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Abstract. In this paper, we explore how agent reachability problems
from motion planning, games, and puzzles can be generalized and ana-
lyzed from the perspective of block asynchronous cellular automata, in-
spired by asynchronous cellular automata, surface chemical reaction net-
works, and similar rewriting dynamical systems. Specifically, we analyze
square grids with three or four cell types (states) that model motion plan-
ning with blocks: an agent which occurs uniquely, empty space, blocks,
and (optionally) fixed walls. The agent can freely exchange with (walk
through) empty space, and can interact with blocks according to a single
local asynchronous 3-cell replacement rule; the goal is for the agent to
reach a specified destination (reachability). This setting generalizes well-
studied motion-planning problems such as Push-1F and Pull-1F, which
are known to be PSPACE-complete. We analyze all 40 possible 3-cell
replacement rules (22 that conserve blocks so are naturally in PSPACE,
and 18 that create or destroy blocks so are naturally in NP), and ex-
cept for a few open problems, characterize their complexity — ranging
from L to NL to as hard as Planar Monotone Circuit Value Problem to
P-complete to NP-complete to PSPACE-complete.

Keywords: Asynchronous Cellular Automata · Reductions · Motion
Planning

1 Introduction

Cellular automata have been studied extensively in computer science, along with
many variations. A traditional cellular automaton [34, 21, 30, 22] is defined by
a set of possible states for cells of a grid, and a local replacement rule for how
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the state of every cell evolves over time as a function of the states of its local
neighborhood (including the cell itself). The most famous examples are Conway’s
Game of Life (2D) [6] and Rule 110 (1D) [7, 26], which are each Turing-complete
in certain senses.

In a traditional cellular automaton, all cells update in lock step, synchronized
by a global clock. In asynchronous cellular automata [15, 13, 19, 18, 27, 17],
any cell can update at any time. Updating two neighboring cells in different
orders can produce different results, as each cell’s update can depend on the
other cell’s state. Thus the evolution of an asynchronous cellular automaton
is nondeterministic. For example, asynchronous cellular automata capture the
abstract Tile Assembly Model (aTAM) [35, 1], where a cell can transition from
empty to having a particular tile when certain other tiles are neighbors.

Block cellular automata [24, 32, 14] use a different kind of update rule: they
define a replacement rule on a constant-size block of cells (e.g., two consecutive
cells in 1D, or a 2×2 square of four cells in 2D) by specifying the new state of the
entire block as a function of its old state. In a synchronous cellular automaton,
block updates require partitioning the cells into blocks, updating each block in
lock step, and then repeating with a shifted version of the partition so that all
neighboring cells eventually interact.

Block asynchronous cellular automata. In this paper, we explore block asyn-
chronous cellular automata, apparently for the first time. As in block cellular
automata, the replacement rule specifies the new state of an entire constant-size
block of cells as a function or relation of their old states. But unlike synchronous
automata, we do not need a partition of cells into blocks. Instead, as in asyn-
chronous cellular automata, the replacement rule can be applied nondeterminis-
tically to any one block at any time.

Block asynchronous cellular automata directly model many existing dynami-
cal systems, with applications to DNA computing, modular robotics, and puzzles
and games:

1. Surface Chemical Reaction Networks (sCRNs) [28, 3] are 2D block asyn-
chronous cellular automata with rotatable 1 × 2 blocks. In other words, an
sCRN specifies rules of the form AB → A′B′, where A,B,A′, B′ are possible
states, which can be applied to any two (horizontally or vertically) neighbor-
ing cells. There may be multiple rules of the form AB → · · ·, so they form a
relation instead of a function, adding to the nondeterminism of the system.

2. Friends-and-strangers graphs [8, 25] are graphical block asynchronous cellu-
lar automata with blocks defined by a graph edge. More precisely, for every
two friends A,B, we have a swap rule AB → BA that can be applied to
any two adjacent vertices of the graph.

3. The Fifteen Puzzle and related n2 − 1 puzzles [29, 12] are 2D block asyn-
chronous cellular automata with rotatable 1×2 blocks. Here we have a swap
rule Ae → eA for every state A, where e is one (uniquely occurring) state
representing the empty space.
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4. Modular pivoting robots [2] are 2D or 3D block asynchronous cellular au-
tomata with rotatable constant-size blocks of side length up to 3. Specifi-
cally, the rules allow a robot to move from one position to another (similar
to Ae → eA swap rules), but use a larger block to guarantee that certain
neighboring cells are empty to avoid collisions during the motion.

