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Abstract12

We analyze the computational complexity of optimally playing the two-player board game Push13

Fight, generalized to an arbitrary board and number of pieces. We prove that the game is14

PSPACE-hard to decide who will win from a given position, even for simple (almost rectangular)15

hole-free boards. We also analyze the mate-in-1 problem: can the player win in a single turn?16

One turn in Push Fight consists of up to two “moves” followed by a mandatory “push”. With17

these rules, or generalizing the number of allowed moves to any constant, we show mate-in-1 can18

be solved in polynomial time. If, however, the number of moves per turn is part of the input, the19

problem becomes NP-complete. On the other hand, without any limit on the number of moves20

per turn, the problem becomes polynomially solvable again.21
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1 Introduction27

Figure 1 A Push Fight game in progress.
Photo by Brettco, Inc., used with permission.

Push Fight [10] is a two-player board game, in-28

vented by Brett Picotte around 1990, popular-29

ized by Penny Arcade in 2012 [9], and briefly30

published by Penny Arcade in 2015 [8]. Play-31

ers take turns moving and pushing pieces on32

a square grid until a piece gets pushed off the33

board or a player is unable to push on their turn.34

Figure 1 shows a Push Fight game in progress,35

and Section 2 details the rules.36

In this paper, we study the computational complexity of optimal play in Push Fight,37

generalized to an arbitrary board and number of pieces, from two perspectives:38

1 Now at Google Inc.
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11:2 Computational Complexity of Generalized Push Fight

Computational complexity of. . .
Moves per turn Mate-in-1 Who wins?
≤ 2 P PSPACE-hard, in EXPTIME
≤ c constant P open
≤ k input NP-complete open
unlimited P open

Table 1 Summary of our results.

1. Who wins? The typical complexity-of-games problem is to determine which player wins39

from a given game configuration.40

2. Mate-in-1: Can the current player win in a single turn?41

Table 1 summarizes our results.42

Generalized Push Fight is a two-player game played on a polynomially bounded board43

for a potentially exponential number of moves, so we conjecture the “who wins?” decision44

problem to be EXPTIME-complete, as with Checkers [11] and Chess [4]. (Certainly the45

problem is in EXPTIME, by building the game tree.) In Section 4, we prove that the46

problem is at least PSPACE-hard, using a proof patterned after the NP-hardness proof of47

Push-∗ [7]. Our proof uses a simple, nearly rectangular board, in the spirit of the original48

game; in particular, the board we use is hole-free and x-monotone (see Figure 8). It remains49

open whether Push Fight is in PSPACE, EXPTIME-hard, or somewhere in between.50

Our mate-in-1 results are perhaps most intriguing, showing a wide variability according51

to whether and how we generalize the “up to two moves per turn” rule in Push Fight. If52

we leave the rule as is, or generalize to “up to c moves per turn” where c is a fixed constant53

(part of the problem definition), then we show that the mate-in-1 problem is in P, i.e., can54

be solved in polynomial time. However, if we generalize the rule to “up to k moves per55

turn” where k is part of the input, then we show that the mate-in-1 problem becomes NP-56

complete. On the other hand, if we remove the limit on the number of moves per turn, then57

we show that the mate-in-1 problem is in P again. Section 3 proves these results.58

The mate-in-1 problem has been studied previously for other board games. The earliest59

result is that mate-in-1 Checkers is in P, even though a single turn can involve a long sequence60

of jumps [3]. On the other hand, Phutball is a board game also featuring a sequence of jumps61

in each turn, yet its mate-in-1 problem is NP-complete [2].62

For omitted proofs, see the full version of the paper [1].63

2 Rules64

The original Push Fight board is an oddly shaped square grid containing 26 squares; see65

Figure 2. Part of the boundary of this board has side rails which prevent pieces from being66

pushed off across those edges. We generalize Push Fight by considering arbitrary polyomino67

boards, with each boundary edge possibly having a side rail.68

Push Fight is played with two types of pieces, each of which takes up a square of the69

board: pawns (drawn as circles) and kings (drawn as squares). Each piece is colored either70

black or white, denoting which player the piece belongs to. Standard Push Fight is played71

with three kings and two pawns per player. Additionally, there is a single anchor that is72

placed on top of a king after it pushes (but is never placed directly on the board). Figure 373

shows our notation for the pieces.74
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Figure 2 Original Push Fight board.
Shaded regions represent side rails.

Figure 3 Our notation for pieces, in
reading order: a white king, a white pawn,
a black king, a black pawn; and white and
black anchored kings (in an actual game,
there is only one anchor).

→

Figure 4 An example move.

→

Figure 5 An example push.

