is the number of linear pieces in the

function δM
i . Unfortunately, this definition is not acceptable, as it restricts the

range of possible motions M . The definition can be generalized to allow arbitrary
functions δM

i (t), given some corresponding measure of complexity T (δM
i ), with

the added restriction that for every time range t ∈ [r, s] during which δM
i (t)

is a linear function, that time range contributes at most 1 to the complexity
T (δM

i ). For example, if δM
i (t) is a piecewise-polynomial function, T (δM

i ) could
be defined as the sum of the degrees of the polynomial pieces; or more generally
T (δM

i (t)) might measure the number of inflection points or monotonic pieces of
δM
i (t).

The complexity of a production F can be defined in an analoguous way,
where δF

i (t) is defined only for the time range t ≥ ti+1. The resulting value
will only account for the dihedral motions outside the cone Cα. We still need
to add the complexity of the movement of point fi+1(t) before it exits the cone
for all i, i.e., at time t ∈ [ti, ti+1). If we assume that the chain exits the cone
at a constant rate, we only need to consider the vector uF (t) = (0, fi+1(t)) for
t ∈ [ti, ti+1), described in polar coordinates by the angle ρF (t) of uF (t) with
the z-axis, and the angle γF (t) of the projection of uF (t) onto the xy-plane
with the x-axis. The complexity will be expressed by T (γF ) and T (ρF ), with
the restriction that T (ρF ) be at least the number of connected components in
{t : ρF (t) = 0}. For example, the number of pieces in a piecewise-linear function,
or the sum of degrees in a piecewise-polynomial function, would qualify. No
restrictions are imposed on T (γF ). The total complexity of the production is

then T (F ) =
∑n−2

i=1
T (δF

i ) + T (ρF ) + T (γF ).

3 Producible ≡ Flattenable

Key to our main theorem is showing that every α-producible configuration can
be moved to a canonical configuration, and therefore to every other α-producible
configuration.

3.1 Canonical Configuration

We begin by defining the canonical configuration of α-producible chains, called
the α-cone canonical configuration or α-CCC. To better understand the con-
straints of a configuration Q, consider normalizing all edge vectors qiqi+1 to unit



vectors ui = (qi+1 − qi)/‖qi+1 − qi‖ which lie on the unit sphere. The α-CCC is
constructed to have the property that all such vectors lie along a circle of radius
α/2 on that sphere. In other words, the vectors ui lie on the boundary of a cone
with half-angle α/2.
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Fig. 3. u0 lies on the cone Cπ/4.
(θ1, θ2, θ3) = (π/4, π/6, π/5), re-
spectively.

To ease the description, we use the cone
Cα/2 (not Cα) to define α-CCC, but note
that the cone and the chain could be rotated
and translated. By convention, we place u0

on the boundary of Cα/2 in the positive
quadrant of the yz-plane. Because Q is a con-
figuration of P , the angle between ui−1 and
ui is θi and so, on the sphere, ui lies on the
circle of radius θi centered at ui−1. Because
θi ≤ α, this circle intersects the boundary of
Cα/2. We set ui to be the first intersection
counterclockwise from ui−1 on the boundary
of Cα/2 (where counterclockwise is viewed
from the origin). See Fig. 3 for an example.

The position of the ui’s on the unit sphere
as described above, along with the position
of q0, uniquely determine the position of the
α-CCC of the chain. Because the ui vectors
all have positive z coordinates, we know that the resulting configuration is simple.
We can also show that the α-CCC is completely contained in Cα/2:

Lemma 2. If all unit edge vectors ui are contained in a cone Cβ for some half-
angle β > 0, then the configuration Q is inside q0 + Cβ, the cone translated so
its apex is at q0. Furthermore, if u0 6= u1, then only the first bar of the chain
can touch the boundary of q0 + Cβ.

Proof. The proof is by induction on n. The claim holds for the 1-point chain
Q[n, n]. Assume Q[1, n] is contained in a cone with apex q1. Now q1 is on the
boundary of the cone with apex q0, so the cone with apex at q1 is contained
in the one with apex at q0. Furthermore, the boundary of these cones intersect
only at the line of support q0q1. 2

In the α-CCC, ui is always different from ui+1.