5. The abstract Tile Assembly Model (aTAM) [35, 1] is a 2D block asynchronous
cellular automaton with non-rotatable constant-size blocks involving a cell
and its four cardinal neighbors. The replacement rule specifies how a tile can
attach to a growing assembly, modifying only one cell but depending on the
neighbors.

6. The puzzle game Lights Out! [16] is a 2D block asynchronous cellular au-
tomaton, where a block is a cell and its four cardinal neighbors, and the
replacement rule flips the state of all five cells. Similarly, the generalization
to graphs [16] is a graphical block asynchronous cellular automaton.

Our definition of block asynchronous cellular automata is inspired by these var-
ious applications, and seems natural to study more broadly. Many applications
(e.g., 1–3 above) involve just two-cell blocks.

Our results. In this paper, we study the natural extension of block asynchronous
cellular automata with three-cell blocks. Specifically, we are motivated by two
well-studied agent-based motion-planning games involving reconfiguration of
movable blocks, Push-1F and Pull?-1F, which are known to be PSPACE-complete
[5, 4]. In both games, an agent (the player) can traverse empty cells of a 2D grid
of square cells, where each cell can be empty, contain a movable block, or be a
fixed wall, and the goal is for the agent to reach a particular cell. In Push-1F
(which has the same dynamics as the famous Sokoban puzzle game), the agent
can push a neighboring block, provided that the cell on the other side of the
block is empty. In Pull?-1F, the agent can (but does not have to) pull a neigh-
boring block, provided the cell on the other side of the agent is empty. We can
model these games as block asynchronous cellular automata with rotatable 1×2
and 1× 3 blocks and the following replacement rules:

Push-1F Pull?-1F
Ae → eA Ae → eA (agent A can move through empty space e)

ABe → eAB eAB → ABe (agent A can push/pull a block B into empty space e)

The rules do not involve fixed walls F , which captures the desired property that
the agent and blocks cannot move into such cells.

The main goal of this paper is to characterize the complexity of reachability
(whether the agent can reach a particular cell) in all block asynchronous cellular
automata with a single three-cell block rule involving the same four states: agent
A, empty e, movable block B, and fixed wall F . Notably, we require that the
agent state A appears uniquely at all times in the configuration, as in Push-1F
and Pull?-1F and other agent-based motion-planning problems, and that the
fixed walls F are frozen (never change state). Push-1 was recently shown to be
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hard even without fixed walls F [20], so we also consider the complexity with just
three states {A, e,B}, forbidding fixed walls F . Finally, we assume that two-cell
movement rule Ae → eA is always present, and characterize the behavior of an
arbitrary single three-cell “game” rule.

We provide an almost complete complexity-theoretic landscape for the (single-
agent) reachability problem. There are 40 possible single replacement rules for
a three-cell block (subject to the constraints above), and two versions of each
(fixed blocks allowed or forbidden). We decompose the rules into 22 “conserva-
tive” game rules that conserve the number of blocks, and 18 “bounded” game
rules that create or destroy a block. Bounded rules naturally lead to polynomi-
ally bounded games, as the game rule can be applied a number of times at most
linear in the playing area. Tables 1 and 2 summarize our results for conservative
and bounded games respectively, which solve all but five of the 80 variations
(two of which are equivalent). We also attempt to give each rule a name to pro-
vide intuition behind what the agent is doing, like Push-1 modeling an agent
“pushing” a block.

More specifically, we show the following:

1. We start in Section 3 by analyzing what we call generalized swaps. These
game rules are very weak and in some sense reduce to a swap, so they can
be solved in logarithmic space (L or NL), and some are complete for their
respective classes.

2. Next, in Section 4, we analyze conservative rules where the total number
of blocks does not change. This includes famous examples like Push-1 and
new games such as Suplex-1 (eAB → BAe), where the agent throws the
block over its head into the cell behind it.3 As shown in Table 1, we give
a complete characterization for when fixed walls F are allowed, and leave
only four open cases without fixed walls. Many cases are PSPACE-complete,
while some are surprisingly in P.