Push Fight gameplay consists of the two players alternating turns. During a player’s75

turn, the player makes up to two optional moves followed by a mandatory push.76

To make a move, a player moves one of their pieces along a simple path of orthogonally77

adjacent empty squares; see Figure 4.78

To push, a player moves one of their kings into an occupied adjacent square. The79

piece occupying that square is pushed one square in the same direction, and this continues80

recursively until a piece is pushed into an unoccupied square or off the board. If this process81

would push a piece through a side rail, or would push the anchored king, the push cannot82

be made. Pushes always move at least one other piece. When the push is complete, the83

pushing king is anchored (the anchor is placed on top of that king). Figure 5 shows a valid84

push.85

A player loses if any of their pieces are pushed off the board (even by their own push)86

or if they cannot push on their turn.87

I Definition 1. A Push Fight game state is a description of the board’s shape, including88

which board edges have side rails, and for each board square, what type of piece or anchor89

occupies it (if any).90

Note that the position of the anchor encodes which player’s turn it is: if the anchor is on91

a white king, it is black’s turn, and vice versa. If the anchor has not been placed (no turns92

have been taken), it is white’s turn.93

3 Mate-in-194

We consider three variants of mate-in-1 Push Fight, varying in how the number of moves is95

specified: as a constant in the problem definition, as part of the input, or without a limit.96

3.1 c-Move Mate-in-197

I Problem 2. c-Move Push Fight Mate-in-1: Given a Push Fight game state, can the98

player whose turn it is win this turn by making up to c moves and one push?99

FUN 2018



11:4 Computational Complexity of Generalized Push Fight

The standard Push Fight game has c = 2.100

I Theorem 3. c-Move Push Fight Mate-in-1 is in P.101

Proof sketch: The number of possible turns is ≤ A2c+4 on a board of area A. 2102

3.2 k-Move Mate-in-1 is in NP103

I Problem 4. k-Move Push Fight Mate-in-1: Given a Push Fight game state and a104

positive integer k, can the player whose turn it is win this turn by making up to k moves105

and one push?106

In this section, we prove the following upper bound on the number of useful moves in a107

turn:108

I Theorem 5. Given a Push Fight game state on a board having n squares, if the current109

player can win this turn, they can do so using at most n6 moves followed by a push.110

Proof sketch: We divide the reachable game states into ≤ n4 equivalence classes, and show111

that two equivalent configurations can be reached via ≤ n2 moves within that class. 2112

Our bound directly implies an NP algorithm for k-Move Push Fight Mate-in-1:113

I Corollary 6. k-Move Push Fight Mate-in-1 is in NP.114

A turn consists of making some number of moves followed by a single push. For the115

purpose of analyzing a single turn, kings other than the single king that pushes are indis-116

tinguishable from pawns, so we can assume the current player first chooses a king, then117

replaces all of their other kings with pawns before making their moves and push. The118

following definitions are based on this assumption.119

I Definition 7. Given a single-king game state, a board configuration is a placement of120

pieces reachable by the current player making a sequence of moves.121

I Definition 8. The pawnspace of a board configuration is the (possibly disconnected) region122

of the board consisting of the empty squares and the squares containing the current player’s123

pawns. Equivalently, the pawnspace is the region consisting of all squares not occupied by124

the current player’s king or the other player’s pieces.125

I Definition 9. The signature of a board configuration is a list of nonnegative integers,126

where each integer is a count of the current player’s pawns in a connected component of the127

configuration’s pawnspace, ordered according to row-major order on the leftmost topmost128

square in the corresponding connected component.129

I Definition 10. Given two board configurations C1 and C2 derived from the same game130

state, we say that C1 ≡ C2 if and only if131

1. C1 and C2 have the same pawnspace (that is, the current player’s only king occupies the132

same square in C1 and C2) and133

2. C1 and C2 have the same signature (that is, each connected component of the pawnspace134

contains the same number of the current player’s pawns in C1 and C2).135

Relation ≡ is clearly reflexive, symmetric, and transitive, so it is an equivalence relation136

inducing a partition of the set of board configurations derived from a given game state into137

equivalence classes. We need the following two lemmas about ≡ for our proof of Theorem 5:138
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I Lemma 11. For a given game state on a board with n squares, there are at most n4
139

equivalence classes of board configurations.140

I Lemma 12. If C1 ≡ C2, then C2 can be reached from C1 in at most n2− 1 moves without141

leaving the equivalence class of C1.142

We are now ready to prove Theorem 5:143

I Theorem 5. Given a Push Fight game state on a board having n squares, if the current144

player can win this turn, they can do so using at most n6 moves followed by a push.145

Proof: By our assumption that the current player can win this turn, there exists a sequence146

of moves for the current player after which they can immediately win with a push, corre-147

sponding to a sequence of board configurations C1, C2, . . . , Cl. Configuration C1 is obtained148

from the initial game state by replacing all of the current player’s kings, except the one that149

ends up pushing, with pawns. Each Ci+1 can be reached from Ci in one move, and Cl is a150

configuration from which the current player can win with a push.151

We now define simplifying a sequence of board configurations over an equivalence class152