3.2 Canonicalization

Next we show how to find a motion from any α-producible configuration of an
α-producible chain to the corresponding α-CCC.

Theorem 1. If a configuration Q of a (≤ α)-chain P is α-producible by a pro-
duction F , then there is a motion M from Q to the α-CCC, with T (M) ≤
T (F ) + 3n.



Proof. Because Q is α-producible, there exists an α-production F with F (∞) =
Q. By scaling time appropriately, we can arrange that ti = i, and the configura-
tion freezes at time n + 1, i.e., F (t) = F (n + 1) for t > n + 1.

We construct a motion M from Q to the α-CCC, constructed inside Cα. A
key idea in our construction is to play the production movements backwards.
More precisely, for all i = 0, . . . , n, we define mi(t) = fi(n + 1 − t) for the
(reverse) time interval t ∈ [0, n + 2 − i]. (Beyond reverse time n + 2 − i, the
original production time is less than n + 1 − (n + 2 − i) = i − 1 and thus fi is
no longer defined.) To complete the construction, we just have to define mi(t)
for t > n + 2 − i, that is, the motion of the part of the chain that has already
re-entered the cone Cα.

During the time interval (n− i, n+1− i), the edge ei is entering the cone Cα

through the origin, P [0, i] is outside Cα, and P [i+1, n] is inside Cα. We maintain
the invariant that P [i, n] is in α-CCC, contained in a cone Cα/2 translated and

rotated to some position C ′
α/2. So the dihedral angle of ej does not change for

j > i, i.e., P [i + 1, n] is held rigid. Because P [0, i] moves freely outside of Cα

according to the reversed movements of the α-production, we can only control
the dihedral angle of ei in order to maintain that C ′

α/2 (and so P [i+1, n]) stays

inside Cα.

Again, consider the vectors uj . The invariant means that all uj , j = i, . . . , n−
1, touch the boundary of some circle σ of radius α/2 on the unit sphere centered
on the apex of the cone, and σ must be inside Cα. The last condition will be true
whenever σ contains the unit vector u+z along the z-axis, because we selected
σ to have radius α/2, so it has diameter α, which is the angle between u+z

and the side of Cα. Thus, for any position ui, we place σ so that its diameter
from ui contains u+z. As long as ui 6= u+z, this position is unique and the
resulting motion is continuous because the production is continuous. When ui =
u+z, a discontinuity might be introduced, but these discontinuities can easily be
removed by stretching the moment of time at which a discontinuity occurs and
filling in a continuous motion between the two desired states.

At time t = n+1−i, vertex i enters Cα and the invariant needs to be restored
for the next phase. At that time, the vector ui−1 lies in Cα, and ui is on a circle τ
of radius θi centered at ui−1. Let σ′ be the desired new position for σ, that is,
the circle whose diameter is α, passes through ui−1, and contains u+z. We know
that σ′ and τ intersect and all intersections are inside Cα because σ′ is in Cα.
We first move ui to the first intersection between σ′ and τ counterclockwise from
ui−1 on σ′ by changing the dihedral angle of ei−1, and simultaneously moving σ
accordingly as described above by changing the dihedral angle of ei. We then
rotate σ about ui to the position σ′ by changing the dihedral angle of ei. This
motion can be done in such a way that σ always contains u+z, because the set
of dihedral angles of ei for which σ contains u+z is connected.

The complexity of all dihedral motions outside of Cα is
∑n−2

i=1
T (δF

i ). The
dihedral motions of ei during times t ∈ (n−i, n+1−i) mirror exactly γF (n+1−t),
except at discontinuities, which correspond to times for which ui = u+z, which is
exactly when ρF (n+1−t) = 0, so the total complexity of these dihedral motions



is bounded by C(ρF )+C(γF ). Finally, whenever a vertex attains the apex of the
cone, we perform three dihedral rotations (linear functions of time) to restore the

invariant. Summing it all, we obtain C(M) ≤
∑n−2

i=1
T (δF

i ) + C(ρF ) + C(γF ) +
3n = C(F ) + 3n. 2

Corollary 1. For any two simple α-producible configurations Q1 and Q2 of a
common chain, with respective productions F1 and F2, there is a simple motion
M from Q1 to Q2—that is, M(0) = Q1 and M(∞) = Q2—for which T (M) ≤
T (F1) + T (F2) + 6n.