3. Next, in Section 5, we cover bounded rules where the number of blocks
monotonically increases or monotonically decreases. For these rules, we prove
that each game is either NP-complete or in P. A few games are P-complete.

4. Finally, in Section 6, we provide initial results for bendy rules, where the
rule’s block can be any path of three adjacent cells, not necessarily a 1 ×
3 rectangle. This rule type is a natural extension of block asynchronous
cellular automata (especially in the graphical view), and is motivated by
implementations where rigidity is hard to enforce, such as DNA [28].

The connection between cellular automata and agent-based motion planning
can be seen in Langdon’s Ant [23] which was later considered from a compu-
tational complexity perspective [33, 10]. Motion planning is also becoming of
increased interest due to experimental constructions such as robots that walk
along DNA origami lattices which perform tasks [31].

3 This name comes from the wrestling move where an opponent is thrown backward
over ones head.
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Rules Game Reachability-F Reachability

ABe → eBA Leap L-complete (Thm. 2) L-complete (Thm. 2)
eAB → AeB Trivial L (Cor. 1) L (Cor. 1)
AeB → eAB Trivial L (Cor. 1) L (Cor. 1)
AFe → eFA Vault L-complete (Thm. 2) L (Cor. 1)
AFB → BFA Vault Swap NL-complete (Thm. 2) NL (Cor. 1)
ABF → BAF Push Swap at Fixed NL (Cor. 1) NL (Cor. 1)
BAF → ABF Pull Swap at Fixed NL (Cor. 1) NL (Cor. 1)
ABe → BAe Push Swap at Empty NP-complete (Thm. 3) NP-complete (Thm. 3)
ABe → BeA = Push Swap at Empty NP-complete (Thm. 3) NP-complete (Thm. 3)
ABe → eAB Push-1 PSPACE-complete [5] PSPACE-complete [20]
ABe → AeB = Push-1 PSPACE-complete [5] PSPACE-complete [20]
eAB → eBA Pull Swap at Empty PSPACE-complete (Thm. 4) PSPACE-complete (Thm. 4)
AeB → eBA = Pull Swap at Empty PSPACE-complete (Thm. 4) PSPACE-complete (Thm. 4)
eAB → ABe Pull?-1 [4] PSPACE-complete [4] OPEN
AeB → ABe = Pull?-1 PSPACE-complete [4] OPEN
eAB → BAe Suplex-1 PSPACE-complete (Thm. 4) P (Thm. 5)
eAB → BeA = Suplex-1 PSPACE-complete (Thm. 4) P (Thm. 5)
AeB → BAe = Suplex-1 PSPACE-complete (Thm. 4) P (Thm. 5)
AeB → BeA = Suplex-1 PSPACE-complete (Thm. 4) P (Thm. 5)
ABB → BBA Swap-2 PSPACE-complete (Thm. 4) OPEN
ABB → BAB Push Swap at Block PSPACE-complete (Thm. 4) OPEN
BAB → ABB Pull Swap at Block PSPACE-complete (Thm. 4) OPEN

Table 1: Our results for conservative game rules. “=” indicates that the rule is
equivalent to the specified rule when combined with the movement rule.

2 Definitions

2.1 Block Asynchronous Cellular Automata

Definition 1 (States). In this paper, we will use a size-4 state alphabet with
the following state symbols and names:

A — the agent
B — a movable block
e — an empty space
F — a fixed wall (allowed only in some models)

Definition 2 (Board). A board is an x × y grid graph where each vertex of
the grid is assigned a single state.

Definition 3 (Subconfiguration). A subconfiguration of size k is a se-
quence of k distinct vertices on a board. A connected subconfiguration is
a sequence of k distinct vertices where each vertex is adjacent to the next ver-
tex in the sequence. A linear subconfiguration is a connected subconfiguration
where all vertices lie either in the same row or same column on the board.