E. If the sequence contains no configurations from E, then simplifying the sequence over E153

leaves it unchanged. Otherwise, let Ai be the first configuration in the sequence in E and154

Aj be the last configuration in the sequence in E. By Lemma 12, there exists a sequence155

of fewer than n2 − 1 moves that transforms Ai into Aj , corresponding to a sequence of156

board configurations Ai = D0, D1, . . . , Du = Aj with u ≤ n2 − 1. Then simplifying over E157

consists of replacing all configurations between and including Ai and Aj with the replacement158

sequence D0, D1, . . . , Du.159

Notice that simplifying a sequence (over any class) never changes the first or last configu-160

ration in the sequence, and each configuration in the resulting sequence remains reachable in161

one move from the previous configuration in the resulting sequence. After simplifying over a162

class E, the only configurations in the resulting sequence in E are those in the replacement163

sequence, so the number of configurations in the sequence in E is at most n2. Furthermore,164

all configurations in the replacement sequence are in E, so simplifying over E never increases165

(but may decrease) the number of configurations falling in other classes.166

Let C ′1, C ′2, . . . , C ′l be the result of simplifying C1, C2, . . . , Cl over every equivalence class.167

By Lemma 11, there are at most n4 such classes, and by the above paragraph there are at168

most n2 configurations from each class in C ′1, C ′2, . . . , C ′l , so the length of C ′1, C ′2, . . . , C ′l is169

at most n6. Each configuration in C ′1, C ′2, . . . , C ′l is reachable in one move from the previous170

configuration, and that sequence of at most n6 moves leaves the current player in position171

to win with a push, as desired. 2172

3.3 Unbounded-Move Mate-in-1173

I Problem 13. Unbounded-Move Push Fight Mate-in-1: Given a Push Fight game174

state, can the player whose turn it is win this turn by making any number of moves and one175

push?176

I Theorem 14. Unbounded-Move Push Fight Mate-in-1 is in P.177

We can of course solve Unbounded-Move Push Fight Mate-in-1 by trying all possi-178

ble sequences of moves to find a board configuration from which the current player can win179

with a push, but there are exponentially many board configurations, so such an algorithm180

takes exponential time. Instead, we can use the fact that any two configurations in the same181

FUN 2018



11:6 Computational Complexity of Generalized Push Fight

equivalence class are reachable from each other in a polynomial number of moves (from182

Lemma 12) to search over equivalence classes of board configurations instead of searching183

over board configurations. There are at most n4 equivalence classes (by Lemma 11), so they184

can be searched in polynomial time.185

We will make use of the following definitions:186

I Definition 15. Two equivalence classes of board configurations C1 and C2 are neighbors187

if there exist board configurations b1 ∈ C1 and b2 ∈ C2 such that b1 can be reached from188

b2 with a king move of exactly one square. The equivalence class graph is a graph whose189

vertices are equivalence classes of board configurations and whose edges connect neighboring190

equivalence classes.191

An equivalence class of board configurations C is a winning equivalence class if there192

exists a board configuration b ∈ C such that the player whose turn it is can win with a push.193

The key idea for our algorithm is the following:194

I Lemma 16. There exists a path in the equivalence class graph from the equivalence class195

of the initial board configuration to a winning equivalence class if and only if there exists a196

winning move sequence.197

The size of the equivalence class graph is polynomial in n (by Lemma 11), so provided198

the graph can be constructed and the winning equivalence classes identified, this type of199

path in the equivalence class graph, if it exists, can be found in polynomial time.200

Recall from Definition 10 that equivalence classes of board configurations are defined by201

the pawnspace and signature, and that, for configurations derived from the same game state202

(i.e., having the other player’s pieces in the same positions), the pawnspace is defined by203

the position of the current player’s king. Thus we can uniquely name a class using the king204

position and signature.205

I Definition 17. The class descriptor of an equivalence class of board configurations for206

a given game state is the ordered pair of the position of the current player’s king and the207

signature defining that class.208

To prove Theorem 14, we need to give polynomial-time algorithms to compute the neigh-209

bors of an equivalence class and to decide whether a class is a winning equivalence class.210

I Lemma 18. Given an initial game state and a class descriptor for some class C, we can211

compute in polynomial time the equivalence classes (as class descriptors) neighboring C.212

I Lemma 19. Given an initial game state and a class descriptor for some class C, we can213

decide in polynomial time whether C is a winning equivalence class.214

We are now ready to prove Theorem 14:215

I Theorem 14. Unbounded-Move Push Fight Mate-in-1 is in P.216

Proof: First, compute the class descriptor for the equivalence class of the initial board217

configuration. Then perform a breadth- or depth-first search of the equivalence class graph,218

using the algorithm given in the proof of Lemma 18 to compute the neighboring class219

descriptors and the algorithm given in the proof of Lemma 19 to decide if the search has220

found a winning equivalence class. Each of these procedures takes polynomial time. By221