Proof. Because Q1 and Q2 are α-producible, the previous theorem gives us two
motions M1 and M2 with M1(0) = Q1, M1(∞) = α-CCC, M2(0) = Q2, and
M2(∞) = α-CCC. By rescaling time, we can arrange that M1(t) = M2(t) = α-
CCC for t beyond some time T . Then define M(t) = M1(t) for 0 ≤ t ≤ T ,
M(t) = M2(2T − t) for T < t ≤ 2T , and M(t) = Q2 for t > 2T . 2

3.3 Connection to Flat States

Finally, we relate flat configurations to productions and prove our main result
that flattenability is equivalent to producibility.

Lemma 3. All flat configurations of a (≤ α)-chain have an α-production F for
α ≤ π/2. Furthermore, T (F ) ≤ n.

Proof. Assume the configuration is in the xy-plane. Any such flat configuration
can be created using the following process. First, draw e0 in the xy-plane. Then,
for all consecutive edges ei, create ei in the vertical plane through ei−1 at angle
θi−1 with the xy-plane, then rotate it to the desired position in the xy-plane by
moving the dihedral angle of ei−1. During the creation and motion of ei, it is
possible to enclose it in some continuously moving cone C of half-angle α whose
interior never intersects the xy-plane: at the creation of ei, C is tangent to the
xy plane on the support line of ei−1 and with its apex at pi. During the rotation
of ei, ei will eventually touch the boundary of C. We then move C along with
ei so that both ei and the xy-plane are tangent to C. When ei reaches the xy
plane, we translate C along ei until its apex is pi+1. Viewing the construction
relative to C and placing C on Cα gives the desired α-production. 2

Corollary 2. (≤ π/2)-chains are flat-state connected. The motion between any
two flat configurations uses at most 8n dihedral motions.

Proof. Consider two flat configurations Q and Q′ of a (≤ π/2)-chain. By
Lemma 3, Q and Q′ are both (π/2)-producible, and so by Corollary 1, there
exists a motion M such that M(0) = Q and M(+∞) = Q′. 2

Corollary 3. All α-producible configurations are flattenable, provided α ≤ π/2.
For a production F , the flattening motion M has complexity T (M) ≤ T (F )+7n.

Proof. Consider an α-producible configuration Q of an (≤ α)-chain P . Because
α ≤ π/2, the chain P also has a flat configuration Q′ [ADD+02]. By Lemma 3,
Q′ is producible, and so by Corollary 1, there exists a motion M such that
M(0) = Q and M(+∞) = Q′. 2



4 A More Powerful Machine

We now show that, under a different model, our result does not hold. Suppose
that vi+1 is not created at ti, but rather imagine the time instant ti stretched
into a positive-length interval [ti, t

′
i], allowing time for vivi−1 to rotate exterior to

the cone prior to the creation of vi+1 (at time t′i). This flexibility would remove
the connection in Lemma 1 between the half-angle of the cone and the turn
angles produced, permitting chains of large turn angle to be produced. Indeed,
the sequence of motions depicted in Fig. 4 exploits this large-angle freedom to
emit a 4-link fixed-angle chain that is locked.
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Fig. 4. Production of a locked chain under a model that permits large turning angles
to be created. For clarity, the cone is reflected to aim upward. (a) e0 = (q0, q1) emerges;
(b) turn at q1; (c) turn at q2 and dihedral motion at q1 places e1 in front of cone; (d) e2

nearly fully produced; (e) chain spun about e2 (or viewpoint changed); (f) rotation at
q3 away from viewer places chain behind cone; (g) e3 emerges; (i) final locked chain
shown loose; the turn angle θ3 at q3 can be made arbitrarily close to π.

It is possible to view this model as the same as the previous, but with an
α > π/2, so that the chain inside Cα can form angles at the apex as large as 2α,
which could approach 2π.