We reconfigure a subconfiguration on a board using a “rule”:

Definition 4 (Rule). A rule of size k is an ordered pair from {A,B, e, f}k ×
{A,B, e, f}k. A rule is applied to a board by replacing a length k linear subcon-
figuration that matches the left side of the rule with the states of the right side
of the rule. Rules can be applied regardless of reflection and rotation.
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Rules Game Reach-F Reach

ABB → Aee Push Smash −→ NP-c (Thm 8)
ABB → eBA Leap Crush −→ NP-c (Thm 8)
ABB → BAe Swap Zap −→ NP-c (Thm 8)
ABB → AeB Push Merge −→ NP-c (Thm 7)
ABB → ABe Pull Merge −→ NP-c (Thm 9)
BAB → eAe Suplex Smash −→ NP-c (Thm 7)
BAB → BAe Suplex Merge −→ NP-c (Thm 7)
BAB → eBA Clap Merge −→ NP-c (Thm 7)
eAB → BBA Trail Swap −→ NP-c (Thm 8)
ABe → BAB Trail Push −→ NP-c (Thm 7)
eAB → eAe Battering Ram P-c (Thm. 11) NL-c (Thm. 13)
ABe → Aee Knock Over in NL (Thm. 16) in NL (Thm. 16)
ABe → BBA Trail Leap −→ L-c (Thm. 2)
AFB → AFe Zap through Walls in P (Thm. 11), PMCVP-hard (Cor. 2) N/A
AFB → eFA Vault Crush NL-c (Thm. 2) N/A
ABF → AeF Push into Wall in NL N/A
FAB → FAe Wall Suplex in NL N/A
AFe → BFA Trail Vault L-c (Thm. 2) N/A

Table 2: Our results for bounded game rules. “−→” in the F column indicates
that the complexity is the same as the right column, as hardness without fixed
walls is a stronger result. “N/A” in the right column indicate that the problem
is trivial as the rule cannot be applied without fixed walls.

Definition 5 (Rule System). A rule system is a binary relation over
⋃

k{A,B, e, f}k
specifying rules that can be applied.

Definition 6 (Agent Based Rule System). A rule system is agent-based
if every rule in the rule system contains exactly one A on both the left and right
hand sides of the rule.

When k = 2, this model is equivalent to a 4 species Surface Chemical Reac-
tion Network [3]. In the real world, surface chemical reaction networks have a
difficult time distinguishing between 3 states in a straight line versus 3 states in
an L. This then gives rise to a second class of rule, a “bendy” rule.

Definition 7 (Bendy Rule). A bendy rule of size k is an ordered pair {A,B, e, f}k×
{A,B, e, f}k where a size-k (connected) subconfiguration is replaced by a new
subconfiguration of the same size and shape.

Note that bendy rules do not require linear subconfigurations; the states can
instead “bend” making an L shape. When k = 2, bendy rules are identical to
normal rules. In this paper, a rule will not be bendy unless otherwise specified.

We study the Single Agent Reachability Problem . This is characterized
by tracking a special agent state which the rules and starting configuration ensure
only one can exist at a time. If a node becomes the state A we say it is occupied
by the agent.
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Definition 8 (Single Agent Reachability Problem). Given a board B with
a single agent state A, an agent-based rules system R, and a target location t,
does there exist a sequence of rules applied to subconfigurations which causes the
node at t to be in state A?

This problem is commonly studied in the context of block pushing puzzles,
and therefore we use a naming convention found in block pushing literature. For
example, given the rule ABe → eAB, we call Single Agent Reachability problem
Push-1 if we do not allow fixed walls F , Push-1F if we allow fixed walls, and
Push-1W if we allow thin walls, which can be thought of as removing edges
from the board (changing whether we have a full grid, an induced subgraph,
or a general subgraph of the grid). We include the name of each rule in the
tables. In the future, when we refer to the Single Agent Reachability problem
by a rule r we really mean the Single Agent Reachability Problem using the set
or rules consisting of r and the movement rule , {r,Ae → eA}. For example,
in Table 1, the results for the rule ABe → eBA are in fact results for the Single
Agent Reachability Problem for the set of rules {ABe → eBA,Ae → eA}. This
is because in typical pushing block puzzles the agent is allowed to move freely
unless it comes in contact with a fixed wall or movable block, where in the latter
case the agent can then either push or pull the block. Hence, any ruleset that
does not include the movement rule is an incomplete representation of these
puzzles.

2.2 Gadgets

Almost all of our hardness results reduce from the motion-planning-through-
gadgets model [9, 11]. This framework was introduced by a series of papers [9,
11], and attempts to generalize motion planning problems where an autonomous
agent attempts to navigate an environment to get between two distinct points.