Lemma 11, there are only polynomially many equivalence classes, so the search terminates222

in polynomial time. By Lemma 16, there exists a winning move sequence if and only if this223

search finds a path to a winning equivalence class. 2224
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The key idea of the above proof is that, if we do not care how many moves we make225

inside an equivalence class, then it is sufficient to search the graph of equivalence classes.226

Thus the above proof does not apply to k-Move Push Fight Mate-in-1, and in the next227

section, we prove k-Move Push Fight Mate-in-1 is NP-hard.228

3.4 k-Move Mate-in-1 is NP-hard229

To prove k-Move Push Fight Mate-in-1 hard, we reduce from the following problem,230

proved strongly NP-hard in [5]:231

I Problem 20. Integer Rectilinear Steiner Tree: Given a set of points in R2 having232

integer coordinates and a length `, is there a tree of horizontal and vertical line segments of233

total length at most ` containing all of the points?234

I Theorem 21. k-Move Push Fight Mate-in-1 is strongly NP-hard.235

Proof sketch: The basic idea of our reduction is to create a game state mostly full of the236

current player’s pawns, but with a few empty squares (holes). The player must “move” the237

holes (by moving pawns into them, creating a new hole at the pawn’s former square) to238

free a king that can push one of the other player’s pieces off the board. Initially each pawn239

can only travel one square (into an adjacent hole) per move, but once two holes have been240

brought together, a pawn can travel two squares per move, and so on. Bringing the holes241

together optimally amounts to finding a Steiner tree covering the holes’ initial positions.242

Reduction: Suppose we are given an instance of Integer Rectilinear Steiner243

Tree consisting of points pi = (xi, yi) with i = 1, . . . , n and length `. For convenience, and244

without affecting the answer, we first translate the points so that min xi = 2 and min yi = 4245

and reorder the points such that y1 = 4.246

We then build a Push Fight game state with a rectangular board with a height of max yi247

and a width of n+max xi, indexed using 1-based coordinates with the origin in the bottom-248

left square; refer to Figure 6. The entire boundary of the board has side rails except the249

edge adjacent to square (x1, 1). There is a white king in square (x1 + n, 2) and a black king250

with the anchor in square (x1 − 1, 2). There is a black pawn in square (x, y) if any of the251

following are true:252

1. y = 3 and x 6= x1,253

2. y = 2 and either x < x1 − 1 or x > x1 + n, or254

3. y = 1.255

The squares (xi, yi) with 1 ≤ i ≤ n (corresponding to the points in the Integer Rectilin-256

ear Steiner Tree instance) are empty. All remaining squares are filled with white pawns.257

The output of the reduction is this Push Fight board together with k = ` + 3. 2258

4 Push Fight is PSPACE-hard259

In this section, we analyze the problem of deciding the winner of a Push Fight game in260

progress.261

I Problem 22. Push Fight: Given a Push Fight game state, does the current player have262

a winning strategy (where players make up to two moves per turn)?263

I Theorem 23. Push Fight is PSPACE-hard.264

FUN 2018
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1 32 4 65
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Figure 6 A Push Fight board (right) produced during the reduction from the points in an
example rectilinear Steiner tree instance (left).

To prove PSPACE-hardness, we reduce from Q3SAT, proved PSPACE-complete in265

[12, 6]:266

I Problem 24. Q3SAT: Given a fully quantified boolean formula in conjunctive normal form267

with at most three literals per clause, is the formula true?268

Our proof parallels the NP-hardness proof of Push-∗ in [7]. Push-∗ is a motion-planning269

problem in which a robot (agent) traverses a rectangular grid, some squares of which contain270

blocks. The robot can push any number of consecutive blocks when moving into a square271

containing a block, provided no blocks would be pushed over the boundary of the board.272

The Push-∗ decision problem asks, given a initial placement of blocks and a target location,273

can the robot reach the target location by some sequence of moves? In our proof, the white274

king takes the place of the Push-∗ robot2 and white pawns function as blocks. Our proof275

has the additional complication that Black sets the universally quantified variables, and that276

White’s moves and Black’s push must be forced at all times to keep the other gadgets intact.277

Figure 7 shows an overview of the reduction. The sole white king begins at the bottom-278

left of the variable gadget I block, setting existentially quantified variables as it pushes up279

and right. The variable gadget II block contains black pawns and holes that allow Black to280

set the universally quantified variables. After all the variables have been set, the white king281

traverses the bridge to the clause gadget block. The variable and clause gadgets interact282

via a pattern of holes in the connection block encoding the literals in each clause. The283

white king can traverse the clause gadgets only if the variable gadgets were traversed in a284

way corresponding to a satisfying assignment of the variables. The reward gadget contains285

a boundary square without a side rail, such that the white king can push a black pawn286

off the board if the white king reaches the reward gadget. The overflow block contains287

empty squares needed by the variable gadgets that were not used in the connection block288

(for variables appearing in few clauses). The move-wasting gadget forces White’s moves289

and Black’s push, ensuring the integrity of the other gadgets. Finally, all other squares on290

the board are filled with white pawns, and the boundary has side rails except at specific291

locations in the reward and move-wasting gadgets. Figure 8 shows an example output of292

2 The Push-∗ robot can move without pushing blocks, so the correspondence is not exact.
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Figure 7 An overview of the Push Fight board produced by our reduction.

the reduction.293

Figure 8 The result of performing the reduction on the formula ∀x∃y (x ∨ ¬y) ∧ (¬x ∨ y).
Gadgets and blocks are outlined.