5 Random Chains

This section proves that the producible/flattenable configurations are a van-
ishingly small subset of all possible configurations of a chain, for almost any
chain. Essentially, the results below say that, if there is one configuration of



one chain in a class that is unflattenable, then a randomly chosen configuration
of a randomly chosen chain from that class is unflattenable with probability
approaching 1 geometrically as the number of links in the chain grows. Further-
more, this result holds for any “reasonable” probability distribution on chains
and their configurations.

To define probability distributions, it is useful to embed chains and their
configurations into Euclidean space. A chain P = 〈θ1, . . . , θn−1; d0, . . . , dn−1〉 ∈
[0, π/2]n−1 × [0,∞)n is specified by its turn angles θi and edge lengths di. A
configuration Q = 〈δ1, . . . , δn−2〉 ∈ [0, 2π)n−2 of P is specified by its dihedral
angles. We also need to be precise about our use of the term “unflattenable” for
chains vs. configurations. A simple configuration Q is unflattenable or simply
locked if it cannot reach a flat configuration; a chain P is lockable if it has a
locked configuration.

We consider the following general model of random chains of size n. Call
a probability distribution regular if it has positive probability on any positive-
measure subset of some open set called the domain, and has zero probability
density outside that domain.2 For Euclidean d-space R

d, a probability distribu-
tion is regular if it has positive probability on any positive-radius ball inside the
domain. Uniform distributions are always regular.

For chains of k links, we emphasize the regular probability distribution PΘ,D
k

obtained by drawing each turn angle θi independently from a regular distribution
Θ, and drawing each edge length di independently from a regular distribution
D. Similarly, for not-necessarily-simple configurations of a fixed chain P , we em-
phasize the regular probability distribution obtained by drawing each dihedral
angle δi independently from a regular distribution ∆. We can modify this prob-
ability distribution to have a domain of all simple configurations of P instead
of all configurations of P , by zeroing out the probability density of nonsimple
configurations, and rescaling so that the total probability is 1. The resulting
distribution is denoted QP,∆, and it is regular because the subspace of simple
configurations of a chain P is open.

First we show that individual locked examples immediately lead to positive
probabilities of being locked. The next lemma establishes this property for con-
figurations of chains, and the following lemma establishes it for chains.

Lemma 4. For any regular probability distribution Q on simple configurations
of a lockable chain P , if there is a locked simple configuration in the domain of
Q, then the probability of a random simple configuration Q of P being locked is
at least a constant c > 0.

Lemma 5. For any regular probability distribution P on chains, if there is a
lockable chain in the domain of P, then the probability of a random chain P
being lockable is at least a constant ρ > 0.

Next we show that these positive-probability examples of being locked lead
to increasing high probabilities of being locked as we consider larger chains.

2 A closely related but more specific notion of regular probability distributions in 1D
was introduced by Willard [Wil85] in his extensions to interpolation search.



Theorem 2. Let Pn be a random chain drawn from the regular distribution
PΘ,D

n . If there is a lockable chain in the domain of PΘ,D
n for at least one

value of n, then limn→∞ Pr [Pn is lockable] = 1. Furthermore, if Qn is a
random simple configuration drawn from the regular distribution QPn , then
limn→∞ Pr [Qn is flattenable] = limn→∞ Pr [Qn is producible] = 0. Both limits
converge geometrically.

Proof. Suppose there is a lockable chain of k links. By Lemma 5,
Pr[Pk is lockable] > ρ > 0. Break Pn into bn/kc subchains of length k. Each

of these subchains is chosen independently from PΘ,D
k and is not lockable with

probability < 1 − ρ. Now Pn is lockable (in particular) if any of the subchains
are lockable, so the probability that Pn is not lockable is < (1 − ρ)bn/kc which
approaches 0 geometrically as n grows. Likewise, by Lemma 4, the probability
that Qk is locked is > cρ for some constant 0 < c < 1, and so the probability
that Qn is flattenable is < (1 − cρ)bn/kc which approaches 0 as n grows. 2

Thus, producible configurations of chains become rare as soon as one chain
in the domain of the distribution is lockable. Surprisingly, we do not know of any
nontrivial regular probability distributions PΘ,D

n that have no lockable chains in
their domain. For example, if D always picks unit edge lengths, and Θ always
picks turn angles ≥ π/2, then we do not know whether any lockable equilateral
(≥ π/2)-chains result.
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