A gadget consists of a finite set of states, a finite set of locations, and
a finite set of transitions of the form (q, a) → (r, b), meaning that, when the
gadget is in state q, an agent can enter at location a and exit at location b while
changing the gadget’s state to r. Given a system of such gadgets, with locations
connected together by a graph, the reachability problem asks whether the
agent can start at one specified location and reach another through a sequence
of gadget traversals and connections between gadgets.

As pushing-block puzzles are motion-planning problems at their core, we
make extensive use of this framework to show the vast majority of our rules are
NP-hard or PSPACE-hard.

3 Generalized Swaps

We start by defining a generalized swap and prove that all generalized swaps
are in NL and all symmetric generalized swaps are in L. We also prove that
many generalized swaps are L-hard and NL-hard. For hardness, we reduce from
non-planar graph reachability and thus we need a crossover gadget.
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3.1 Rules in L and NL

Definition 9 (Generalized Swap). Let P denote a subconfiguration that a
rule is being applied to. A set of rules is a generalized swap if for each rule:

1. The only vertices that change state are the start s and ending location t of
an agent, and

2. For all other vertices p ∈ P \ {s, t} which do not contain a fixed wall F ,
adding or removing a block B from p does not impact the ability of the agent
to move from s to t, though perhaps using different rules from the set.

Adding or removing blocks may prevent movement through other positions in P ,
however. A generalized swap is symmetric if the rule with the agent starting
at t and moving to s is also a generalized swap.

Theorem 1. Single Agent Reachability with a generalized swap is in NL. If the
generalized swap is symmetric, it is in L.

Corollary 1. The following games are in L under both the non-bendy setting
and the bendy setting:

– Trivial (eAB → AeB and AeB → eAB)
– Leap-F (ABe → eBA)
– Vault-F (AFe → eFA)
– Trail Leap-F (ABe → BBA)
– Trail Vault-F (AFe → BFA)

The following games in in NL under both the non-bendy setting and the bendy
setting:

– Vault Swap-F (AFB → BFA)
– Vault Crush-F (AFB → eFA)
– Push into Wall-F (ABF → eAF )
– Wall Suplex-F (BAF → eAF )
– Fixed Wall’s Push Swap (ABF → BAF )
– Fixed Wall’s Pull Swap (BAF → ABF )

3.2 Path Reductions

For L-hardness and NL-hardness we must provide a crossover gadget; whether
or not the crossover gadget is directed influences the hardness of the ruleset.

Theorem 2. The following games are complete for their corresponding com-
plexity classes:

– Leap (ABe → eBA) is L-complete.
– Vault-F (AFe → eFA) is L-complete.
– Trail Leap (ABe → BBA) is L-complete.
– Trail Vault-F (AFe → BFA) is L-complete.
– Vault Crush-F (AFB → eFA) is NL-complete.
– Vault Swap-F (AFB → BFA) is NL-complete.
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a Leap:
(ABe → eBA)
Trail Leap:
(ABe → BBA)

b Vault:
(AFe → eFA)
Trail Vault:
(AFe → BFA)

c Vault Swap:
(AFB → BFA)
Vault Crush:
(AFB → eFA)

Fig. 1: Undirected crossovers in (a) and (b), and a directed crossover in (c)

4 Conservative Games

We present the complete set of “conservative” rules on three nodes. A rule is
conservative if and only if:

1. The number of movable blocks present on the board before the rule is applied
is equal to the number of movable blocks after, and

2. The number of fixed walls is the same before and after applying the rule,
and fixed walls do not change position.

There are several rules which are “congruent” to other rules. Two rules R1, R2

are congruent if applying the movement rule to either the left or right hand
states of R1 can produce identical states to R2. If the movement rule is congruent
to a rule R, then R is trivial .

4.1 Rules in NP

Theorem 3. Single-Agent Reachability for Push Swap at Empty (ABe → BAe)
is NP-complete.