We first prove the behavior of each of the gadgets, then describe how the gadgets are294

assembled.295

4.1 Move-wasting gadget296

The move-wasting gadget requires White to use both moves to prevent Black from winning297

on the next turn (unless White can win in the current turn). The move-wasting gadget298
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11:10 Computational Complexity of Generalized Push Fight

contains the only black king, thus consuming (and allowing) Black’s push each turn. When299

analyzing the other gadgets, we can thus assume White can only push and Black can only300

move. The move-wasting gadget comprises the entire bottom three rows of the board, but301

pieces only move in the far-right portion. Figure 9a shows the initial state of the gadget.302

Throughout this analysis, we assume White cannot win in one turn; Section 4.5, which303

analyzes the reward gadget, describes the position in which White can immediately win in304

one turn, and can therefore disregard the threat from Black in the move-wasting gadget.305

...

(a) Initial state

...

(b) One white turn after (a)

...

(c) One black turn after (b)

...

(d) One white turn after (c)

Figure 9 The move-wasting gadget.

In the initial state, the anchor is on the black king, so it is White’s turn. White must306

move the pawn above the black king to avoid losing next turn. There are only two reachable307

empty squares, both in the column left of the black king. If the other square in that column308

remains empty, Black can move the black king into it and push the white pawn in that309

column off the board. Thus White must fill the other square in that column, and the only310

way to do so is to move the pawn two columns left of the white king one square right.311

Figure 9b shows the resulting position (after White pushes elsewhere in the board).312

Black’s only legal push is to the left, resulting in the position shown in Figure 9c.313

The rightmost four columns in Figure 9c are simply the reflection of those columns in314

Figure 9a, so by the same argument White must fill the column to the right of the black315

king, resulting in Figure 9d.316

Again, the rightmost four columns of Figures 9d and 9b are reflections of each other.317

Black’s only legal push is to the right, restoring the gadget to the initial state shown in318

Figure 9a. Thus until White can win in one turn, White must use both moves in the move-319

wasting gadget, and at all times Black must (and can) push in the move-wasting gadget.320

In the analysis of the remaining gadgets, if the white king reaches a position from which it321

cannot push, we conclude that White immediately loses, because if White moves a pawn or322

the king into position to push, Black can win on the next turn as explained above.323

4.2 Variable gadgets324

The existential variable gadget forces White to fill all empty squares in one row of the325

connection block, corresponding to setting the value of that variable. The universal variable326

gadget allows Black to choose the value of the corresponding variable, then forces White327

to similarly fill a row of empty squares. We first analyze a core gadget; the existential328

variable gadget is a minor variant of the core gadget and its correctness follows directly,329
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... p

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

Figure 10 Existential variable
gadget.

... ...

0

0

0

0 0 0 0 0

000000

0

0

0

p

p - 10

0

0

Figure 11 Universal variable gadget.

while the universal variable gadget has an additional component to allow Black to choose330

the variable’s value. Throughout our analysis, we take advantage of the board being filled331

with white pawns to limit the number of pieces that can leave the gadget.332

The core gadget occupies a rectangle of width p + 5 and height 5. When instantiated333

in the reduction, the gadget lies entirely within the variable gadget I block. Integer p is334

one more than the maximum number of occurrences of a literal in the input formula. The335

initial state of the core gadget is shown in Figure 12. Each number along the boundary of336

the figure gives the number of empty squares outside the gadget in that direction, and thus337

an upper bound on the number of pieces that can leave the gadget via that edge.338

... p

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

Figure 12 The initial configuration of the core gadget together with upper bounds on the
number of pushes out of the gadget at each boundary edge. Omitted columns do not have a given
upper bound.