4.2 PSPACE-complete Rules

Theorem 4. Single-agent Reachability for the following rules is PSPACE-complete:

– Swap-2 (ABB → BBA)
– Pull Swap at Empty (eAB → eBA)
– Suplex-1F (eAB → BAe)
– Pull Swap at Block (BAB → ABB)
– Push Swap at Block (ABB → BAB)
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3

2

21 3

1

1

Fig. 2: The Locking 2-Toggle (L2T) gadget and its states from the motion plan-
ning framework. The numbers above indicate the state and when a traversal
happens across the arrows, the gadget changes to the indicated state.

a Initial state b Locked state

Fig. 3: An L2T gadget for Swap-2 (ABB → BBA) model

a Initial state b Locked state

Fig. 4: An L2T gadget for Suplex-1F (eAB → BAe)

4.3 Polynomial Time Rules

Here we show agent reachability Suplex-1 with no fixed walls is in P. Recall that
Suplex-1 is the rule eAB → BAe (or equivalently, eAB → BeA). We will work
with the version with the rule eAB → BAe. We call applications of the this rule
(which does not move the agent) suplex moves to distinguish it from moving
the agent with the movement rule. We call empty locations holes; because the
agent needs a hole behind it in order to move blocks, keeping track of the location
of holes will be key to our algorithm. Call a location reachable if it is possible for
the agent to ever reach that location, and call a move a turn if it is in a different
direction than the previous move (i.e., horizontal after a vertical or vice versa).
We will think of the path the agent takes as a sequence of segments and turns,
where a segment is the sequence of consecutive moves in the same direction.
Most of the time, when following a path, the agent will alternate between using
suplex moves to clear the space in front of them, and then moving into the newly
cleared space. Using these ideas we show Suplex-1 without fixed blocks in P.
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Theorem 5. Computing the set of reachable locations for an agent is in P so
Suplex-1 is in P.

5 Bounded Games

In this section we study what we call “bounded” games. In a bounded game ,
the total number of movable blocks monotonically increases or decreases with
each application of the game rule. We can divide the bounded games into two
types: Zap, which deletes blocks in each rule application, and Trail , which
adds blocks. The results are outlined in Table 2. We then prove the remaining
bounded games are all easy via a greedy algorithm. Finally we investigate which
of these games are P-complete. We start with the proof bounded games are all
in NP.

Theorem 6. All bounded games are in NP.

5.1 NAND Gadgets

In many of these games we get NP-hardness by building a NAND gadget. This
gadget has two tunnels which both start open. Traversing either tunnel closes the
other and leaves the first open. We use two variants: anti-parallel and crossing.
The first is shown in Figure 5. For the last reduction we introduce a new version
of the NAND called the Delayed NAND . This NAND adds an extra initial
state where the gadget must be “activated” by a button before solving. It is of
note that all of these NP-complete reductions do not use fixed walls.

3

2

21 3

3

2

Fig. 5: Antiparallel NAND gadget shown. This gadget is drawn with all transi-
tions directed however some of our gadgets are undirected or mixed, i.e., having
both types. In all of these settings the motion planning problem is NP-complete.

a Initial state b Traversed state

Fig. 6: Anti-Parallel NAND for the Clap Merge (BAB → eBA) model
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a Push Merge
(ABB → AeB)

b Push Merge
(ABB → AeB)

c Diode for Push Merge
(ABB → AeB)

Fig. 7: Initial states of Antiparallel NANDs

Theorem 7. The following games are NP-complete:

– Push Merge (ABB → AeB)
– Bendy Push Merge-F (ABB → AeB)
– Suplex Smash (BAB → eAe)
– Bendy Suplex Smash-F (BAB → eAe)
– Suplex Merge (BAB → BAe)
– Bendy Suplex Merge-F (BAB → BAe)
– Clap Merge (BAB → eBA)
– Bendy Clap Merge-F (BAB → eBA)
– Trail Push (ABe → BAB)

Theorem 8. The following rules are NP-complete:

– Trail Swap (eAB → BBA)
– Swap Zap (ABB → BeA)
– Leap Crush (ABB → eBA)
– Push Smash (ABB → Aee)

Theorem 9. Pull Merge (ABB → ABe) is NP-complete.

5.2 More Easy Cases

First we will describe a greedy algorithm which gives membership in P for a few
games. We only include rules here that aren’t covered by log-space algorithms
described in Section 3.

Theorem 10. The following games are in P:

– Battering Ram-F (eAB → eAe)
– Knock over-F (ABe → Aee)
– Zap Through Walls-F (AFB → AFe)

Theorem 11. The following games are P-complete:

– Battering Ram-F (eAB → eAe)
– Zap Through Walls-F (AFB → AFe) in 3D
– Zap Through Walls-F (AFB → AFe) with Multiple Agents
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a AND b OR c Crossover

Fig. 8: Battering Ram (eAB → eAe) P-complete Reduction

Zap-Through-Walls

Corollary 2. Zap-Through-Walls-F (AFB → AFe) is PMCVP-hard.