The following lemma summarizes the constraints we prove about the core gadget.339

I Lemma 25. Starting from the position in Figure 12, and assuming the white king does340

not push down or left from this position,341

(i) the white king leaves in the second-rightmost column, and342

(ii) when the white king leaves either343

a. the gadget is as shown in Figure 13 and p + 1 white pawns have been pushed out along344

the bottom row of the gadget, or345

b. the gadget is as shown in Figure 14 and p white pawns have been pushed out along the346

second-to-bottom row of the gadget,347

(iii) and no other pieces have left the gadget.348
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We will construct the existential and universal variable gadgets from the core gadget such349

that the assumption holds. Lemma 25(i) ensures we can chain variable gadgets together in350

sequence without the white king escaping. The outcomes implied by Lemma 25(iia) and351

25(iib) correspond to setting the variable to true or false (respectively) by filling in the352

empty squares in the connection block that could be used to satisfy a clause gadget for a353

clause containing the opposite literal; that is, pushing pawns out along the bottom row of354

a gadget prevents all negative literals from being used to satisfy a clause, and similarly for355

the second-to-bottom row and positive literals.356

...

Figure 13 The final configuration of the
core gadget after setting the variable to true.

...

Figure 14 The final configuration of the
core gadget after setting the variable to false.

Proof: We proceed by case analysis starting from Figure 12. The move-wasting gadget357

consumes White’s moves, and there are no black pieces in the core gadget, so we need only358

analyze the sequence of White’s pushes.359

Suppose the white king first pushes right. Because of the upper bounds along the top360

and bottom edges of the gadget, the only legal push in the resulting configuration is to the361

right, and this remains the case until the white king reaches the fourth column from the362

right of the gadget. At this point p + 1 pawns have been pushed off the right edge along the363

bottom row of the gadget, so there are no empty squares remaining in that row, so pushing364

right is no longer possible and the only legal push is up. Then the only legal push is again365

up because of the constraints on the left edge of the gadget. Figure 15 shows the result of366

this sequence of pushes.367
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Figure 15 One possible push sequence starting from the initial state of the core gadget. The
starred arrow elides a series of pushes to the right.

If the white king pushes left from this position, the only possible next push is down, after368

which there are no legal pushes, resulting in a loss for White. Figure 16 shows this sequence369

of pushes.370
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Figure 16 The result of pushing left and down from the last position in Figure 16. White has
no legal pushes in the final position.

The only other legal push from the last position in Figure 15 is to the right, after which371

pushes right, up, up and up again are the only legal pushes. This sequence results in the372

white king, preceded by a white pawn, exiting the top of the gadget in the second-rightmost373

column, as desired by Lemma 25(i). Figure 17 shows the positions resulting from this374

sequence. The final position reached is the position in Figure 13, p + 1 pawns were pushed375

out of the gadget to the right along the bottom row, as desired by Lemma 25(iia), and and376

no other pieces were pushed out of the gadget, as desired by Lemma 25(iii).377
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Figure 17 The result of pushing right from the last position in Figure 15, reaching the position
in Figure 13.

Now suppose that the white king pushes up from the initial configuration. Because of378

the constraints on the gadget boundary, the only legal push is to the right until the white379

king reaches the fourth column from the right of the gadget. At this point p pawns have380

been pushed off the right edge along the second-to-bottom row of the gadget, so there are381

no empty squares remaining in that row, so pushing right is no longer possible and the only382

legal push is up. Then the only legal push is again up because of the constraints on the left383

edge of the gadget. Figure 18 shows the result of this sequence of pushes.384

If the white king pushes up from this position, there are no legal pushes in the resulting385

position, resulting in a loss for White. Figure 19 shows this push and the resulting losing386

position.387

The only other legal push from the last position in Figure 18 is to the right, after which388

pushes right, up, up and up again are the only legal pushes. This sequence results in the389

white king, preceded by a white pawn, exiting the top of the gadget in the second-rightmost390

column, as desired by Lemma 25(i). Figure 20 shows the positions resulting from this391

sequence. The final position reached is the position in Figure 14, and p pawns were pushed392

out of the gadget to the right along the second-to-bottom row, as desired by Lemma 25(iib).393

No other pieces were pushed out of the gadget, as desired by Lemma 25(iii).394

This completes the case analysis. 2395
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Figure 18 The other possible push sequence starting from the initial state of the core gadget.
The starred arrow elides a series of pushes to the right.
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Figure 19 The result of pushing up from the last position in Figure 18. White has no legal
pushes in the final position.
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Figure 20 The result of pushing right from the last position in Figure 18, reaching the position
in Figure 14.

4.2.0.1 Existential variable gadget:396

The existential variable gadget, shown in Figure 10, is nearly the same as the core gadget,397

differing only in the bottom of the leftmost column. When instantiated in the reduction,398

the white king enters the gadget by pushing a white pawn up into the leftmost column,399

becoming exactly the core gadget. From the position immediately after the white king400

enters the gadget, the white king cannot push left (because there are no empty spaces in the401

row to the left) nor down (because it just pushed up, leaving an empty space in its former402

position), satisfying the assumption in Lemma 25. Thus by Lemma 25(i), the white king403

leaves the existential variable gadget in the second-rightmost column with a white pawn404
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above it, and by either Lemma 25(iia) or 25(iib), all empty squares in one of two rows of405

the connection block are now filled by pawns pushed out of the existential variable gadget.406

4.2.0.2 Universal variable gadget:407

The universal variable gadget consists of two disconnected regions. The left subregion of408

the gadget occupies a (p + 6)× 5 rectangle in the variable gadget I block. As the white king409

proceeds through the left region of the gadget, a subregion of the gadget reaches the initial410

state of the core gadget. The right region of the gadget occupies a 4 × 4 rectangle in the411

variable gadget II block and contains a black pawn to allow Black to control the value of412

the variable. The bottom of the right region is one row lower than the bottom of the left413

region. The area between the two regions of the gadget (in the three rows shared by both)414

is entirely filled by white pawns. Figure 11 shows the universal variable gadget, including415

the pawn-filled area between the regions.416
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Figure 21 The universal variable gadget after the white king enters.

As with the existential variable gadget, when instantiated in the reduction, the white417

king enters the universal variable gadget by pushing a white pawn up into the leftmost418

column. Figure 21 shows the resulting position. Regardless of Black’s move, White’s only419

legal push is to the right. By moving the black pawn, Black can choose between the two420

positions in Figure 22, depending on which of the two rows the black pawn is in when White421

pushes.422
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Figure 22 The two possible configurations of the universal variable gadget one white turn after
the configuration from Figure 21.

In both of the resulting positions, the black pawn is surrounded, so Black can no longer423

influence events in this gadget. The left region of the gadget, without the leftmost column, is424

identical to the initial position of the core gadget. In both positions, the white king cannot425

push left (empty space) or down (no empty spaces down in the column), satisfying the426
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assumption in Lemma 25. Thus either Lemma 25(iia) or Lemma 25(iib) holds. Because of427

the edge constraints, in Figure 22a, only Lemma 25(iia) is possible, resulting in Figure 23a.428

Similarly, in Figure 22b, only Lemma 25(iib) is possible, resulting in Figure 23b. By moving429

the black pawn to select one of these two cases, Black sets the value of the corresponding430

variable. Then by Lemma 25(i), the white king leaves in the second-rightmost column of431

the left region (in the variable gadget I block) of the gadget. In both cases, the black pawn432

remains surrounded by white pawns in the right region of the gadget.433
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Figure 23 The two possible final positions of the universal variable gadget after the white king
exits.

4.3 Bridge gadget434

The bridge gadget, shown in Figure 24, brings the white king from the exit of the last variable435

gadget to the entrance of the first clause gadget. When instantiated in the reduction, the436

white king enters the bridge gadget from the bottom of the leftmost column, preceded by a437

white pawn. The white king’s traversal of the bridge gadget is entirely forced. The white438

king leaves the gadget by pushing a white pawn out to the right in the second-to-top row.439

4.4 Clause gadget440

The clause gadget, shown in Figure 25, verifies that a column below the gadget contains441

at least one empty square. When instantiated in the reduction, the white king enters the442

gadget from the left in the top row, preceded by a white pawn. The resulting sequence of443

forced pushes includes a push down in the central column of the gadget; if there are no444

empty squares below the gadget in that column, the white king has no legal pushes and445

White loses. If there are more empty squares, White can continue to push down, but (when446

instantiated in the reduction) there are at most three total empty squares in that column,447

and once those squares are filled, White cannot push. Thus the white king must push right448

instead and leave the gadget by pushing a white pawn out to the right in the second-to-top449

row.450

4.5 Reward gadget451

The reward gadget, shown in Figure 26, allows White to win if the white king reaches452

the gadget. The black pawn in this gadget cannot move because it is surrounded. When453

instantiated in the reduction, the white king enters the gadget from the left in the top row,454

preceded by a white pawn. After pushing right until the white king is in the third column455

of Figure 26, White can win by moving a white pawn and the white king, then pushing456

upwards to push the black pawn off the board, as shown in Figure 27. (Recall that the457

move-wasting gadget no longer binds White once White can win in one turn; Black loses458

before Black can win using the move-wasting gadget.)459
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Figure 24 The bridge
gadget.
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Figure 25 The clause
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Figure 26 The reward
gadget.
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Figure 27 Once the White king reaches the third column of the reward gadget, White can win
in a single turn.

4.6 Layout460

Having described the gadgets, it remains to show how to instantiate them in a Push Fight461

game state for a given quantified 3-CNF formula. We first place gadgets with respect to462

each other, remembering which squares should be left empty, then define the board as the463

bounding box of the gadgets and fill any squares not recorded as empty with white pawns.464

The resulting board is mostly rectangular with side rails on all boundary edges, with two465

exceptions: one edge along the top of the rectangle lacks a side rail as part of the reward466

gadget, and the board is extended in the bottom-right to accomodate the move-wasting467

gadget along the bottom of the board.468

We begin by building the variable gadget I block containing the existential variable gad-469

gets and the left portion of the universal variable gadgets. Gadgets are stacked from bottom470

to top in the order of the quantifiers in the input formula (using the gadget corresponding471

to the quantifier), with the leftmost column of each gadget aligned with the second-to-right472

column of the previous gadget. (Recall that the width of the variable gadgets is defined473

based on p, one more than the maximum number of occurrences of a literal in the input474

formula.) This alignment allows (and requires) the white king to traverse the gadgets in475

sequence as specified by Lemma 25. Figure 29 shows the relative layout of these variable476

gadgets.477

We place the white king one square below the first variable gadget aligned with its478
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......