Theorem 12. Bendy Zap Through Wall (AFB → AFe) is PMCVP-hard in
2D and P-complete in 3D.

Battering Ram Here, we give a result for Battering Ram (eAB → eAe) with
no fixed blocks:

Theorem 13. Battering Ram is NL-complete.

Knock Over Knock Over (ABe → Aee) is of interest because the problem is
P-complete if we allow thin walls or if the problem is in 3D, but is in NL if we
only allow fixed walls. This is the only section we have where -W vs -F makes a
distinction so we specify this in our Theorems. Note that Theorem 10 holds for
-W.

-W Ref. -F Ref.

3D P-complete Thms. 14, 15 P-complete Thm. 15

2D P-complete Thm. 14 NL Thm. 16

Table 3: Knock Over (ABe → Aee) Table

Theorem 14. Knock Over-W (ABe → Aee) is P-complete.

Theorem 15. Knock Over-F (ABe → Aee) in 3D is P-complete.

Theorem 16. Knock Over-F (ABe → Aee) is in NL.

6 Bendy Rules

Here, we consider length-3 bendy rules, that have not been considered in earlier
sections. Recall that length-3 bendy rules can be applied in an L-shape. For
example, for Push-1 (ABe → eAB), allowing the rule to be bendy allows for an
agent to push a block around a corner.
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Fig. 9: Knockover-W (ABe → Aee)

6.1 Other Conservative Bendy Results

Here, we obtain partial results for some conservative bendy rules not mentioned
in earlier sections:

Theorem 17. Bendy Push-1F (ABe → eAB) is NP-hard.

a Initial state b Bendy Push-1 traversal c Bendy Trail
Push traversal

Fig. 10: An undirected NAND gadget for Bendy Push-1F (ABe → eAB) and an
undirected matched crumblers gadget for Bendy Trail Push (ABe → BAB).

Theorem 18. Bendy Push Swap at Block-F (ABB → BAB) is NP-hard.

Theorem 19. Bendy Pull Swap at Block-F (BAB → ABB) is NP-hard.

Here, we note a particularly surprising easiness result:

Theorem 20. Bendy Suplex-1F (AeB → BAe and congruent) is in L.

6.2 Other Bounded Bendy Results

Here, we obtain some results (some partial, some full) for bounded bendy rules
that are not mentioned in earlier sections:

Theorem 21. Bendy Trail Push-F (ABe → BAB) is NP-complete.
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Theorem 22. Bendy Push Smash-F (ABB → Aee) and Bendy Swaplex-F (ABB →
BAe) are NP-complete.

Theorem 23. Bendy Pull Merge-F (ABB → ABe) is NP-complete.

Theorem 24. Bendy Trail Swap-F (eAB → BBA) is NP-complete.

Theorem 25. Bendy Knock-Over-F (ABe → Aee) is PMCVP-hard in 2D and
P-complete in 3D.

Theorem 26. Bendy Battering Ram-F (AeB → eAe) is in L.

7 Future Directions

Many other variants of Push-1F and Pull?-1F have been introduced and studied.
Some of them require further extenions to our block asynchronous cellular au-
tomata framework. For example, Pull!-1 [4] forces the agent to pull a block when
it moves away from a block. We can model this by replacing the Ae → eA swap
with the more restrictive eAe → Aee as the movement rule, in addition to the
rule eAB → ABe representing the pull. It would be interesting to consider the
other games with this movement rule. Pull-1W [4] allows thin 0× 1 walls. Thin
walls can be modeled as missing edges in the graph of cells. Games like Push-∗,
where the agent can push any number of blocks in front of it, can be modeled as
an infinite set of game rules ABie → eABi for all i > 0. PushPull-1 is a game
that would have two game rules, {ABe → eAB, eAB → ABe}, or as a single
reversible rule ABe ↔ eAB. The puzzle game Sokoban can be modeled with the
same rules as Push-1, expect that the goal is to reach a target configuration of
blocks. It would be interesting to study the other puzzles we have introduced in
these variants as well.
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