......

...... ...

Figure 28 The shape of the Push Fight board produced by the reduction.

Figure 29 The layout of variable gadgets in the variable gadget I block.

leftmost column, and place a white pawn one square above the white king. The white king479

will push upwards into the first gadget on White’s first turn. (If the king was instead placed480

directly in the variable gadget, if the first variable is universally quantified, Black would not481

have a move with which to choose the value of the variable before White commits it.)482

We then build the variable gadget II block by placing the right regions of the universal483

variable gadgets to the right of the corresponding left regions in a single column (further484

right than any part of the variable gadget I section).485

Next we place one clause gadget for each clause in the input formula. Each clause gadget486

is directly to the right of and one square lower than the previous clause gadget. The entire487

clause gadget block is further right of and above the variable gadget II block. Figure 30488

shows the relative layout of the clause gadgets. Then we place a bridge gadget such that the489

entrance of the bridge gadget aligns with the exit of the last variable gadget and the exit of490

the bridge gadget aligns with the entrance of the first clause.491

Figure 30 The layout of clause gadgets in the clause gadget block.

We place the reward gadget so that its entrance aligns with the exit of the last clause492

gadget.493

We leave empty squares in the connection block to encode the literals in each clause in494
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the input formula. When traversing each variable gadget, the white king pushes pawns to495

the right in one of two rows. The lower (upper) row corresponds to setting the variable to496

true (false), or equivalently, preventing negative (positive) literals from satisfying clauses.497

Associate each row with the literal it prevents from satisfying clauses. Each clause gadget498

enforces that at least one empty square remains below its middle column, corresponding to499

at least one of its literals not having been ruled out by the truth assignment. To realize500

this relation, for each literal in a clause, we leave an empty square at the intersection of501

the column checked by the clause gadget and the row associated with that literal. All other502

squares in the connection block are filled with white pawns (as are all squares in the board503

whose contents are not otherwise specified).504

The variable gadgets require each row associated with a literal to contain exactly p− 1,505

p or p+1 empty squares (depending on the type of gadget and whether the row is the upper506

or lower row). This is at least the number of occurrences of that literal (by the definition of507

p), but it may be greater. We place any remaining empty squares in each row in columns508

further right than the reward gadget, forming the overflow block.509

The boundary of the board is the bounding box of all the gadgets placed thus far with510

a move-wasting gadget appended to the bottom of the board. The left column of the move-511

wasting gadget is aligned with the leftmost column of the first (leftmost) variable gadget512

and the sixth-from-right column (the rightmost column having height 3) is aligned with the513

rightmost column of the overflow block. We then fill all squares not part of a gadget nor514

recorded as empty with white pawns and place side rails on all boundary edges except as515

described in the move-wasting and reward gadgets. The anchor is on the black king as part516

of the initial state of the move-wasting gadget.517

4.7 Analysis518

Our analysis of gadget behavior in the preceding sections constrains the white king’s pushes519

under the assumption that there are a specific number of empty spaces (often 0) in a par-520

ticular row or column on a side of the gadget. We have already discharged the assumptions521

regarding the rows associated with literals by our layout of the connection and overflow522

blocks. For every other gadget except the variable gadgets, none of the constrained rows523

or columns intersects with another gadget, so the constraints on the edges are implied by524

the dense sea of white pawns outside the gadgets. For the variable gadgets, we assumed525

that pushing down in the second-to-left column of a variable gadget is not possible, but526

that column contains the previous variable gadget’s rightmost column. We discharge this527

assumption by noting that in the final state of each variable gadget (after the white king has528

left the gadget), the rightmost column of that gadget is filled with white pawns, so pushing529

down in that column is indeed not possible.530

Thus the white king must traverse the variable gadgets, setting the value of each variable,531

then traverse through the bridge gadget to the clause gadgets, where at least one empty space532

must remain in each checked column for the king to reach the reward gadget. If the choices533

made while traversing the variable gadgets results in filling all of the empty spaces in a534

checked column (i.e., the clause is false under the corresponding truth assignment), then535

White can only push by using a move outside the move-wasting gadget and Black wins536

on the next turn. If the white king successfully traverses every clause gadget (i.e., every537

clause is true under the truth assignment), then White wins when the white king pushes the538

black pawn off the board in the reward gadget. Thus White has a winning strategy for this539

Push Fight game state if and only if the input quantified 3-CNF formula is true.540
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